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Sandia AM Program ) &,

Goal: 15+ year vision to combine promise
of metal additive manufacturing (AM)
with deep materials & process
understanding to revolutionize design,
manufacturing, & qualification paradigms.

» Materials, designs, and ultimately
components are “Born Qualified/Certified oo
Predictions  §
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Promise of metals AM: &N Prg]pse?trl]ei
= Disruptive technology that allows |

simultaneous creation of optimized part
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= Ideal for low volume, high value, high | it Modals
consequence, complex parts

= Inherently flexible and agile

= Ability to create near-net shape parts

Rather than focusing on process-modification to print
materials, apply a materials-centric approach to enable 2

desired outcome with available tools.



Challenges of Metals AM )

= Conventional alloy AM parts have (mostly) highly variable and sub-optimal mechanical
properties, prohibiting their widespread use.

= Current processing-based qualification approaches focus on optimizing process
parameters to improve performance and reliability of conventional alloys (e.g., steels)
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S. A. Khairallah, et al., Acta Mater., 2016

This approach has only had limited success.... Why?

Conventional alloys degrade from melt/re-solidification processes and
were never intended to be structural components in cast forms! 3




Challenges of Metals AM (17-4PH steel) )

B.C. Salzbrenner, et al., J. Mat. Proc. Tech., 2017
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High Entropy Alloys: A Materials Approach to Metals AM?

D. Raabe, et al., Steel Res. Int., 2015
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HEASs have properties exceeding most conventional
alloys, suggesting improved resistance to failures
associated with defects in AM parts.

Goal: demonstrate these alloys as a materials-based
approach to achieve the promise of metals AM, i.e.
insertion into structural applications.
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Why might HEAs be a materials-based approach? ) hea

High Entropy Alloys: primarily solid solutions containing 5+ alloying constituents, where the
solutions have high configurational entropy (AS,,,, >1.4R, approx. 12 J/mol-K) .

High configurational entropy is believed to thermodynamically suppresses phase separation, a
primary route for degradation of mechanical properties.

Competition between Gibbs energy for solid
solution and intermetallic formation
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Stable solid solution microstructure
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D. Miracle et al., Acta Mat., 2017

Thermodynamically stable and predictable solid
solution microstructure, independent of processing!

Ideal for layer-by-layer melting/re-melting of AM...

This hypothesis remains controversial and highly-
Y debated, and why the proposed work has high
1300 Temperature (K) T scientific impact potential.
D. Miracle et al., Entropy, 2014 6




Reports suggest HEAs are better as AM materials! ) e

= Due to their stable structures and remarkable properties in as-cast form, HEAs are uniquely
suited for AM processing..

= Recent literature has shown proof-of-concept of AM consolidation of HEAs but detailed
investigations into the fundamental process-structure-property relationships are lacking.

Table I — Strength and ductility of conventional and AM processed stainless steel (red) and a
comparable HEA (blue). Unlike the steel, the HEA shows insensitivity to processing method, with
superior mechanical properties and lower variability.

Condition Ultimate Strength (MPa) Strain-to-Failure (%)
Conventional 17-4 PH 1450 +/- 1% 22 +/- 5%
Laser AM 17-4 PH 1125 +/- 16% 5.5 +/- 82%
Conventional AICoCrFeNi HE alloy 1426 +/- 9% 5.6 +/-34%
E-beam AM AlCoCrFeNi HE alloy 1670 +/- 4% 26.5 +/-25%

B.C. Salzbrenner, et al., J. Mat. Proc. Tech., 2017
H. Shiratori, et al, Mater. Sci. Eng. A, 2016



In-house processing capabilities: T
Laser Engineered Net Shaping (LENS)
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sensor =  Open architecture Laser Engineered Net
Optics Laser Shaping (LENS) apparatus for multi-
Collimator material and custom alloy printing.
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=  2-color pyrometer and FLIR cameras for
in situ melt pool geometry and
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=  Hybrid AM and subtractive processing.

bowder =  Controlled powder feed rate with up to 5
Delivery independent powder chemistries — enable
o in situ alloy design studies.
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Microstructural stability analysis of HEAs during rapid () s
solidification of AM

Laser /

Al, sCoCrCuFeNi HEA
cast ingot

Laser weld

As-cast HEA

Evaluated microstructure evolution following a
series of single bead welding experiments at
varying laser power




Stable single-phase microstructures retained g
following laser melting experiments

300WI 400W 500W 400W
e

Composition unaffected, and single phase microstructure maintained: validation of
hypothesis!
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Novel Simulations Tools for Alloy Design and )&=,
Optimization

* Molecular Dynamics (MD) effort to develop “big data” tool
to enable parametric alloy optimization

* These tools can also enable new alloy development, and
insights about the stability of hyper-dimensional alloys with
high configurational entropy

increasing entropy

FeNiCoMn FeNiCoCrMn

Atomistic (MD) simulations snapshots

from investigations of HE alloy stability 1




Novel Tools for Alloy Design and Optimization
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Atomistic (MD) simulations will enable new
thermodynamic predictions of stable HEAs 12




Mechanical Properties Characterization @&.

= (Collaboration with Prof. Karin Dahmen at UIUC.

=  Support model development for deformation behavior of HE alloys.
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Future Work for TMS 2019! ==

Consolidate pre-alloyed CoCrFeMnNi1 HEA powders using LENS

and determine process-structure-properties relationships
TZ " g Fe-Co intermetallic phase

AC-STEM with atomic-scale EDS (Lu et al.,
Sci. Rep. 2014)

Pre-alloyed CoCrFeMnNi powder

Co 21.40%
Cr 18.38%
Fe 19.87%

Mn 19.23%
21.09%



Summary ) e

Materials-centric approach to additive manufacturing through High Entropy Alloys
— method for studying HEA solidification behavior.

Laser melting experiments on Al, ;CoCrCuFeNi HEA cast ingot showed a
retention of the single phase structure, suggesting no significant change in
composition.

Molecular Dynamics simulations are enabling novel routes for high entropy alloy
design and optimization — rapid exploration of composition space.

Future goals: Process and characterize samples of consolidated CoCrFeMnNi pre-
alloyed powders




