

*Exceptional service in the national interest*



# Model realization and model reduction for quantum systems

**Mohan Sarovar**

Scalable and Secure Systems Research  
Sandia National Laboratories, Livermore, USA



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

# Outline & Acknowledgements

- **Model realization and system identification**
  - Estimating unknown Hamiltonian parameters

Quantum Hamiltonian identification from measurement time traces

Jun Zhang, MS

arXiv:1401.5780, *Phys. Rev. Lett.* 113, 080401 (2014)



Jun Zhang  
Shanghai Jiao Tong University

- **Model reduction**
  - Reducing simulation cost for certain many-body quantum systems

On model reduction for quantum dynamics: symmetries and invariant subspaces

Akshat Kumar, MS

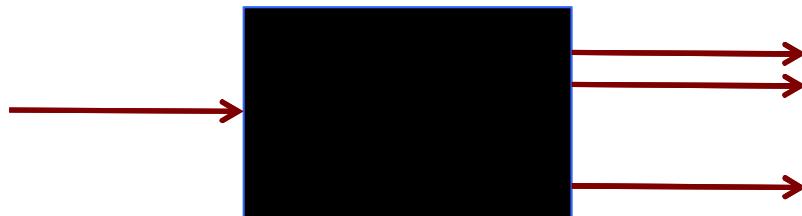
arXiv:1406.7069



Akshat Kumar  
Sandia National Laboratories

# System Identification

Identify system from input-output behavior



e.g. Process tomography: identify process (CP-map, unitary) at a particular time

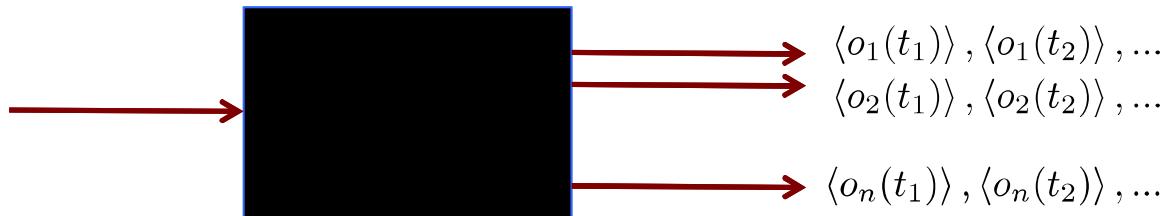
Alternative: **identify generator (e.g. Hamiltonian) of system**

Advantages: physical constraints (locality, connectivity) more naturally introduced into generator of dynamics

e.g.  $n$  qubits: arbitrary unitary parameterized by  $4^n - 1$  real parameters, arbitrary 2-local Hamiltonian parameterized by  $3n + 9n(n-1)/2$  real parameters

# System Identification

How powerful are time traces?



## Additional considerations

- Measurements could be restricted
- May have partial information about system

## Assumptions:

1. system is finite dimensional
2. Hamiltonian dynamics (closed system)

## See also:

Cole, J. H., Schirmer, S. G., Greentree, A. D., Wellard, C. J., Oi, D. K. L., & Hollenberg, L. C. L. *Phys. Rev. A*, 71, 062312 (2005)

Burgarth, D., Maruyama, K., & Nori, F. *Phys. Rev. A*, 79, 020305 (2009)

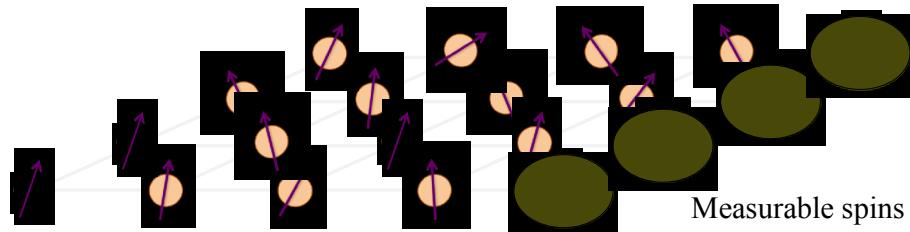
Burgarth, D., & Maruyama, K. *New J. Phys.*, 11, 103019 (2009)

Di Franco, C., Paternostro, M., & Kim, M. *Phys. Rev. Lett.*, 102, 187203

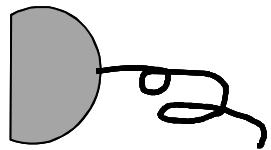
Burgarth, D., & Yuasa, K. *Phys. Rev. Lett.*, 108, 080502 (2012)

Granade, C. E., Ferrie, C., Wiebe, N., & Cory, D. G. *New J. Phys.*, 14(10), 103013 (2012)

# An example



Parametric Hamiltonian  
 $H(\theta_1, \theta_2, \dots, \theta_M)$



$\langle \sigma_z^1(t_0) \rangle, \langle \sigma_z^1(t_1) \rangle, \dots, \langle \sigma_z^1(t_n) \rangle$

Time trace of some  
accessible observable

Can we identify the parameters in the Hamiltonian  
from just this?

# The setup

Choose an orthogonal operator basis for the linear operator space (e.g. generalized Paulis)

$$[iX_j, iX_k] = \sum_{l=1}^{N^2-1} C_{jkl}(iX_l), \quad j, k = 1, \dots, N^2 - 1,$$

Hamiltonian can be expanded in this basis

$$H = \sum_{m=1}^M a_m(\theta) X_m$$

**Goal:** to identify  $a_m$

Leads to a linear, autonomous equation for state  $\mathbf{x}(t)$

$$\frac{d}{dt} x_k = \sum_{l=1}^{N^2-1} \left( \sum_{m=1}^M C_{mkl} a_m \right) x_l$$

$$\frac{d}{dt} \mathbf{x} = \mathbf{A} \mathbf{x}, \quad x_k(t) = \langle \psi(t) | X_k | \psi(t) \rangle$$

$$|\psi\rangle \in \mathbb{C}^N$$

$$\dim H = N \times N$$

$$\mathbf{x} \in \mathbb{R}^{(N^2-1)}$$

$$\dim A = (N^2 - 1) \times (N^2 - 1)$$

# The setup

Similarly, each directly measured observable can be expanded in the same basis. Resulting in a AC system

$$\frac{d}{dt} \mathbf{x} = \mathbf{A} \mathbf{x}$$

$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

But this may be too complex a description. *E.g.*

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a' & b' \\ 0 & 0 & c' & d' \end{bmatrix}$$

# Filtration to find minimal description

$$O_i = \sum_j o_j^{(i)} X_j$$

$$\mathcal{M} = \{X_{\nu_1}, X_{\nu_2}, \dots, X_{\nu_p}\}$$

Directly measured set

$$H = \sum_{m=1}^M a_m(\theta) X_m$$

$$\Delta = \{X_m\}_{m=1}^M$$

Hamiltonian set

**Filtration** recursively constructed as:

$$G_0 = \mathcal{M}, \text{ and}$$

$$G_i = [G_{i-1}, \Delta] \cup G_{i-1}$$

where

$$[G_{i-1}, \Delta] \equiv \{X_j : \text{tr}(X_j^\dagger [g, h]) \neq 0, \text{ where } g \in G_{i-1}, h \in \Delta\}$$

Finite algebra => procedure terminates, resulting in filtration  $\bar{G}$

Accessible set

Results in minimal description

$$\frac{d}{dt} \mathbf{x}_a = \tilde{\mathbf{A}} \mathbf{x}_a$$

$$\mathbf{y}(t) = \tilde{\mathbf{C}} \mathbf{x}_a(t)$$

# Example

## XX spin chain



Fukuhara et al. Nature Physics, 9 235 (2013)

$$H = \sum_{k=1}^n \frac{\omega_k}{2} \sigma_z^k + \sum_{k=1}^{n-1} \delta_k (\sigma_+^k \sigma_-^{k+1} + \sigma_-^k \sigma_+^{k+1})$$

$$\mathcal{M} = \sigma_x^1 \quad \text{Measure end spin}$$

$$\begin{aligned} \bar{G} = & \{2^{-n/2} \sigma_x^1, 2^{-n/2} \sigma_y^1\} \\ & \cup \{2^{-n/2} \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_x^k, 2^{-n/2} \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_y^k\}_{k=2}^n \end{aligned}$$

$$\tilde{\mathbf{A}} = \begin{bmatrix} 0 & \omega_1 & 0 & -\delta_1 & & & & \\ -\omega_1 & 0 & \delta_1 & 0 & 0 & & & \\ 0 & -\delta_1 & 0 & \omega_2 & 0 & \ddots & & \\ \delta_1 & 0 & -\omega_2 & 0 & \ddots & \ddots & 0 & \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & -\delta_{n-1} & \\ \ddots & \ddots & \ddots & & 0 & \delta_{n-1} & 0 & \\ & 0 & 0 & -\delta_{n-1} & 0 & 0 & \omega_n & \\ & & \delta_{n-1} & 0 & 0 & -\omega_n & 0 & \end{bmatrix}$$

$$\tilde{\mathbf{C}} = [1, 0, \dots, 0]$$

Filtration (generalized Pauli basis)

Filtered system matrix is  $2n \times 2n$  (as opposed to  $2^n \times 2^n$ )

$$\mathbf{x}_a = [\bar{x}_1, \bar{y}_1, \dots, \bar{x}_n, \bar{y}_n]^T$$

$$\bar{x}_1 = \langle \sigma_x^1 \rangle, \bar{y}_1 = \langle \sigma_y^1 \rangle$$

$$\bar{x}_k \equiv \langle \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_x^k \rangle,$$

$$\bar{y}_k \equiv \langle \sigma_z^1 \cdots \sigma_z^{k-1} \sigma_y^k \rangle, \quad k \geq 2$$

# Sampling and discretization

$$\mathbf{x}_a(j+1) = \tilde{\mathbf{A}}_d \mathbf{x}_a(j)$$

$$\tilde{\mathbf{A}}_d = e^{\tilde{\mathbf{A}} \Delta t}$$

$$\mathbf{y}(j) = \tilde{\mathbf{C}} \mathbf{x}_a(j)$$

Note:  $\mathbf{x}_a(j) \equiv \mathbf{x}_a(j \Delta t)$   
 $\mathbf{y}(j) \equiv \mathbf{y}(j \Delta t)$

Explicit solution

$$\mathbf{y}(j) = \tilde{\mathbf{C}} \tilde{\mathbf{A}}_d^j \mathbf{x}_a(0)$$

**Goal:**

Use  $\{\mathbf{y}(j)\}_{j=0}^J$  to estimate  $\{a_m\}_{m=1}^M$

Strategy:

1. Find the minimal linear model that generates the collected data
2. Back out the unknown parameters from this model

# Eigenstate realization algorithm

[Juang, J. N., & Pappa, R. S. *Journal of Guidance, Control, and Dynamics*, 8, 620 (1985)]

Step 1: Form Hankel matrix from data

$$\mathbf{H}_{rs}(k) = \begin{bmatrix} \mathbf{y}(k) & \mathbf{y}(k+1) & \cdots & \mathbf{y}(k+(s-1)) \\ \mathbf{y}(1+k) & \mathbf{y}(1+k+1) & \cdots & \mathbf{y}(1+k+(s-1)) \\ \vdots & \vdots & & \vdots \\ \mathbf{y}(r-1+k) & \mathbf{y}(r-1+k+1) & \cdots & \mathbf{y}(r-1+k+(s-1)) \end{bmatrix}$$

Step 2: Take SVD of Hankel matrix at k=0

$$\mathbf{H}_{rs}(0) = P \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} Q^\top = \begin{bmatrix} P_1 & P_2 \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_1^\top \\ Q_2^\top \end{bmatrix}$$

$$O \approx P_1 \Sigma^{-\frac{1}{2}}$$

$$C \approx \Sigma^{-\frac{1}{2}} Q_1^\top$$

Step 3: Form realizations of linear model from SVD components

$$\hat{\mathbf{A}}_d = \Sigma^{-\frac{1}{2}} P_1^\top \mathbf{H}_{rs}(1) Q_1 \Sigma^{-\frac{1}{2}}$$

$$\hat{\mathbf{C}} = e_1^\top P_1 \Sigma^{\frac{1}{2}}$$

$$\hat{\mathbf{x}}(0) \equiv \Sigma^{\frac{1}{2}} Q_1^\top e_1$$

$$e_1^\top = [1, 0, \dots, 0]$$

# Eigenstate realization algorithm

Step 3: Form realizations of linear model from SVD components

$$\hat{\mathbf{A}}_d = \Sigma^{-\frac{1}{2}} P_1^T \mathbf{H}_{rs}(1) Q_1 \Sigma^{-\frac{1}{2}}$$

$$\hat{\mathbf{C}} = e_1^T P_1 \Sigma^{\frac{1}{2}}$$

$$\hat{\mathbf{x}}(0) \equiv \Sigma^{\frac{1}{2}} Q_1^T e_1$$

The triple  $(\hat{\mathbf{A}}_d, \hat{\mathbf{C}}, \hat{\mathbf{x}}(0))$  is a **realization** of the triple  $(\tilde{\mathbf{A}}_d, \tilde{\mathbf{C}}, \mathbf{x}_a(0))$

Certain quantities are model realization invariants,

e.g. the **Markov parameters**  $\mathbf{C}\mathbf{A}^j\mathbf{x}(0) \quad \forall j$  for any LTI model  $(\mathbf{A}, \mathbf{C}, \mathbf{x}(0))$

Therefore,

$$\mathbf{y}(j) = \tilde{\mathbf{C}}\tilde{\mathbf{A}}_d^j\mathbf{x}_a(0) = \hat{\mathbf{C}}\hat{\mathbf{A}}_d^j\hat{\mathbf{x}}(0), \quad \text{for all } j \geq 0,$$

# Realization to parameter estimation

$$\mathbf{y}(j) = \tilde{\mathbf{C}} \tilde{\mathbf{A}}_d^j \mathbf{x}_a(0) = \hat{\mathbf{C}} \hat{\mathbf{A}}_d^j \hat{\mathbf{x}}(0), \quad \text{for all } j \geq 0,$$

Define  $\hat{\mathbf{A}} = \log \hat{\mathbf{A}}_d / \Delta t$

$$\tilde{\mathbf{C}} \tilde{\mathbf{A}}^j \mathbf{x}_a(0) = \hat{\mathbf{C}} \hat{\mathbf{A}}^j \hat{\mathbf{x}}(0), \quad \text{for all } j \geq 0$$

