
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-XXXXP

Sparse Matrix Partitioning for Parallel

Eigenanalysis of Large Static and

Dynamic Graphs

Michael Wolf, Sandia National Laboratories

Ben Miller, MIT Lincoln Laboratory

IEEE HPEC 2014

September 10, 2014

The Lincoln Laboratory portion of this work is sponsored by the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract
FA8721-05-C-0002. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of IARPA or the U.S. Government.

=

SAND2014-17387PE

 1

 8

 64

 512

 4,096

 32,768

 262,144

 2,097,152

 1 16 256 4,096 65,536 1,048,576

Big Data Challenge
M

e
m

o
ry

 r
e
q

u
ir

e
d

 f
o

r
s
to

ri
n

g

S
p

a
rs

e
 M

a
tr

ix
 (

G
B

)

Graph Vertices
(millions)

ISR Cyber

Web

How do we address the data storage and compute challenges
posed by the problem scales of interest to the DoD/IC community?

How do we address the data storage and compute challenges
posed by the problem scales of interest to the DoD/IC community?

Petabyte

Terabyte

Social

Brain

P. Burkhardt and C. Waring, “An NSA Big Graph experiment,” National
Security Agency, Tech. