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Quantum'Model'Selec/on:
How'big'is'your'system's'Hilbert'Space?

Summary Of Results
•  Quantum devices with ill-defined/unknown Hilbert space dimension d 

pose serious problems for tomography -- what size matrix do you fit?
• We develop a likelihood ratio test for d in continuous-variable systems.
• A key ingredient in this test is the null value of the loglikelihood ratio λ 

-- its typical value when increasing d provides no advantage.
• Preliminary results:  the null value is set by the dimension of the 

boundary of the model (2d - 2), not the dimension of its bulk (d 
2 - 1).
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Conclusions
 • Likelihood ratio tests can be used to regularize 

CV tomography and avoid overfitting.
• Our results are portable to the information 

criterion framework (when it gets developed). 

Fig. 1:  This Wigner function was reconstructed by 
straightforward linear inversion.  Are the radial 
wiggles real? or an overfitting artifact?

Fig. 2:  Loglikelihood ratios for good (d=3,4,5) & 
bad models (d=2).  True state was |2〉〈2|.

Model selection and CV tomography
Heterodyne CV tomography:  Outcomes of the measurement are labeled by phase 
space points α = x + ip.  Datasets are lists {α1, α1, …, αN} of N observations.

Maximum likelihood tomography: Given data D, find the d×d state maximizing L = Pr(D|!).

Model selection:  Given data D, find the dimension d that best describes the data.  Many 
methods exist!  We apply & investigate the likelihood-ratio test -- a powerful hypothesis test.

LR test paradigm:  Nested models:  for each d, the model = set of all density matrices on Hd.  
We compare models A and B with the log likelihood ratio statistic:

If A is closer to the truth than B, then λ
will grow linearly with N (Fig 2).  But if they
are equally good (e.g. truth is in both A and B),
then λ will asymptote to a constant "null" value.  

Numerical methods and results:  toward a reliable loglikelihood test for dim(H)
We want to use λ (the loglikelihood ratio statistic) as a criterion for selecting an effective Hilbert space dimension (d).  This requires a 
knowing how λ will behave when both the smaller and the larger model are equally good (and therefore the larger model is overfitting 
and should be discarded).  A simple theory (the Wilks Theorem) predicts λavg = n(dbig) - n(dsmall), where n(model) is the number of 
parameters in the model.
However, it's not clear how many
effective parameters the quantum
models have (due to boundary
issues), so our goal is to determine
this null value by studying the 
behavior of λ numerically.

We generate simulated heterodyne
data by rejection sampling, then
maximize L over d-dimensional
state spaces for d=2,3,4,5,6 using
gradient ascent.

Frameworks for Model Selection:  HT vs IC

Our central physics problem is clearly addressed by model selection -- 
but there are multiple tools/techniques/frameworks for model selection.  
Here, we have used a hypothesis testing concept (loglikelihood ratio 
tests).  One obvious alternative is information criteria, e.g. Akaike's 
AIC or the Bayesian BIC.

Hypothesis testing is motivated by finding the true model, and fits 
naturally in a frequentist context.  This is quite artificial (we have no 
reason to believe that a "true" model exists in the lab!), but also 
provides a clean and simple sandbox for developing ideas and tests.
 
Information criteria are motivated by finding the best model -- i.e., 
the one that, when its parameters are fit, will predict future data most 
accurately (and generate the greatest utility).  This matches the needs 
of quantum information technology well… at the cost of simplicity.

The IC approach is ultimately better, but needs more work.  
We do not yet have ICs whose derivation is valid in tomography!  For 
example, the AIC assumes that future samples (to be predicted) come 
from the same measurement that generated past samples (data).  This is 
not generally true in tomography -- we may do heterodyne tomography, 
but use the results to predict measurements in the Fock basis.

Loglikelihood ratios appear everywhere -- not just in hypothesis 
testing, but also in most of the known ICs.  For example, the standard 
AIC looks nearly identical to the LR test (except for a factor of 2).  
Thus, results from this investigation will be applicable in the IC 
framework with minimal work, once somebody develops ICs that are 
suitable for quantum tomography problems.

Road map -- where this research goes from here

The research presented here is explicitly preliminary -- it represents "reconnaissance by force" to identify specific problems.

Model selection for identifying effective Hilbert space dimension is a big deal.  Most (all?) experimental qubits really do have 
ill-defined dimension.  However, in practice this is more critical for process (or gate-set) tomography than state tomography.  We will 
extend the techniques developed in this sandbox to that (more vital) context.

Continuous-variable tomography is significant, especially for QKD and photonic QIP.  It desperately needs effective-dimension 
estimation; direct Wigner function estimation is probably overfitting wildly.  We will expand our focus to homodyne tomography.

Other techniques for model selection are a major focus of near-future work.  The loglikelihood ratio statistic is central to many of 
them (including the AIC, BIC, and indirectly the χ2 test), so this study of LR tests is foundational for further exploration.  We believe 
that the information criterion paradigm is an ultimately better approach, but also presents greater conceptual challenges.

Linear inversion tomography and χ2 tests are intimately related, and can be dramatically faster and easier to implement than 
likelihood-based methods.  We will determine whether (and when) these linear methods provide equally powerful model selection.
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Quantum tomography and Hilbert space dimension

Problem:  To characterize a quantum device (e.g. qubit) we use tomography:  
    (1) measure many identical samples;  
    (2) "invert” the observed frequencies to estimate the state, process, gate-set, etc.  
However… tomographic inversion protocols require the Hilbert space dimension (d) to be specified 
a priori.  Using the wrong d can cause systematic errors (d too small) or overfitting (d too big; Fig 1).  
Often, d is ill-defined (continuous variables) or unpredictable (leakage, non-Markovian noise).

Solution:  We need a method to identify a quantum device's "effective” Hilbert space dimension.  It 
should detect overfitting (d too big) as well as a failure to fit (d too small).  Then we can use it to 
select the proper d -- based on the data -- before doing tomographic inversion using that d.

Test case:  We are testing and applying model selection methods for continuous variable (CV) 
tomography, where the Hilbert space -- L2(R) -- is infinite-dimensional. We consider heterodyne 
tomography (i.e., the coherent-state POVM, or direct sampling from the Husimi distribution).  We 
assume that the true state is energy-limited -- i.e., it is supported on the Fock subspace given by 
Hd = Span(|0〉…|d-1〉) -- but we don't know d and have to choose it based on the data.
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Fig 3a: When the true state lies in H2,
(ρ=|0〉〈0|), fitting data with larger 
(d=3,4,5) models yields only a small 
constant (w/r.t. N) increase in λ.

Fig 3b: When the true state is not 
in H2 (ρ=|2〉〈2|), λ rises linearly w/N
and the d=2 model can be confidently
rejected after as few as N=20 samples. 

Fig 3c: The average gain in λ due
to overfitting (see Fig 3a), vs. the
# of unneeded Hilbert space dim.
Results consistent with  the # of
parameters in pure state manifolds.
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