*Determined by the data*

*Polynomial equation in unknown parameters*

Solving these equations yields estimates of parameters

Notes:

1. Parameter estimates can be non-unique (gauge freedom/symmetries)
2.  $\Delta t$  must be satisfy Nyquist relation to one-over-fastest-frequency in system

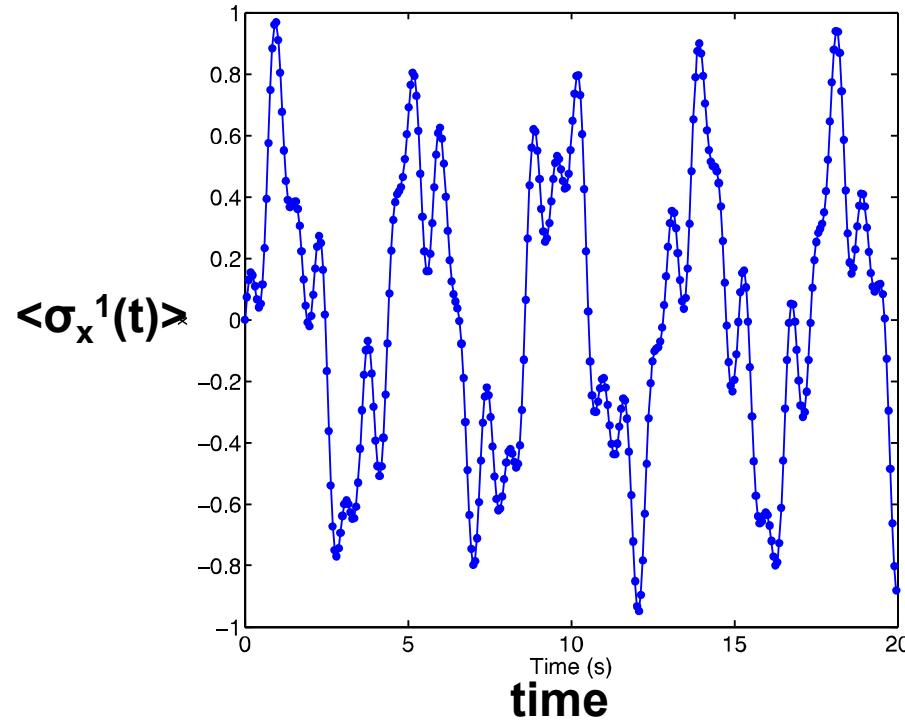
# Example

## XX spin chain (n=3 qubits)

$$H = \sum_{k=1}^3 \frac{\omega_k}{2} \sigma_z^k + \sum_{k=1}^2 \delta_k (\sigma_+^k \sigma_-^{k+1} + \sigma_-^k \sigma_+^{k+1})$$

$$\omega_1 = 1.3, \omega_2 = 2.4, \omega_3 = 1.7, \delta_1 = 4.3, \delta_2 = 5.2$$

$$|\psi(0)\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}} |00\rangle$$



# Example

## XX spin chain (n=3 qubits)

$$H = \sum_{k=1}^3 \frac{\omega_k}{2} \sigma_z^k + \sum_{k=1}^2 \delta_k (\sigma_+^k \sigma_-^{k+1} + \sigma_-^k \sigma_+^{k+1})$$

$$\omega_1 = 1.3, \omega_2 = 2.4, \omega_3 = 1.7, \delta_1 = 4.3, \delta_2 = 5.2$$

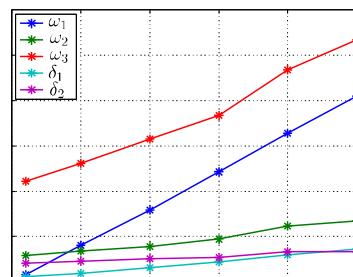
Construct Hankel matrix with  $r=100$ ,  $s=100$

$$\begin{aligned}
 \omega_1 &= \hat{\mathbf{C}} \hat{\mathbf{A}} \hat{\mathbf{x}}(0) = & 1.3 \\
 \omega_1^3 + \delta_1^2 (2\omega_1 + \omega_2) &= -\hat{\mathbf{C}} \hat{\mathbf{A}}^3 \hat{\mathbf{x}}(0) = & 2.647 \\
 \delta_1^4 (3\omega_1 + 2\omega_2) + \delta_1^2 (\delta_2^2 (2\omega_1 + 2\omega_2 + \omega_3) + 4\omega_1^3 + 3\omega_2\omega_1^2 + 2\omega_2^2\omega_1 + \omega_2^3) + \omega_1^5 &= \hat{\mathbf{C}} \hat{\mathbf{A}}^5 \hat{\mathbf{x}}(0) = & 8.2942 \\
 && \vdots
 \end{aligned}$$

Coupling parameters only occur up to even order (symmetry) => can only be determined up to sign

