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Big Data Challenge
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P. Burkhardt and C. Waring, “An NSA Big Graph experiment,” National NSA
Security Agency, Tech. Rep. NSA-RD-2013-056002v 1, 2013. .
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256 4,096 65,536 1,048,576 Experiment

Graph Vertices
(millions)

How do we address the data storage and compute challenges
posed by the problem scales of interest to the DoD/IC community?
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Example Applications of Graph Analytics Wi

Social Cyber

» Graphs represent entities Graphs represent Graphs represent
and relationships detected relationships between communication patterns of
through multiple sources individuals or documents computers on a network

* 1,000s — 1,000,000s tracks 10,000s — 10,000,000s 1,000,000s — 1,000,000,000s
and locations individual and interactions network events

+ GOAL: Identify anomalous GOAL.: Identify hidden GOAL: Detect cyber attacks
patterns of life social networks or malicious software

Cross-Mission Challenge:
Detection of subtle patterns in massive multi-source noisy datasets




Statistical Detection Framework for Graphs

Graph Theory Detection Theory

¥

Develop fundamental graph
signal processing concepts

Demonstrate in simulation

Apply to real data
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SPG Processing Chain ) o,

———  DIMENSIONALITY REDUCTION ——

TEMPORAL GRAPH MODEL RESIDUAL COMPONENT ANOMALY

IDENTIFICATION
INTEGRATION CONSTRUCTION DECOMPOSITION SELECTION DETECTION

Output

+ Statistically anomalous
subgraph(s)
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O u t I i n e Il“aat}Erg%ries

Anomaly Detection in Very Large Graphs
Eigenanalysis and Performance Challenges

Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

Partitioning: Dynamic Graphs and Sampling
Summary
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Computational Focus: Dimensionality Reduction i,

———  DIMENSIONALITY REDUCTION ——

TEMPORAL GRAPH MODEL RESIDUAL COMPONENT ANOMALY
Eigensystem Example: Modularity Matrix

B=(A-E[A]) E[4]=kk"/(2e])

Solve: le] — Number of edges in graph G(4)

— ; — k — degree vector
Bxi o }\“i'xiﬂl o 19D , M k;= degree(v,),v, € G(4)

» Dimensionality reduction dominates computation
» Eigen decomposition is key computational kernel
 Parallel implementation required for very large graph

problems
- Fit into memory, minimize runtime

Need fast parallel eigensolvers
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Detection Methods, Effectiveness, and Cost i

Notional Comparison of Power and Effectiveness

Eigenvectors L,
Norms

* More powerful methods require
more computation

* For detection of subtle
anomalies, need to calculate
100s of eigenvectors fast
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Spectral Norm

O((|E|r+|V|r*+r¥)h)* to compute r eigenvectors

Computation Cost
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Parallel Implementation =

= Using Anasazi (Trilinos) Eigensolver
Block Krylov-Schur

Eigenpairs corresponding to eigenvalues with largest real
component

User defined operators (don’t form matrix explicitly)

= |nitial Numerical Experiments
= R-Mat (a=0.5, b=0.125, ¢c=0.125, d=0.25)
= Average nonzeros per row: 8
= Number of rows: 2%? to 232

= Two systems
" LLGrid (MIT LL) — compute cluster (10 GB ethernet)
* Hopper* (NERSC) -- Cray XE6 supercomputer

= |nitially: 1D random row distribution (good load balance)
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Weak Scaling — Hopper* e

Runtime to Find 1st Eigenvector

4 billion vertices il

eli=Hopper 1D

R-MAT, 218 vertices/core
Modularity Matrix

16 32 64 128 256 512 1024 2048 4096 8196 16384
Number of Cores
1D random
partitioning o
Solved system for up to 4 billion vertex graph
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Strong Scaling Results -

Runtime to Find 1st Eigenvector

1000.00
@G| | Grid 1D

e=Hopper 1D

R-MAT, 223 vertices
Modularity Matrix

1 4 64 256 4096 16384

1D random Number of Cores
partitioning

Scalability limited and runtime increases for large numbers of cores




Sandia

Finding Multiple Eigenvectors — LLGrid W5

Time to find 1, 2, 10, 100 eigenvalues/vectors

100000

100 eigenvectors

2 eigenvectors

10 eigenvectors

4‘\%_.

