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Approximation 
Algorithms

• Efficient heuristic with bound on worst 
case performance	



• Trades off efficiency for performance	



• α-approximation earns profit at least 
OPT/α on every instance



• Input:  (weighted) undirected graph G = (V, E).	



• M ⊆ E is a matching if each node appears in at most edge in M.	



• Max matching:  find a max cardinality (weight) matching.
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Matching: Extensions

• Vertex capacties: b-matching	



• Subgraph with at most bv edges at v	



• Edge capacities	



• Copies of edges may be selected



Demands

• Facilitate modeling of: 	



• All or nothing scenarios	



• Economies of scale	



• Transportation: indivisible shipments	



• Scheduling: unrelated machines	



• Knapsack is prototypical problem



Knapsack
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• NP-complete	



• Modified greedy: 2-approx	



• Natural LP relax: 2 integrality gap	



• Dynamic programming: (F)PTAS

Knapsack: Approximation Algorithms



Our Problem

• Generalize matching in two directions	



• demand matching: knapsack at each vertex	



• k-hypergraph matching: each hyperedge ≤ k 
vertices	



• k-hypergraph demand matching: both



Demands in Graphs
Edges: profits (p) & demands (d)	



Vertices: capacities (b)

4 3
6 3

Selecting above edge earns profit of 4 and leaves 
3 and 0 units of capacity at u and v, respectively.

u v



Demand Matching

• M ⊆ E is a demand matching if for each 
vertex v:  

• Goal: find max profit demand matching 	



• Introduced by Shepherd & Vetta 2002	



• APX-complete generalization of both 
matching and knapsack

�
e�M⇥�(v) de � bv



• Generalizes knapsack	
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• Generalizes knapsack	
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k-Hypergraph Matching

• Each hyperedge has ≤ k 
vertices	



• Find: max weight collection of 
non-intersecting hyperedges	



• E.g. k=3, |V|=7, |E|=7



k-Hypergraph Matching

• NP-complete	



• Natural LP: k-1+1/k integrality gap	



• No Ω(k/log(k)) unless P=NP 
[Hazan, Safra, & Schwartz 2006]



k-Hypergraph Demand 
Matching

• Vertex v: capacity bv	



• Hyperedge e: demand de	



• M ⊆ E is a k-HDM if:  

• Packing IPs with at most 
k nonzeroes per column 
 

�
e�M⇥�(v) de � bv

b=2t-1

d=t
p=1



Results
Previous This work

Integrality 
Gap

k-HDM 8k 2k ≥ 2(k-1+1/k)

Dem. Match. 3.5 3 ≥ 3

2-CS-PIP 4 3 ≥ 3

[1] Chekuri, Ene, & Korula 2009	


[2] Bansal, Korula, Nagarajan, & Srinivasan 2010	


[3] Shepherd & Vetta 2002	


[4] Pritchard & Chakrabarty 2009



Iterative Packing

• Iterative rounding handles soft constraints	



• Emulate features of iterative rounding:	



• Conceptually simple	



• Large frac values facilitate approx	



• Suffices to find single large edge/iter	



• IIlustrate with matching



Matching IP
Max

�

e�E

pexe

s.t.
�

e��(v)

xe � 1 ⇤u ⇥ V

xe ⇥ {0, 1} ⇤e ⇥ E

• Edge e is in matching (xe=1) or not (xe=0)	



• At most one edge picked touching vertex u	





Matching LP Relaxation

• Edge e takes real value between 0 and 1	



• Values at each vertex must sum ≤1	



Max
�

e�E

pexe

s.t.
�

e��(v)

xe � 1 ⇤u ⇥ V

xe ⇥ [0, 1] ⇤e ⇥ E



Integrality gap

• Assume all edge profits are 1	



• This matching LP has gap of 3/2

½ 

½ 

½ IP: 1	


LP: 3/2



Convex Decompositions, 
Approximately

• What to do with fractional solutions?	



• Find an approx convex decomposition:  

!

• x is a frac sol and α≥1 is a paramater 
chosen as small as possible
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Convex Decomposition: Example
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• Picking best matching gives ≥⅔ profit of frac sol	



• Is α=3/2 optimal?



