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Summary Of Results

e Quantum devices with ill-defined /unknown Hilbert space dimension d

pose serious problems for tomography -- what size matrix do you fit?
e We develop a [likelihood ratio test tor d in continuous-variable systems.

e A key ingredient in this test is the null value of the loglikelihood ratio A

-- its typical value when increasing d provides no advantage. % 0 5 200
Number of Samples
Fig. 1: This Wigner function was reconstructed by e Preliminary results: the null value is set by the dimension of the (o0 d3d2 oo d3/da e d3ids)

boundary of the model (2d - 2), not the dimension of its bulk (d*- 1).

straightforward linear inversion. Are the radial
wiggles real? or an overfitting artifact?

Fig. 2: Loglikelihood ratios for good (d=3,4,5) &
bad models . True state was [2)(2].

Quantum tomography and Hilbert space dimension Model selection and CV tomography

Problem: To characterize a quantum device (e.g. qubit) we use tomography: Heterodyne CV tomography: Outcomes of the measurement are labeled by phase

(1) measure many identical samples; space points X = x + ip. Datasets are lists {&,, &, ..., Xy} of N observations.
(2) "invert” the observed frequencies to estimate the state, process, gate-set, etc.
However... tomographic inversion protocols require the Hilbert space dimension (d) to be specified

a priori. Using the wrong d can cause systematic errors (d too small) or overfitting (d too big; Fig 1). Model selection: Given data D, find the dimension d that best describes the data. Many
Often, d is ill-defined (continuous variables) or unpredictable (leakage, non-Markovian noise).

Maximum likelihood tomography: Given data D, find the dxd state maximizing £ = Pr(D|p).

methods exist! We apply & investigate the likelihood-ratio test -- a powerful hypothesis test.

Solution: We need a method to identify a quantum device's "effective” Hilbert space dimension. It LR test paradigm: Nested models: for each d, the model = set of all density matrices on JZ,.

should detect overfitting (d too big) as well as a failure to fit (d too small). Then we can use it to We compare models A and B with the log likelihood ratio statistic:
select the proper d -- based on the data -- before doing tomographic inversion using that d.
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Test case: We are testing and applying model selection methods for continuous variable (CV) 4 2log max,eB ['(p) pan(011)
tomography, where the Hilbert space -- L*(R) -- is infinite-dimensional. We consider heterodyne If A is closer to the truth than B, then A d=3 o> Span(|0),11),12))
tomography (i.e., the coherent-state POVM, or direct sampling from the Husimi distribution). We will grow linearly with N (Fig 2). But if they
assume that the true state is energy-limited -- i.e., it is supported on the Fock subspace given by are equally good (e.g. truth is in both A and B), d=4 o> Span([0)...|3))
4, = Span(|0)...|d-1)) -- but we don't know d and have to choose it based on the data. then A will asymptote to a constant "null" value.
Numerical methods and results: toward a reliable loglikelihood test for dim(.J%) Frameworks for Model Selection: HT vs IC

We want to use A (the loglikelihood ratio statistic) as a criterion for selecting an effective Hilbert space dimension (d). This requires a
knowing how A will behave when both the smaller and the larger model are equally good (and therefore the larger model is overfitting Our central physics problem is clearly addressed by model selection --

and should be discarded). A simple theory (the Wilks Theorem) predicts A, = n(d,;,) - n(d,,,,), where n(model) is the number of but there are multiple tools/techniques/frameworks for model selection.
Here, we have used a hypothesis testing concept (loglikelihood ratio

tests). Ome obvious alternative is information criteria, e.g. Akaike's
AIC or the Bayesian BIC.

Increase in loglikelihood from overfitting; piue = [0X0]

parameters in the model.  Loglikelihood ratios comparing d = 2.3.4,5 models for puue = 1)) 5 Loglikelihood ratios comparing d = 2.3,4,5 models for puw. = [2)2
However, it's not clear how many | | | | (o> d3/dz o—e d3/ds oo d3ds]
effective parameters the quantum
models have (due to boundary
issues), so our goal is to determine
this null value by studying the
behavior of A numerically.
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Hypothesis testing is motivated by finding the true model, and fits
naturally in a frequentist context. This is quite artificial (we have no
reason to believe that a "true" model exists in the lab!), but also
provides a clean and simple sandbox for developing ideas and tests.
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We generate simulated heterodyne Information criteria are motivated by finding the best model -- i.e.,

data by rejection sampling, then ~ Fig 3a: When t.he true Stéte lies in 2, Flgj; b: When the ;ru.e St?_te 5 ant N E)I%Vifﬁiiega(\;za%?ggg;r; ISSK tiuee the one that, when its parameters are fit, will predict future data most

maximize .Z over d-dimensional (p=10)0]), fitting fiat& with larger in S, (0=2)(2[), A rises linearly w/ 1 of unneeded Hilbert sz;CG dim. accurately (and generate the greatest wutility). This matches the needs

state spaces for d=2,3,4,5,6 using (d=3,4,5) models ylelds only a small and the d=2 model can be confidently  poq1q consistent with the # of of quantum information technology well... at the cost of simplicity.
constant (w/r.t. N) increase in A. rejected after as few as N=20 samples.  parameters in pure state manifolds.

gradient ascent.

The IC approach is ultimately better, but needs more work.

- We do not yet have ICs whose derivation is valid in tomography! For
Road map -- where this research goes from here example, the AIC assumes that future samples (to be predicted) come

l B from the same measurement that generated past samples (data). This is
not generally true in tomography -- we may do heterodyne tomography,
but use the results to predict measurements in the Fock basis.

The research presented here is explicitly preliminary -- it represents "reconnaissance by force" to identify specific problems.

Model selection for identifying effective Hilbert space dimension is a big deal. Most (all?) experimental qubits really do have L . L ,
Loglikelihood ratios appear everywhere -- not just in hypothesis

. . , , testing, but also in most of the known ICs. For example, the standard
extend the techniques developed in this sandbox to that (more vital) context. AIC looks nearly identical to the LR test (except for a factor of 2).

ill-defined dimension. However, in practice this is more critical for process (or gate-set) tomography than state tomography. We will

Thus, results from this investigation will be applicable in the IC
framework with minimal work, once somebody develops ICs that are
suitable for quantum tomography problems.

Continuous-variable tomography is significant, especially for QKD and photonic QIP. It desperately needs effective-dimension

estimation; direct Wigner function estimation is probably overfitting wildly. We will expand our focus to homodyne tomography.

Other techniques for model selection are a major focus of near-future work. The loglikelihood ratio statistic is central to many of

them (including the AIC, BIC, and indirectly the y?* test), so this study of LR tests is foundational for further exploration. We believe C l .
that the information criterion paradigm is an ultimately better approach, but also presents greater conceptual challenges. Oo1nciusioIls

o I : : :
Linear inversion tomography and y? tests are intimately related, and can be dramatically faster and easier to implement than Likelihood ratio tests can be used to regUIamze

likelihood-based methods. We will determine whether (and when) these linear methods provide equally powerful model selection. CV tomography and avoid overﬁtting.

e Our results are portable to the information
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