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System Identification

Identify system from input-output behavior

e.g. Process tomography: identify process (CP-map, unitary) at a 
particular time

Alternative:  identify generator (e.g. Hamiltonian) of system

Advantages: physical constraints (locality, connectivity) more naturally 
introduced intro generator of dynamics

e.g. n qubits: arbitrary unitary parameterized by 4n-1 real parameters, 
arbitrary 2-local Hamiltonian parameterized by 3n+9n(n-1)/2 real 
parameters



System Identification

How powerful are time traces?

Additional considerations

• Measurements could be restricted
• May have partial information about system

Assumptions: 
1. system is finite 

dimensional
2. Hamiltonian dynamics 

(closed system)

See also:
Cole, J. H., Schirmer, S. G., Greentree, A. D., Wellard, C. J., Oi, D. K. L., & Hollenberg, L. C. L. Phys. Rev. 
A, 71, 062312 (2005)
Burgarth, D., Maruyama, K., & Nori, F. Phys. Rev. A, 79, 020305 (2009)
Burgarth, D., & Maruyama, K. New J. Phys., 11, 103019 (2009)
Di Franco, C., Paternostro, M., & Kim, M. Phys. Rev. Lett., 102, 187203
Burgarth, D., & Yuasa, K. Phys. Rev. Lett., 108, 080502 (2012)
Granade, C. E., Ferrie, C., Wiebe, N., & Cory, D. G. New J. Phys., 14(10), 103013 (2012)



An example

Measurable spins

Time trace of some 
accessible observable

Can we identify the parameters in the Hamiltonian 
from just this?

Parametric Hamiltonian



The setup

Choose an orthogonal operator basis for the linear operator space (e.g. 
generalized Paulis)

Hamiltonian can be expanded in this basis

Leads to a linear, autonomous equation for state x(t)

Goal: to identify am



The setup

Similarly, each directly measured observable can be expanded in the 
same basis. Resulting in a AC system

But this may be too complex a description. E.g.



Filtration to find minimal description

Filtration recursively constructed as:

where

Results in minimal description 

Directly measured set

Hamiltonian set

Finite algebra => procedure terminates, resulting in filtration Accessible set



Example

XX spin chain

Fukuhara et al. Nature 
Physics, 9 235 (2013)

Measure end spin 

Filtration (generalized Pauli basis)

Filtered system matrix is 2n x 2n
(as opposed to 2n x 2n)



Sampling and discretization

Explicit solution

Goal:

Strategy:

1. Find the minimal linear model that generates the collected data 
2. Back out the unknown parameters from this model

Note:



Eigenstate realization algorithm

Step 1: Form Hankel matrix from data

Step 2: Take SVD of Hankel matrix at k=0

[Juang, J. N., & Pappa, R. S. Journal of Guidance, Control, and Dynamics, 8, 620 (1985)]

Step 3: Form realizations of linear model from SVD components



Eigenstate realization algorithm

Step 3: Form realizations of linear model from SVD components

The triple is a realization of the triple

Certain quantities are model realization invariants, 

e.g. the Markov parameters for any LTI model

Therefore,



Realization to parameter estimation

Define

Determined by the data

Polynomial equation in unknown parameters

Solving these equations yields estimates of parameters

Notes:
1. Parameter estimates can be non-unique (gauge freedom/symmetries)
2. Δt must be satisfy Nyquist relation to one-over-fastest-frequency in 

system



time

<σx
1(t)>

Example

XX spin chain   (n=3 qubits)



Example

Coupling parameters only occur up to even order (symmetry) => can only be 
determined up to sign

XX spin chain   (n=3 qubits)

Construct Hankel matrix with r=100, s=100



Summary

• System identification through model realization

• Most useful when
• measurements are restricted
• prior information about process is available

• Continuing work:
• Noisy measurements

• Use a different model realization invariant (transfer function)

• Markovian open-system evolution
• Continuous time weak measurement



Outline

 Model realization and system identification
 Estimating unknown Hamiltonian parameters

 Model reduction
 Reducing simulation cost for certain many-body quantum systems



Outline

Quantum state space: exponential

• Full-scale simulation of quantum systems very difficult 

• Formal state is exponentially large in the number of particles



Outline

• For most practical systems, this exponential scaling is only formal

• Identifying this set of relevant states is difficult

• Dynamics within this relevant set of states is a reduced order model 
(ROM)

Many-body Hilbert space

Physically relevant set of states

Quantum state space: not really exponential?



Identifying reduced order models

Existing techniques/results:

- static: DMRG, MPS, etc.