# Summary

- System identification through model realization
- Most useful when
  - measurements are restricted
  - prior information about process is available
- Continuing work:
  - Noisy measurements
    - Use a different *model realization invariant* (transfer function)



- Markovian open-system evolution
- Continuous time weak measurement

# Outline

- **Model realization and system identification**
  - Estimating unknown Hamiltonian parameters
- **Model reduction**
  - Reducing simulation cost for certain many-body quantum systems

# Outline

## Quantum state space: exponential

- Full-scale simulation of quantum systems very difficult
- Formal state is exponentially large in the number of particles

$$\rho_1 \in \mathcal{H}_1 \quad \dim \mathcal{H}_1 = n_1$$

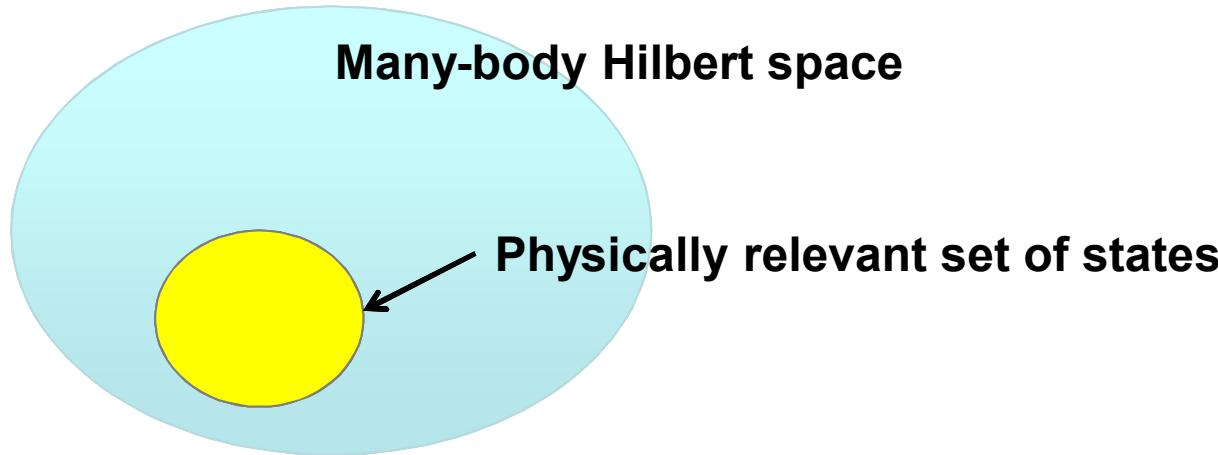
$$\rho_2 \in \mathcal{H}_2 \quad \dim \mathcal{H}_2 = n_2$$

$$\rho_c \in \mathcal{H}_1 \otimes \mathcal{H}_2 \quad \dim \mathcal{H}_1 \otimes \mathcal{H}_2 = n_1 n_2 \neq n_1 + n_2$$

# Outline

## Quantum state space: not really exponential?

- For most practical systems, this exponential scaling is only formal

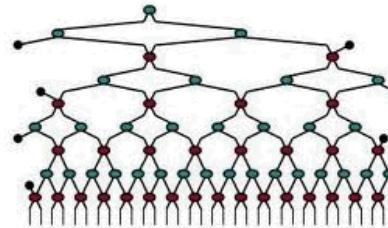


- Identifying this set of relevant states is difficult
- Dynamics within this relevant set of states is a *reduced order model* (ROM)

# Identifying reduced order models

## Existing techniques/results:

- **static:** DMRG, MPS, etc.



- **dynamic:** Nakajima-Zwanzig (statistical), Bloch equations, adiabatic elimination

$$\begin{aligned}\frac{d}{dt} \mathbf{P}x(t) = & \mathbf{P}A\mathbf{P}x(t) + \mathbf{P}B u(t) \\ & + \mathbf{P}A\mathcal{G}(t, 0)\mathbf{Q}x(0) \\ & + \int_0^t \mathbf{P}A\mathcal{G}(t, s)\mathbf{Q}A\mathbf{P}x(s)ds \\ & + \int_0^t \mathbf{P}A\mathcal{G}(t, s)\mathbf{Q}B u(s)ds.\end{aligned}$$