R-MAT, 223 vertices
Modularity Matrix

1 4 16
1D random

partitioning Number of Cores

LLGrid system

Significant increase in runtime when finding additional eigenvectors
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Sparse Matrix-Vector Multiplication e

Sparse matrix-dense vector multiplication (SpMV) key
computational kernel in eigensolver

Performance of SpMV challenging for matrices resulting from
power-law graphs
= Load imbalance

" |rregular communication
= Little data locality

Important to improve performance of SpMV
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SpMV Strong Scaling -- LLGrid o

SpMV Runtime

[Eny
o

Runtime (s)

[E=

R-Mat, 223 vertices
Modularity Matrix

1 4 16 64

Number of Cores
1D random

partitioning

Scalability limited and runtime increases for large numbers of cores
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O u t I i n e Il“aat}Erg%ries

Anomaly Detection in Very Large Graphs
Eigenanalysis and Performance Challenges

Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

Partitioning: Dynamic Graphs and Sampling
Summary
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Data Partitioning to Improve SpMV i
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®  Partition matrix nonzeros
= Partition vector elements
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Partitioning Objective -

Ideally we minimize total execution time of SpMV
Settle for easier objectives

= Balance computational work
= Minimize communication metric
= Total communication volume
= Bound number of messages
Can Partition matrices in different ways
= 1D
= 2D
Can model problem in different ways
= Graph
= Bipartite graph
= Hypergraph
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Parallel SpMV i
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= Alternative way of visualizing partitioning




Sandia

Parallel SpMV Communication s
X

b

“fan-out” “fan-1n”’

" Z; senttoremote = Partial inner-products sent
processes that have to process that owns vector
nonzeros in column j element Y;




1D Partitioning

1D Column

= Each process assigned = Each process assigned
nonzeros for set of columns nonzeros for set of rows




National

Communication Pattern: 1D Block Partitioning ) s,

2D Finite Difference Matrix (9 point)
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Number of Rows: 223
Nonzeros/Row: 9

NNZ/process

in 40

destination process

min: 1.17E+06
max: 1.18E+06
avg: 1.18E+06
max/avg: 1.00

# Messaqges (Phase 1)
total: 126
max: 2

Volume (Phase 1)
total: 2.58E+05
max: 4.10E+03

Nice properties:
Great load balance
Small number of messages

Low communication volume
21
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Communication Pattern: 1D Random Partitioning & i,

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223

Nonzeros/Row: 8

NNZ/process
min: 1.05E+06
max: 1.07E+06
avg: 1.06E+06
max/avg: 1.01

]
[

# Messaqges (Phase 1)
total: 4032
max: 63

(L]
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n

Volume (Phase 1)
total: 5.48E+07
max: 8.62E+05

Nice properties:
Great load balance

Challenges:
All-to-all communication

20 30 410
destination process




Sandia

2D Partitioning e

”’,ﬁ

(permuted) (permuted

2D Partitioning
= More flexibility: no particular part for entire row/column, more general sets of nonzeros
Use flexibility of 2D partitioning to bound number of messages
= Distribute nonzeros in permuted 2D Cartesian block manner
2D Random (Cartesian)*
= Block Cartesian with rows/columns randomly distributed
= Cyclic striping to minimize number of messages
2D Cartesian (Hyper)graph**

= Replace random partitioning with hyper(graph) partititioning to minimize
communication volume




Communication Pattern: 2D Random Partitioning () s

o Il“aat}Erg%ries
Cartesian Blocks (2DR)
R-Mat (0.5, 0.125, 0.125, 0.25)

Number of Rows: 223
Nonzeros/Row: 8

NNZ/process
min: 1.04E+06
max: 1.05E+06
avg: 1.05E+06
max/avg: 1.01

# Messaqges (Phase 1)
total: 448
max: 7
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40

Volume (Phase 1)
total: 2.57E+07
max: 4.03E+05

Nice properties:
No all-to-all communication
Total volume lower than 1DR

30 40
destination process

1]




Communication Pattern: 2D Random Partitioning
Cartesian Blocks (2DR)

R-Mat (0.5, 0.125, 0.125, 0.25)
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40

30 40
destination process
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Number of Rows: 223
Nonzeros/Row: 8

NNZ/process
min: 1.04E+06
max: 1.05E+06
avg: 1.05E+06
max/avg: 1.01

# Messaqges (Phase 2)
total: 448
max: 7

Volume (Phase 2)
total: 2.57E+07
max: 4.03E+05

Nice properties:

No all-to-all communication
Total volume lower than 1DR




Communication Pattern: 2D Cartesian

Hypergraph Partitioning
R-Mat (0.5, 0.125, 0.125, 0.25)

S,
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40

destination process
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Number of Rows: 223
Nonzeros/Row: 8

