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High level design goals

 Retrofit to the existing SWiFT turbines 

• Loads and rotational speed constraints 

 Replicate rotor loads and wake formation of a utility scale 
turbine to support turbine-turbine interaction research at 
SWiFT; i.e. produce wakes of similar geometry, velocity deficit 
and turbulence intensity.



Airfoil Drivers

 Predictable rotor performance

 Roughness insensitivity

• Sensitivity increases as Reynolds number decreases (at least 
below the design Reynolds number)

 Thickness reqt. For structures (different limits than utility rotor)

• Also reqt. For instrumentation and access (becomes more 
important as size decreases)



Reynolds number effects

 Reynolds numbers will not match between scales – we seek merely to 
understand and account for the effects

 A reduction in Reynolds number for a given airfoil (generally) causes

• Decrease in max Cl

• Increase in profile drag
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 It can affect the scaled rotor design if the 
chord and twist are not modified to 
account for new polars

 Different or modified airfoils might be 
required in extreme cases



Airfoil Considerations

 The first design iteration uses the same airfoil family as the 
DOWEC and NREL 5MW turbines, as this airfoil data is publically 
available

 The most recent design iteration uses the original versions of 
the DU airfoils:

• There is a large amount of wind tunnel data available, 

• Includes some lower Reynolds number data

• We have been given permission to publish this data

 The NRT/SWiFT rotors will operate at lower chordwise Reynolds 
numbers than where these airfoils were designed for

 The most recent airfoil 



Estimated Reynolds Number Range



Nominal Operating Reynolds Number

SWiFT 13.5m Reynolds number in millions

Span Start Span End Airfoil 

Thickness

Re Low Re High

18% 35% 30% 0.7-1 1.2-1.75

35% 55% 25% 1.00 1.75-1.8

55% 75% 21% 1.00 1.6-1.75

75% 99% 18% 0.43-1 0.7-1.6

*Note:  a transition area needs to be added between each airfoil section.  5% span 
should suffice, although the details of the transition area needs more work to define.
General practice for this family of airfoils?

• ‘Re Low’ is the range of Reynolds number of an airfoil at 5 
m/s wind speed.

• ‘Re high’ is the range of Reynolds number of an airfoil for 
the 10 m/s wind speed.



Current Airfoil Selection

DU Airfoils DOWEC

Nominal 

Thickness

DU 95-W-180 18%

DU 93-W-210 21%

DU 91-W2-250 25%

DU 97-W-300 30%

DU 99-W3-350 Adjusted DU 35 35%

DU 99-W3-405 Adjusted DU4050 40%

• The 35% and 40% thick airfoils are currently not included on the main part of the 
blade, although they may be used in the inboard transition region. 

• The 35% and 40% thick airfoils have significantly reduced performance at lower 
Reynolds numbers, especially with roughness.  

• The 30% section has more predictable behavior and has a significant amount of 
wind tunnel data, so it has replaced the 35% thick sections. 



CFD: Overflow

 Assess RANS CFD code at predicting airfoil performance

 Predict airfoil polars at lower Reynolds numbers (0.7-2 million)

 Capability to extend to full rotor (3D) simulations



CFD: Overflow

• Overflow with tripped boundary layer (red stars) and the non-
tripped data (red circles), both using DU97-W-300Mod, compared 
to experimental (solid black) data using DU97-W-300

Predicts corner of drag polar wellOver predicts lift





• Lift to drag ratio for DU 97-W-300Mod at Re = 3×106 for RFOIL, 
tripped and un-tripped Overflow, and Fuego compared to DU97-
W-300 wind tunnel data 

Rfoil tends to have the 
lowest total error over a 
range of Reynolds 
numbers, but it tends to 
underestimate drag.



Roughness Insensitivity

 Roughness insensitivity

• Modern (relatively) airfoils are designed to be insensitive at 
design Reynolds number

 We are operating below that design point for airfoils meant for utility 
scale

• Sensitivity increases as Reynolds number decreases (at least 
below the design Reynolds number)

• Sensitivity increases with thicker airfoils 

 Can give up peak performance to make performance less 
sensitive to roughness

• Lower design cl: means higher solidity and stronger gust 
response



Roughness Insensitivity



Profil Analysis: Effect of 
Roughness

Under predicted 
maximum lift, so results 
are conservative.



Profil Analysis: Effect of 
RoughnessDU 97-W-300Mod

DU 91-W2-250 The 30% thick airfoil 
has a larger decrease 
in maximum lift due to 
roughness than the 
25% thick airfoil.



Where to go from here

 Investigate potential advantages of alternative airfoils

• Looking at some of the SERI wind turbine airfoils

 Add analysis of gust response and region 2.5 behavior

 Define minimum thickness requirements for structural and 
instrumentation requirements
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Descriptions of How Reynolds 
Number changes each airfoil

 Point out main features

 Full scale ReNum, Design ReNum, SwiFT ReNum (Bottom and 
Top of Region 2, Top of Region 2.5)

 Conclusions (for example, not considering 40%, eliminated 35%)



Profil Analysis