• Optimal α is precisely integrality gap!         
[Carr & Vempala 2002]	



• Need poly # of solutions for an approx alg	



• Iterative packing greedily maintains approx 
convex decomp

Approximate Convex Decompositions



Iterative Packing

• Begin with fractional LP solution, x	



• Goal is approx convex decomposition:	



1.Remove edge e from G and x	



2.Recursively obtain approx conv decomp of  
1/α⋅x into integral solutions in G	



3.Insert e into 1/α⋅xe frac of integral solutions



Iterative Packing: Example
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• At most one new solution per iteration	



• Is ½-approx conv decomp always possible?	



• Actually did better: ⅘⋅x	



• When can we provably achieve ≥ ½⋅x?

Iterative Packing: ½-approx



Iterative Packing: ½-approx

½⋅xuv

≤½⋅(1-xuv) ≤½⋅(1-xuv)

u v

• Consider when edge uv inserted	



• u, v each matched in ≤½⋅(1-xuv) frac of sols	



• Room for uv in ≥1-2⋅½(1-xuv) = xuv frac	



• Note: only needed ½⋅xuv frac



Iterative Packing: α-approx

α⋅xuv

≤α⋅(1-xuv) ≤α⋅(1-xuv)

u v

• Consider when edge uv inserted	



• u and v matched in ≤ α⋅(1-xuv) frac of sols	



• Require: 2[α⋅(1-xuv)] + α⋅xuv ≤ 1	



• May choose α = 1/(2-xuv)



k-HDM IP

• Assume |e| ≤ k for all e	



• (Hyper)edge e induces demand de at u in e	



• Total demand induced at u must be ≤ bu

Max
�

e�E

pexe

s.t.
�

e��(v)

dexe � bu ⇤u ⇥ V

xe ⇥ {0, 1} ⇤e ⇥ E



k-HDM LP

• Demands must frac pack at each vertex

Max
�

e�E

pexe

s.t.
�

e��(v)

dexe � bu ⇤u ⇥ V

xe ⇥ [0, 1] ⇤e ⇥ E



Integrality gap

• IP is infeasible, yet LP is not	



• Cheating since de > b	



• Fix: no clipping-assumption	



• Problem: integral edges

IP: 0	


LP: >0

b

b

(b+1)*b/(b+1)

de xe



Integrality Gap

• Essentially (k-hypergraph) matching	



• LP “cheats” by exploiting demands	



• Projective plane gives 2(k-1+1/k)	



• We show these are essentially tight

IP: 1	


LP: ~3

2t-1

2t-2 2t-1

t⋅(t-1)/t

t⋅(t-1)/t

t⋅1



Analysis

u

v

u u

v v

λ1 λ2 λ3 λ4

βu=α(λ1+λ3)	


βv=α(λ1+λ2)

•Consider when e is inserted	


•Let βu = α⋅(frac of sols obstructing e at u)

e



Analysis

• βu/α is frac of solutions obstructing e at u	



• Bound: β ≥ maxu βu	



• Require: (k⋅β + xe)/α ≤ 1	



• May choose: α = k⋅β + xe	



• Task: bound β



Packing with demands

χ2
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�  b� d · x
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Analysis: k-HDM

• Recall: α = k⋅β + x	



•  	



• β ≤ 1 for special cases (e.g. d=1, x=1)	



• In general, bound is unwieldy	



• Idea: order edges by demand	



�  b� d · x

b� d + 1

�  b� d · x
max{b� d + 1, d}  2

b� d · x
b + 1

 2



Analysis: DM
• Observation [S & V]: 3-approximation on 

fractional support of an ext point	



• Easier “nonconstructive” proof of I.G.	



• Idea: order edges by x value (integral first)	



• New base case: fractional support	



• Need approx decomp for base case	



• [C & V] or directly



Iterative Packing
Problem Solution Ordering

Base 
Case α 

Matching Arbitrary Arbitrary ∅ 2

Matching Ext Point Dec x ∅ 3/2

k-HDM Arbitrary Dec d ∅ 2k

2-CS-PIP Ext Point Integer Frac 3*

k-H b-M Ext Point Chan & Lau ∅ k-1+1/k*



Open Problems

• 2k-approx for k-CS-PIP	



• Better use of extreme points	



• Demand versions of other problems	



• Configuration LP (exponential # variables)	



• Improvement for bipartite graphs



Thanks!