NNZ/process
min: 5.88E+05
max: 1.29E+06
avg: 1.05E+06
max/avg: 1.23

# Messaqges (Phase 1)
total: 448
max: 7

Volume (Phase 1)
total: 2.33E+07
max: 4.52E+05

Nice properties:
No all-to-all communication
Total volume lower than 2DR

Challenges:

Imbalance worse than 2DR
26
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Improved Results: SpMV — LLGrid Fe

Time needed to compute 10 SpMV operations

1.00E+02

R-Mat, 222 vertices/rows e=m=| | Grid 1D

«{=| | Grid 2D

1.00E+00
16

Number of Cores

Simple 2D method shows improved scalability
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Improved Results — NERSC Hopper* e

Runtime to Find 1st Eigenvector

1000.00

e=(m»1D Random

esll=»?D Random

@5/w=2D Hypergraph

R-Mat, 223 vertices
Modularity Matrix

1 4 64 256 4096 16384
Number of Cores

2D methods show improved scalability
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Anomaly Detection in Very Large Graphs
Eigenanalysis and Performance Challenges

Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

Partitioning: Dynamic Graphs and Sampling
Summary
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Challenge with Hypergraph/Graph Partitioning e

1.00E+05

1.00E+04 -

1.00E+03

1.00E+01

1.00E+00

1.00E-01

Time to Partition and Compute SpMV operations

@@=)D random

@wlw»2D hypergraph

NERSC Hopper

\ ~40,000 SpMVs

R-Mat, 223 vertices
1024 cores

100

1000 10000 100000 1000000

Number of SpMV Operations

High partitioning cost of graph/hypergraph methods must be amortized by computing
many SpMV operations

Detection”™ requires at most 1000s of SpMV operations

Expensive partitions need to be effective for multiple graphs

L1 norm method: computing 100 eigenvectors
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Experiment: Partitioning for Dynamic Graphs &z

Evolving Graph

Initial Graph, G, Final graph, G,
e, edges e, edges e, edges

= Key question: How long will a partition be effective?

= |nitial experiment

Evolving R-Mat matrices: fixed number of rows, R-Mat parameters
(a,b,c,d)

Start with a given number of nonzeros (|e,|)

Iteratively add nonzeros until target number of nonzeros is reached

(lenl)




Sandia

Results: Partitioning for Dynamic Graphs G
SpMV Time

2DR = 2D Random Cartesian
2DH = 2D Cartesian Hypergraph
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NERSC Hopper*

800 075 1150 1325 1500 1675
el / legl

Hypergraph partition surprising effective after more
than 16x |e,| edges added
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Sampling and Partitioning for Web/SN Graphs e s

Graph Sampling and Partitioning

Sample E Partition G ﬁ ﬁ;pgly partition W

Input Graph, = G,=(V,,E G.=(V4,E
G=(V, E) Gy'=(Vy, E2 G=(V, E2

= |dea: Partition sampled graph to reduce partitioning time

= Steps:
1. Produce smaller graph G’ by sampling edges in graph G (uniform
random sampling), keep vertices same
2. Partition G’ (2D Cartesian Hypergraph)

3. Apply partitionto G
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hollywood-2009* Graph ;M

hollywood-2009 Graph: Partitioning Time

e=j==p=16

e={l=p=64

“=p=256

eemp=1024 [

2D Cartesian Hypergraph

|

a

NERSC Hopper

0.6 0.5
Sampling Rate

Edge sampling greatly reduces partitioning time
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hollywood-2009* Graph ;M

hollywood-2009 Graph: SpMV Time

e=(mep=16
2D Cartesian Hypergraph e

= p=256

emp=1024 |

1 0.9 0.8 . 0.6 0.5 . 0.3 0.2 0.1
Sampling Rate

NERSC Hopper

Resulting SpMV time does not increase for modest sampling
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Challenge with Hypergraph Partitioning Revisited e

Time to Partition and Compute SpMV Operations

2DR = 2D Random Cartesian
2DH = 2D Cartesian Hypergraph

~100,000 SpMVs

~10,000 SpMVs

hollywood-2009
1024 cores

e=G==)DR

@il )DH
NERSC Hopper*

2DH w/ Sampling

100 1000 100000
Number of SpMV Operations

Sampling reduces overhead of hypergraph partitioning
(fewer SpMVs needed to amortize partitioning cost)
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Anomaly Detection in Very Large Graphs
Eigenanalysis and Performance Challenges

Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

Partitioning: Dynamic Graphs and Sampling
Summary
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= Qutlined HPC approach to processing big data
= Signal processing for graphs
= Statistical framework for anomaly detection in graphs

Key component is eigensolver for dimensionality reduction

Solving eigensystems resulting from power law graphs
challenging
= Load imbalance
= Poor data locality
SpMV key computational kernel
= 1D data partitioning limits performance due to all-to-all communication
= 2D data partitioning can be used to improve scalability
Sampling can improve hypergraph-based partitioning
performance for web/SN graphs
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Residuals Example: Anomalous Subgraph

mh
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Observed Graph
G,

Graph Model

Residual Graph
R|G]

* Residual graph represents the difference between the observed and

expected

« Coordinated vertices (subsets of vertices connected by edges with
large edge weights) in residual graph will produce much stronger
signal than uncoordinated vertices

Detection framework is designed to detect coordinated
deviations from the expected topology




Anomaly Detection: Setup Phase ) .

TEMPORAL GRAPH MODEL RESIDUAL COMPONENT ANOMALY
IDENTIFICATION
INTEGRATION CONSTRUCTION DECOMPOSITION SELECTION DETECTION

.25

c
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75

| |
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N

H, — Null hypothesis, no signal
H, — Alternative hypothesis, signal

Receiver Operating Characteristic

—

Y

st

4
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o

e
S

o
]

Probability of Detection

(=]

0 0.2 0.4 06 0.8 1

Detection Setup

Probability of False Alarm

O T A R

80 120 140 160 180

Test Statistic

1. Monte-Carlo simulations to
generate density functions

2. ROC-curve generated from
density function
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Anomaly Detection i

TEMPORAL GRAPH MODEL RESIDUAL COMPONENT ANOMALY
IDENTIFICATION
INTEGRATION CONSTRUCTION DECOMPOSITION SELECTION DETECTION

Test statistic calculated for

H, — Null hypothesis, no signal observed graph:

H, — Alternative hypothesis, signal

o
P

o
)

Dimension 2

o
)

|
04 02 0 02 04
Dimension 1

2 2([ cosf)  —sinf ] T)
Xmax — IIléi.X X [U1 ’LLQ}

o
kS

c
S
2
B
s
o
S
[ )
o
Q£
Ql
E
S
75

sin # cosf

: : : ; Test statistic value significantly

J | | | larger than test statistic value
80 120 140 160 180 threshold corresponding to 1%
Test Statistic false alarm rate

42




Modularity Matrix: Computation Breakdown ) i,

Matrix-vector multiplication is at the heart of eigensolver algorithms

Operator apply:

Bx=Ax—k (k'x)/(2 ‘e‘)

dense matrix-vector sparse matrix-vector
product: O(VP) product: O(le|)

]

Bx can be computed without storing B (modularity matrix)




Communication Pattern: 1D Block Partitioning ) s,

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223

- Nonzeros/Row: 8

NNZ/process
min: 1.88E+05
max: 4.00E+06
avg: 1.06E+06
max/avg: 3.78

# Messaqges (Phase 1)
total: 4032
max: 63

0
0
(<)
o
o
bt
o
o
o
bt
=
o
]

Volume (Phase 1)
total: 4.02E+07
max: 1.48E+06

Challenges:
Poor load balance
destination process All-to-all communication
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2D Partitioning o

» More flexibility: no particular part for entire row or column
« More general sets of nonzeros assigned parts




Communication Pattern: 2D Cartesian

Hypergraph Partitioning
R-Mat (0.5, 0.125, 0.125, 0.25)

2]
]
o
Q
o
-
Q.
(V]
(3]
-
=
o
(2]

20 30 40
destination process
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Number of Rows: 223
Nonzeros/Row: 8

NNZ/process
min: 5.88E+05
max: 1.29E+06
avg: 1.05E+06
max/avg: 1.23

# Messaqges (Phase 2)
total: 448
max: 7

Volume (Phase 2)
total: 2.54E+07
max: 4.80E+05

Nice properties:
No all-to-all communication
Total volume lower than 2DR

Challenges:

Imbalance worse than 2DR
46
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Communication Pattern: 1D Block Partitioning ) s,

o
=

7]
7]
(<)
o
o
bt
o
o
o
bt
=
Q
7]

Hollywood-2009

Ell 40
destination process

Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process
min: 2.31E+04
max: 1.26E+07
avg: 1.78E+06
max/avg: 7.08

# Messaqges (Phase 1)
total: 3660
max: 60

Volume (Phase 1)
total: 7.68E+06
max: 3.99E+05
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Communication Pattern: 1D Random Partitioning & =

Hollywood-2009
Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process
min: 1.70E+06
max: 1.87E+06
avg: 1.78E+06
max/avg: 1.05

# Messaqges (Phase 1)
total: 4032
max: 63

[
=

(7)]
(7)]
Q
O
(o]
|
o
Q
(3]
| .
-
O 4
(7/]