# Model reduction

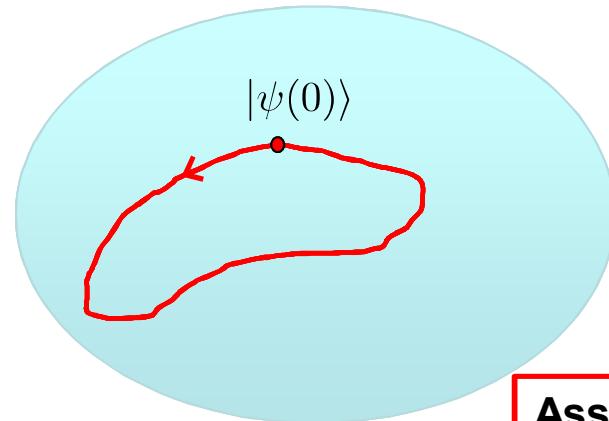
| Desired Output                                           | Resources available                                      | State snapshots                                 | Input-output map                            | Dynamical model |
|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-----------------|
| Full state vector<br>want to reproduce $ \psi(t)\rangle$ | Proper orthogonal decomposition (POD), manifold learning | ?                                               | Identify or approximate invariant subspaces |                 |
| Input-output map<br>want to reproduce $y(t)$             | Empirical balanced truncation (BPOD)                     | Minimal model realization algorithms (e.g. ERA) | Balanced truncation                         |                 |

- In the context of continuous measurement / quantum filtering:  
Mabuchi, PRA 78, 015801 (2008), Nielsen, Hopkins, Mabuchi, NJP 11, 105043 (2009)
- In the context of coherent feedback control / quantum optical networks:  
Nurdin, arXiv:1308.6062, Nurdin, Gough arXiv:1309.0562

# Compressible dynamics

$$|\psi(t)\rangle = e^{iHt} |\psi(0)\rangle$$

$$H(\lambda) = \sum_i \lambda_i h_i$$



**Problem:**

Identify subspace of Hilbert space that contains  $|\psi(0)\rangle$   
and is invariant under Hamiltonian for all choices of  $\lambda$

**Assumption:**  
1. system is finite dimensional

e.g. quantum Ising model:

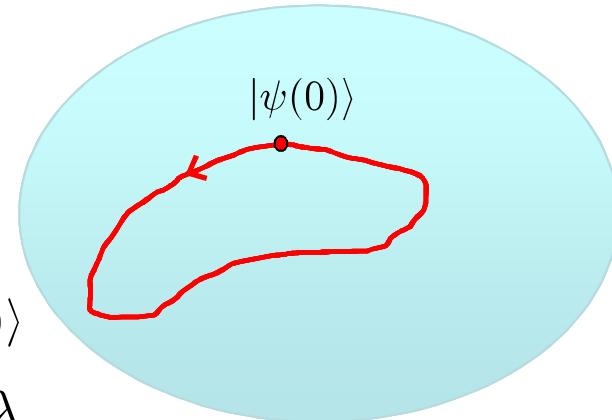
$$H = -B \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$$

# Compressible dynamics

$$H(\lambda) = \sum_i \lambda_i h_i$$

## Problem:

Identify subspace of Hilbert space that contains  $|\psi(0)\rangle$  and is invariant under Hamiltonian for all choices of  $\lambda$



## 1. Certificates

Is this dynamics compressible?

## Solutions:

## 2. Computing reduced order models

What is the invariant subspace and moreover, what is the reduced order dynamical model?

Projective linear model reduction: columns of  $P$  are basis vectors in this invariant subspace

$$\frac{d}{dt} (P^\dagger |\psi(t)\rangle) = P^\dagger H P (P^\dagger |\psi(t)\rangle) \quad \dim P = N \times q, \quad q \ll N$$

q x q compressed description

# Certificate

$$H(\lambda) = \sum_i \lambda_i h_i \quad H \in L(\mathcal{H}) \quad \dim \mathcal{H} = N$$

$$\text{Coeff}(H) \equiv \{h_i\}$$

**Theorem: (algebraic certificate)**

The Hamiltonian acting on  $\mathcal{H}$  keeps invariant a non-trivial proper subspace iff the subalgebra generated by  $\text{Coeff}(H)$  is a proper subalgebra of  $L(\mathcal{H})$ .

Kumar, MS. arXiv: 1406.7069

**Intuition:**

$$\begin{aligned} |\psi(t)\rangle &= \exp\{i(\lambda_1 h_1 + \lambda_2 h_2)t\} |\psi(0)\rangle \\ &= \sum_n \frac{(it)^n}{n!} (\lambda_1 h_1 + \lambda_2 h_2)^n |\psi(0)\rangle \end{aligned}$$

Products of  $h_i$  generate an algebra. If the full operator algebra is not generated, there are directions in state space that are not explored

