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= Model realization and system identification
= Estimating unknown Hamiltonian parameters

Quantum Hamiltonian identification from measurement time traces
Jun Zhang, MS

arXiv:1401.5780, Phys. Rev. Lett. 113, 080401 (2014)
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= Model reduction
= Reducing simulation cost for certain many-body quantum systems

On model reduction for quantum dynamics: symmetries and invariant subspaces
Akshat Kumar, MS
arXiv:1406.7069
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System ldentification e

|dentify system from input-output behavior

e.g. Process tomography: identify process (CP-map, unitary) at a
particular time

Alternative: identify generator (e.g. Hamiltonian) of system

Advantages: physical constraints (locality, connectivity) more naturally

introduced intro generator of dynamics
e.g. n qubits: arbitrary unitary parameterized by 4"-1 real parameters,
arbitrary 2-local Hamiltonian parameterized by 3n+9n(n-1)/2 real
parameters




System ldentification

How powerful are time traces?

> (0n(t1)), (on(t2)) , -

Additional considerations Assumptions:
1. systemis finite
« Measurements could be restricted dimensional

« May have partial information about system 2. Hamiltonian dynamics
(closed system)

See also:

Cole, J. H., Schirmer, S. G., Greentree, A. D., Wellard, C. J., Oi, D. K. L., & Hollenberg, L. C. L. Phys. Rev.
A, 71,062312 (2005)

Burgarth, D., Maruyama, K., & Nori, F. Phys. Rev. A, 79, 020305 (2009)

Burgarth, D., & Maruyama, K. New J. Phys., 11, 103019 (2009)

Di Franco, C., Paternostro, M., & Kim, M. Phys. Rev. Lett., 102, 187203

Burgarth, D., & Yuasa, K. Phys. Rev. Lett., 108, 080502 (2012)

Granade, C. E., Ferrie, C., Wiebe, N., & Cory, D. G. New J. Phys., 14(10), 103013 (2012)
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An example G

Parametric Hamiltonian
. Measurable spins H(917 927 *e0 HM)

D—Q\‘ (ol (to)), (ol(t1)), ..., (cl(t,)) Time trace of some

accessible observable

Can we identify the parameters in the Hamiltonian
from just this?




The setup
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Choose an orthogonal operator basis for the linear operator space (e.g.
generalized Paulis)

NZ2-1

[ZX37ZX]{:]:Z Cjkl(ZXl)a J)kzla 7N2_17

=1

Hamiltonian can be expanded in this basis

M
H= Zm=1 W (0) X, Goal: to identify a,_

Leads to a linear, autonomous equation for state x(t)

d NZ—1 M
at’rk T lel (Zm_l kalam) i ) e CN
dimH = N x N

dx—Ax, ot = (O Xe o) x e RV

dt
dimA = (N* — 1) x (N* — 1)




The setup ) s,

Similarly, each directly measured observable can be expanded in the
same basis. Resulting in a AC system

d
—x = Ax

dt

y(t) = Cx(?)
But this may be too complex a description. E.g.

C=|




Filtration to find minimal description [ &,

O; = Z 0§-i)Xj M = {X,,l s Xy ooy Xyp} Directly measured set
J

M
H = Zm:l U (0) X, A = {Xm}%zl Hamiltonian set

Filtration recursively constructed as:
GO = ./\/l, and

G = [Gi—1, Al U Gi—q
where

(Gi—1,A] = {X; : tr(X][g.h]) # 0, where g € G;_1,h € A}

Finite algebra => procedure terminates, resulting in filtration G Accessible set

Results in minimal description %xa = Ax, y(t) = Cx, (1)
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Example i

XX spin chain
b _
Fukuhara et al. Nature
_‘ ‘ ; W ; ‘ ‘— Physics, 9 235 (2013)
n

H = Z 5 Eok 4 Z o, (oh o™t 4 ok ot M =0,  Measure end spin

G ={27"?0,, 27?0} Filtration (generalized Pauli basis)

337

L A T R R .
w1 0 —51 ]

0 51 0 Filtered system matrix is 2n x 2n
~5 0 (as opposed to 2" x 2")

- — — — 1T
Xa = [xlaylw")ajnayn]

02) .91 = (0,

k—1 __k

..O'Z O'x

k—1 __k
0, O
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Sampling and discretization e,

Xq(j + 1) = Agxa(j)

y () = Cx4(5)

Explicit solution

y(j) = CA’x,(0)

Goal:

Use {y(J) ‘jjzo to estimate {an}M_,

Strategy:

1. Find the minimal linear model that generates the collected data
2. Back out the unknown parameters from this model




Eigenstate realization algorithm )
[Juang, J. N., & Pappa, R. S. Journal of Guidance, Control, and Dynamics, 8, 620 (1985)]

Step 1: Form Hankel matrix from data

y (k) y(k+1) y(k+(s—1))
y(1+k) y(l+k+1) - y(l+k+(s—1))