- dynamic: Nakajima-Zwanzig (statistical), Bloch equations, adiabatic 
elimination



Model reduction

State snapshots Input-output map Dynamical
model

Full state vector

want to reproduce         

Proper 
orthogonal 

decomposition 
(POD), manifold

learning

? Identify or 
approximate 

invariant
subspaces

Input-output map

want to reproduce y(t)

Empirical 
balanced 
truncation 
(BPOD)

Minimal model
realization 
algorithms 
(e.g. ERA)

Balanced 
truncation

Resources
available

Desired
Output

- In the context of continuous measurement / quantum filtering:
Mabuchi, PRA 78, 015801 (2008), Nielsen, Hopkins, Mabuchi, NJP 11, 105043 (2009)

- In the context of coherent feedback control / quantum optical networks:
Nurdin, arXiv:1308.6062, Nurdin, Gough arXiv:1309.0562



Compressible dynamics

Identify subspace of Hilbert space that contains

and is invariant under Hamiltonian for all choices of    

Problem:
Assumption: 
1. system is finite 

dimensional

e.g. quantum Ising model:



Compressible dynamics

Identify subspace of Hilbert space that contains

and is invariant under Hamiltonian for all choices of    

Problem:

1. Certificates
Is this dynamics compressible?

2. Computing reduced order models
What is the invariant subspace and moreover, 
what is the reduced order dynamical model?

Projective linear model reduction: columns of P are basis vectors in this 
invariant subspace

q x q compressed description

Solutions:



Certificate

Theorem: (algebraic certificate)
The Hamiltonian acting on      keeps invariant a non-trivial proper subspace 

iff the subalgebra generated by                is a proper subalgebra of          .

Kumar, MS. arXiv: 1406.7069

Intuition:

Products of hi generate an algebra. If the full operator algebra is not 
generated, there are directions in state space that are not explored



Certificate

Theorem: (algebraic certificate)
The Hamiltonian acting on      keeps invariant a non-trivial proper subspace 

iff the subalgebra generated by                is a proper subalgebra of          .

Identifies a symmetry:

Certifies the existence of a unitary matrix that simultaneously diagonalizes all  



Certificate

Theorem: (algebraic certificate)
The Hamiltonian acting on      keeps invariant a non-trivial proper subspace 

iff the subalgebra generated by                is a proper subalgebra of          .

To answer this: generate linear basis for                      (the Burnside basis) and 
count dimension. 

Algorithm for basis generation: repeatedly multiply out hi and keep linearly 
independent results. 

This generates:



Constructing reduced order models

Two methods:

1. Sampling from full-order model
1. Fix
2. Generate samples
3. The columns of P are formed from the (orthonormalized) minimal linearly 

independent set of these state samples (Krylov/cyclic subspace)

q x q compressed description

Careful: cyclic subspace ≠ invariant subspace for model

Kumar, MS. arXiv: 1406.7069

2.  Use Burnside basis generated in algebraic characterization (certificate)
1. Find 
2. The columns of P are formed from the (orthonormalized) minimal linearly 

independent set of these states

Generates true reduced subspace for model



Example: quench dynamics

Quantum Ising model

Fukuhara et al. Nature 
Physics, 9 235 (2013)

• Basic model for magnetism in 
crystalline material

• Competition between B and J results in 
phase transition behavior

• Can be emulated using cold atoms
• As a result: intense interest in 

dynamical phase transitions, quenching 
dynamics

Quenching dynamics:

1. Prepare ground state of

1. Rapidly change B and evolve system under 

1. The resulting dynamics is very informative; e.g. contains information about 
static phases of system



Example

Simulation of quench dynamics in quantum Ising model
(Circles: full model, lines: reduced order model)

Quenches to different parameters are indicated by different colors

N=8 qubits

Full order model: 
28-1 = 255 complex numbers

Reduced order model: 
23 complex numbers



Expense of computing ROM

• Certificate:
• Multiply d x d matrices entering the Hamiltonian
• Compute linear dependency of the results

• Construction of model reduction matrix P
• Time sampling:

• Need samples from full order system
• Compute linear dependency of samples

• Burnside basis construction
• Multiply d x d matrices entering the Hamiltonian
• Compute linear dependency of the results
• Multiply Burnside basis elements by 

However, complexity simplifies greatly in special cases (e.g. Pure Pauli spin 
models). See Kumar, MS. arXiv: 1406.7069

Rational 
computations, but 
exponential 
complexity in 
general



Certificate
Special case: Pauli Hamiltonian

Theorem: (Pauli algebraic certificate)
Any Pauli Hamiltonian acting on n qubits with fewer than 2n terms has a 

non-trivial proper invariant subspace.

Note: a sufficient condition

e.g. Random quantum (transverse field) Ising model with open boundary 
conditions

Kumar, MS. arXiv: 1406.7069



Continuing work

• Approximations to invariant subspaces? “True” model reduction

Methods for approximate simultaneous block diagonalization

• Reduce computational complexity of ROM computation for special 
cases

• Algebraic approach to observability-based model reduction (i.e. only 
care to reproduce some observables)



Thanks!