# Certificate

$$H(\lambda) = \sum_i \lambda_i h_i$$

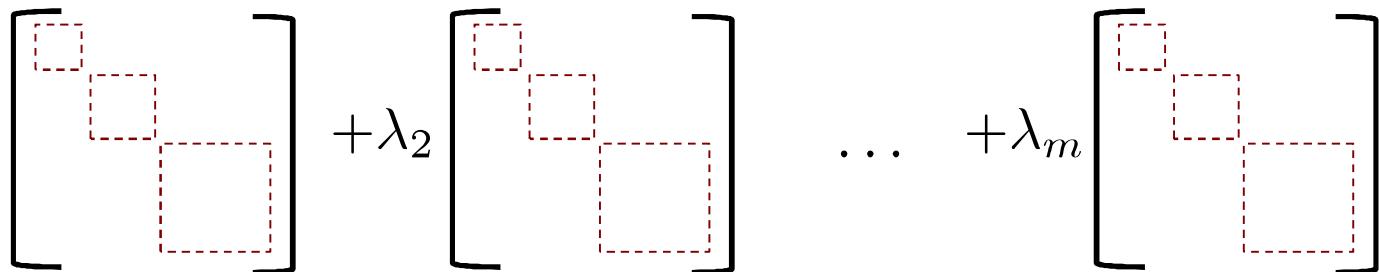
$$H \in L(\mathcal{H}) \quad \dim \mathcal{H} = N$$
$$\text{Coeff}(H) \equiv \{h_i\}$$

**Theorem: (algebraic certificate)**

The Hamiltonian acting on  $\mathcal{H}$  keeps invariant a non-trivial proper subspace iff the subalgebra generated by  $\text{Coeff}(H)$  is a proper subalgebra of  $L(\mathcal{H})$ .

**Identifies a symmetry:**

Certifies the existence of a unitary matrix that simultaneously diagonalizes all  $h_i$

$$U H U^\dagger = \lambda_1 \begin{bmatrix} \square & & \\ & \square & \\ & & \square \end{bmatrix} + \lambda_2 \begin{bmatrix} \square & & \\ & \square & \\ & & \square \end{bmatrix} + \dots + \lambda_m \begin{bmatrix} \square & & \\ & \square & \\ & & \square \end{bmatrix}$$


# Certificate

$$H(\lambda) = \sum_i \lambda_i h_i \quad H \in L(\mathcal{H}) \quad \dim \mathcal{H} = N$$

$$\text{Coeff}(H) \equiv \{h_i\}$$

**Theorem: (algebraic certificate)**

The Hamiltonian acting on  $\mathcal{H}$  keeps invariant a non-trivial proper subspace iff the subalgebra generated by  $\text{Coeff}(H)$  is a proper subalgebra of  $L(\mathcal{H})$ .

$$\dim \mathcal{A}(\text{Coeff}(H)) < \dim L(\mathcal{H})?$$

To answer this: generate linear basis for  $\mathcal{A}(\text{Coeff}(H))$  (**the Burnside basis**) and count dimension.

Algorithm for basis generation: repeatedly multiply out  $h_i$  and keep linearly independent results.

This generates:  $\{B_1, B_2, \dots, B_K\}$

# Constructing reduced order models

$$\frac{d}{dt} (P^\dagger |\psi(t)\rangle) = P^\dagger H P (P^\dagger |\psi(t)\rangle) \quad \dim P = N \times q, \quad q \ll N$$

↑  
q x q compressed description

Two methods:

## 1. Sampling from full-order model

1. Fix  $H(\lambda)$
2. Generate samples  $|\psi_\lambda(t_1)\rangle, |\psi_\lambda(t_2)\rangle, \dots |\psi_\lambda(t_k)\rangle$
3. The columns of  $P$  are formed from the (orthonormalized) minimal linearly independent set of these state samples (Krylov/cyclic subspace)

Careful: cyclic subspace  $\neq$  invariant subspace for model

## 2. Use Burnside basis generated in algebraic characterization (certificate)

1. Find  $|\psi_1\rangle = B_1|\psi(0)\rangle, |\psi_2\rangle = B_2|\psi(0)\rangle, \dots |\psi_K\rangle = B_K|\psi(0)\rangle$
2. The columns of  $P$  are formed from the (orthonormalized) minimal linearly independent set of these states

Generates true reduced subspace for model

# Example: quench dynamics

## Quantum Ising model



Fukuhara et al. Nature Physics, **9** 235 (2013)

$$H = -B \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$$

- Basic model for magnetism in crystalline material
- Competition between B and J results in phase transition behavior
- Can be emulated using cold atoms
- As a result: intense interest in dynamical phase transitions, quenching dynamics