Volume (Phase 1)
total: 3.06E+07
max: 4.87E+05




Communication Pattern: 2D Random Partitioning () s

(Cartesian Blocks)
Hollywood-2009

wr
=

40

2]
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o
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(V]
(3]
-
=
o
(2]

30 40
destination process

National _
Laboratories

Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process
min: 1.75E+06
max: 1.82E+06
avg: 1.78E+06
max/avg: 1.02

# Messaqges (Phase 1)
total: 448
max: 7

Volume (Phase 1)
total: 6.63E+06
max: 1.04E+05

Nice properties:
No all-to-all communication
Total volume lower than 1DR




Communication Pattern: 2D Random Partitioning () s

(Cartesian Blocks)
Hollywood-2009

w
=

40

2]
]
o
Q
o
-
Q.
(V]
(3]
-
=
o
(2]

H mu
! 0

30 40
destination process

50 1]

National _
Laboratories

Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process
min: 1.75E+06
max: 1.82E+06
avg: 1.78E+06
max/avg: 1.02

# Messaqges (Phase 2)
total: 448
max: 7

Volume (Phase 2)
total: 6.63E+06
max: 1.04E+05

Nice properties:
No all-to-all communication
Total volume lower than 1DR




Communication Pattern: 2D Cartesian
Hypergraph Partitioning
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Hollywood-2009
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40

destination process
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Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process
min: 5.16E+05
max: 2.61E+06
avg: 1.78E+06
max/avg: 1.47

# Messaqges (Phase 1)
total: 439
max: 7

Volume (Phase 1)
total: 4.17E+06
max: 9.38E+04




Communication Pattern: 2D Cartesian Hypergraph ) e,
Partitioning

Laboratories

Hollywood-2009
| | | | Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process
min: 5.16E+05
max: 2.61E+06
avg: 1.78E+06
max/avg: 1.47

10

# Messaqges (Phase 2)
total: 444
max: 7

w
=

40

2]
]
o
Q
o
-
Q.
(V]
(3]
-
=
o
(2]

Volume (Phase 2)
total: 5.06E+06
max: 1.49E+05

m mu
| | | | 0

20 40 50 :11]

30
destination process




Parallel Implementation

Using Anasazi (Trilinos) Eigensolver
64 bit global ordinals

= Necessary for graphs with 23! vertices or more

User defined operators
= Modularity matrix
= Moving average filter
= Apply defined efficiently for particular operator

Block Krylov-Schur method
= Symmetric
= Eigenvalues with largest real component
= Blocksize=1

Sandia
National
Laboratories
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Initial Numerical Experiments Fe

= Matrices
= R-Mat (a=0.5, b=0.125, ¢=0.125, d=0.25)
= Average nonzeros per row: 8
= Number of rows: 2%? to 232

= Two systems

= LLGrid (MIT LL)
= 274 compute nodes (8,768 cores)
" Node: two 16-core AMD Opteron 6274 (2.2 GHz)
= Network: 10 GB Ethernet
= Hopper* (NERSC)
= Cray XE6
" 6,384 nodes (153,216 cores)
" Node: two 12-core AMD 'MagnyCours' (2.1 GHz)
= Network: 3D torus (Cray Gemini)

= |nitially: 1D random row distribution (good load balance)
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Improved Results — LLGrid e

Runtime to Find 1st Eigenvector

@=G==| | Grid 1D
= | Grid 2D

R-Mat, 222 vertices/rows
Modularity Matrix

1

16
Number of Cores

Simple 2D method shows improved scalability
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Strong Scaling Results: Hollywood e

SpMV Runtime

e=1D LLGrid

16
Number of Cores

1D random
partitioning

Scalability limited and runtime increases for large numbers of cores
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SpMV: Strong Scaling Results - Hollywood e

SpMV Runtime

@l=1D LLGrid

@=G==)D LLGrid

16
Number of Cores

Simple 2D method shows improved scalability
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SpMV: Strong Scaling Results - Hollywood e

SpMV Time

64 256
Number of Cores

Hypergraph partitioning further reduces runtime




Results: Partitioning for Dynamic Graphs

4.50E-10

4.00E-10

3.50E-10

3.00E-10

w
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5.00E-11

0.00E+00

@={=?D random

@=gm=)D hypergraph

2.50E-10

NERSC Hopper*

0.3

0.4

= |ey] =0.3 |e,|
= 2D hypergraph surprisingly effective as edges are added to graph

05 o 07
leil/lenl
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Resulting SpMV time does not increase for modest sampling