_y(r—i—l—k) y(r—l;l—k—i—l) y(r—l—i—]%—k(s—l))_

Step 2: Take SVD of Hankel matrix at k=0

B, =r[y @ =1 Ay o 3]

Step 3: Form realizations of linear model from SVD components

(1)@=
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Eigenstate realization algorithm c

Step 3: Form realizations of linear model from SVD components
Ay=3"2PH,,(1)Q,272
C=elP X2
%(0) = 27Q e

The triple (A4, C,%(0)) is a realization of the triple (A4, C, x,(0))

Certain quantities are model realization invariants,

e.g. the Markov parameters CA7x(0) Vj for any LTI model (A, C,x(0))

Therefore,
y(j) = CA’x,(0) = CA?%(0), for all j >0,




Realization to parameter estimation
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y(j) = CAZx,(0) = CA’%(0), for all j >0,

Define A = log Ay/At

CA’x,(0) = CA7%(0), forall j >0

/

/ Determined by the data
Polynomial equation in unknown parameters

Solving these equations yields estimates of parameters

Notes:

1. Parameter estimates can be non-unique (gauge freedom/symmetries)

2. At must be satisfy Nyquist relation to one-over-fastest-frequency in
system
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Example i

XX spin chain (n=3 qubits)

3 2

Wi ko kE ka1l E _k+1

H=) —of+) o (oot +otah™)
k=1 k=1

w1 = 1.3,(,02 2.4 , W3 = 1. 7 51 4.3,52 = 5.2

1

0.8r

0.61 ¢




Example

XX spin chain (n=3 qubits)

3 2

Wi ko kE ka1l E _k+1

H=) —of+) o (oot +otah™)
k=1 k=1

w1 = 1.3,(,02 2.4 , W3 = 1. 7 51 4.3,52 = 5.2

Construct Hankel matrix with =100, s=100

w? 4+ 022wy + wo) =
81 (3w 4 2w2) + 67 (85 (2w1 + 2w + ws) + 4w + 3wawi + 2wiwy + wh) + w) =

Sandia
National _
Laboratories

Coupling parameters only occur up to even order (symmetry) => can only be

determined up to sign
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Summary i

« System identification through model realization

 Most useful when
* measurements are restricted
 prior information about process is available

» Continuing work:
* Noisy measurements
« Use a different model realization invariant (transfer function)

| —1

———

]
] —
,,/*/ -
e
-

* Markovian open-system evolution
 Continuous time weak measurement
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= Model reduction
= Reducing simulation cost for certain many-body quantum systems
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Quantum state space: exponential

* Full-scale simulation of quantum systems very difficult

* Formal state is exponentially large in the number of particles

p1 € Hi dimH; = nq

P2 € Ho dimHo = no

Pec € Hi1 Q Ho d1m7-[1 ® Ho = nino 75 ni + no
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Quantum state space: not really exponential?

* For most practical systems, this exponential scaling is only formal

Many-body Hilbert space

Q/ Physically relevant set of states

* ldentifying this set of relevant states is difficult

* Dynamics within this relevant set of states is a reduced order model
(ROM)
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ldentifying reduced order models G,

Existing techniques/results:
- static: DMRG, MPS, etc.

- dynamic: Nakajima-Zwanzig (statistical), Bloch equations, adiabatic
elimination

%Pm(g) — PAPz(t) + PBu(t)
+ PAG(t,0)Qz(0)
+ ] PAG(1, 5)QAPa(s)ds

¢
+ f PAG(t, s)QBu(s)ds.
0




Model reduction ) e

Resources State snapshots Input-output map Dynamical
available model

Desired
Output

Full state vector Proper : dentify o
orthogonal approximate
want to reproduce [¢(f))  decomposition invariant
(POD), manifold subspaces
learning

Input-output map Empirical Minimal model Balanced
balanced realization truncation
want to reproduce y(1) truncation algorithms
(BPOD) (e.g. ERA)

- In the context of continuous measurement / quantum filtering:
Mabuchi, PRA 78, 015801 (2008), Nielsen, Hopkins, Mabuchi, NJP 11, 105043 (2009)

- In the context of coherent feedback control / quantum optical networks:
Nurdin, arXiv:1308.6062, Nurdin, Gough arXiv:1309.0562




Compressible dynamics

() = e |1(0))

Problem:
Identify subspace of Hilbert space that contains | (0))

and is invariant under Hamiltonian for all choices of )

e.g. quantum Ising model:

H-—BZO’ —JZO

<t,J>

Sandia
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Assumption:
1. systemis finite
dimensional
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Compressible dynamics G

H(A) =) Aih

Problem:
Identify subspace of Hilbert space that contains | (0))

and is invariant under Hamiltonian for all choices of )

1. Certificates
|s this dynamics compressible?
Solutions:
2. Computing reduced order models
What is the invariant subspace and moreover,
what is the reduced order dynamical model?