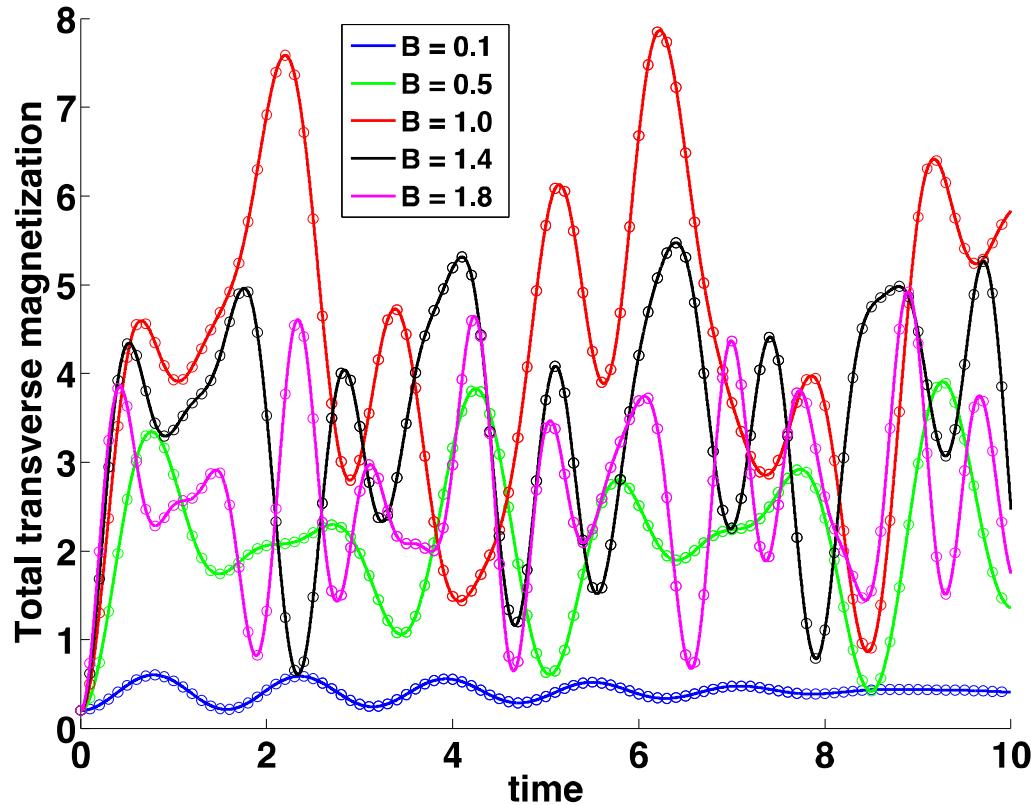
## Quenching dynamics:

1. Prepare ground state of  $H^0 = -B^0 \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$
1. Rapidly change B and evolve system under  $H^1 = -B^1 \sum_i \sigma_x^i - J \sum_{\langle i,j \rangle} \sigma_z^i \sigma_z^j$
1. The resulting dynamics is very informative; e.g. contains information about static phases of system

# Example

Simulation of quench dynamics in quantum Ising model  
(Circles: full model, lines: reduced order model)

Quenches to different parameters are indicated by different colors



N=8 qubits

Full order model:  
 $2^{8-1} = 255$  complex numbers

Reduced order model:  
 23 complex numbers

# Expense of computing ROM

$$\frac{d}{dt} (P^\dagger |\psi(t)\rangle) = P^\dagger H P (P^\dagger |\psi(t)\rangle)$$

$$H(\lambda) = \sum_i \lambda_i h_i$$

- Certificate:
  - Multiply  $d \times d$  matrices entering the Hamiltonian
  - Compute linear dependency of the results
- Construction of model reduction matrix  $P$ 
  - *Time sampling:*
    - Need samples from full order system
    - Compute linear dependency of samples
  - *Burnside basis construction*
    - Multiply  $d \times d$  matrices entering the Hamiltonian
    - Compute linear dependency of the results
    - Multiply Burnside basis elements by  $|\psi(0)\rangle$

Rational computations, but exponential complexity in general

However, complexity simplifies greatly in special cases (e.g. *Pure Pauli spin models*). See Kumar, MS. arXiv: 1406.7069

# Certificate

## Special case: Pauli Hamiltonian

$$H(\lambda) = \sum_i \lambda_i \sigma_i \quad H \in L(\mathcal{H}) \quad \mathcal{H} = \mathbb{C}^{2n} \quad \dim \mathcal{H} = 2^n$$

e.g.  $\sigma_i : \sigma_x^{(1)} \otimes \mathbf{1} \otimes \dots \otimes \sigma_y^{(n)}$

Theorem: (Pauli algebraic certificate)

Any Pauli Hamiltonian acting on  $n$  qubits with fewer than  $2n$  terms has a non-trivial proper invariant subspace.

Kumar, MS. arXiv: 1406.7069

*Note: a sufficient condition*

e.g. Random quantum (transverse field) Ising model with open boundary conditions

# Continuing work

- Approximations to invariant subspaces? “True” model reduction

$$UHU^\dagger = \lambda_1 \begin{bmatrix} \text{red dashed} & & \\ & \text{red dashed} & \\ & & \text{red dashed} \end{bmatrix} + \lambda_2 \begin{bmatrix} \text{red dashed} & & \\ & \text{red dashed} & \\ & & \text{red dashed} \end{bmatrix} + \dots + \lambda_m \begin{bmatrix} \text{red dashed} & & \\ & \text{red dashed} & \\ & & \text{red dashed} \end{bmatrix}$$

Methods for *approximate* simultaneous block diagonalization

- Reduce computational complexity of ROM computation for special cases
- Algebraic approach to observability-based model reduction (i.e. only care to reproduce some observables)

# Thanks!