Projective linear model reduction: columns of P are basis vectors in this
invariant subspace

d
o (PT1¥(t))) = PTHP (P |(t))) dimP =N xgq, ¢<N
g X g compressed description
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Certificate o

H(A) =) A He L(H) dimH = N
i Coeff (H) = {h;}

Theorem: (algebraic certificate)
The Hamiltonian acting on H keeps invariant a non-trivial proper subspace
iff the subalgebra generated by Coeff (H) is a proper subalgebra of L(#).

Kumar, MS. arXiv: 1406.7069

Intuition:
(1)) = exp{i(Arh1 + Aaha)t} [4(0))

-y <;>' (Arhy + Aoha)™ [1(0))

Products of h; generate an algebra. If the full operator algebra is not
generated, there are directions in state space that are not explored




Certificate

H(A) =) A

H e L(H)
Coeff (H) = {h;}

dimH =N

Sandia
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Theorem: (algebraic certificate)
The Hamiltonian acting on H keeps invariant a non-trivial proper subspace
iff the subalgebra generated by Coeff (H) is a proper subalgebra of L(#).

Identifies a symmetry:

Certifies the existence of a unitary matrix that simultaneously diagonalizes all h;

UHU' = )\,

+Ao

+Am




Certificate
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H(A) =) A He L(H) dimH = N
i Coeff (H) = {h;}

Theorem: (algebraic certificate)

The Hamiltonian acting on H keeps invariant a non-trivial proper subspace
iff the subalgebra generated by Coeff (H) is a proper subalgebra of L(#).

dim A(Coeff(H)) < dim L(H)?

To answer this: generate linear basis for A(Coeff(H)) (the Burnside basis) and
count dimension.

Algorithm for basis generation: repeatedly multiply out h; and keep linearly
independent results.

This generates: {B1, B2, ... Bk }
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Constructing reduced order models G,

% (PT[p(t))) = PHHP (P (1)) dimP=Nxgq, q<N

\ g X g compressed description

Two methods:

1. Sampling from full-order model
1. Fix H(\)
2. Generate samples |¥a(t1)) . [¥a(t2)) , ... [¥x(tx))
3. The columns of P are formed from the (orthonormalized) minimal linearly
independent set of these state samples (Krylov/cyclic subspace)

Careful: cyclic subspace # invariant subspace for model

2. Use Burnside basis generated in algebraic characterization (certificate)
1. Find [¢1) = B1[¢(0)), [1b2) = Ba|¢h(0)), ...|¢x) = Br[4(0))
2. The columns of P are formed from the (orthonormalized) minimal linearly
independent set of these states

Generates true reduced subspace for model
Kumar, MS. arXiv: 1406.7069
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Example: quench dynamics c

Quantum Ising model

b ;
_‘ ‘ 3 Mﬁ ; ‘ ‘_ Fukuhara et al. Nature
Physics, 9 235 (2013)

Basic model for magnetism in
crystalline material

— v v <] Competition between B and J results in

H B Z O —J Z 929z phase transition behavior
<t,)> Can be emulated using cold atoms

As a result: intense interest in
dynamical phase transitions, quenching
dynamics

Quenching dynamics:

Prepare ground state of H° = —B° Za ~J > ol

<1,7>

Rapidly change B and evolve system under H' = -B' Za —-J > ol

<t,7>

The resulting dynamics is very informative; e.g. contains information about
static phases of system
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Example i

Simulation of quench dynamics in quantum Ising model
(Circles: full model, lines: reduced order model)

Quenches to different parameters are indicated by different colors

8

N

N=8 qubits

(*2)

Full order model:

28-1 = 255 complex numbers
Reduced order model:

23 complex numbers
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Expense of computing ROM

d
5 (P11 (1)) = PTHP (P'[(1))) H(X) = Z Aih;

» Certificate:

Sandia
National
Laboratories

« Multiply d x d matrices entering the Hamiltonian

« Compute linear dependency of the results Rational

exponential
complexity in
general

« Construction of model reduction matrix P
* Time sampling:
* Need samples from full order system

computations,

but

« Compute linear dependency of samples
* Burnside basis construction
« Multiply d x d matrices entering the Hamiltonian
« Compute linear dependency of the results
« Multiply Burnside basis elements by [1(0))

However, complexity simplifies greatly in special cases (e.g. Pure Pauli spin
models). See Kumar, MS. arXiv: 1406.7069




Certificate =
Special case: Pauli Hamiltonian

Laboratories

H()) =) Ao He L(H) Y =C2 dimH=2"

eg. 00 01®..Q J?S")

Theorem: (Pauli algebraic certificate)
Any Pauli Hamiltonian acting on n qubits with fewer than 2n terms has a
non-trivial proper invariant subspace.

Kumar, MS. arXiv: 1406.7069

Note: a sufficient condition

e.g. Random quantum (transverse field) Ising model with open boundary
conditions
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Continuing work =

» Approximations to invariant subspaces? “True” model reduction

UHU' = x| b 4| b 4

Methods for approximate simultaneous block diagonalization

» Reduce computational complexity of ROM computation for special
cases

« Algebraic approach to observability-based model reduction (i.e. only
care to reproduce some observables)
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Thanks!




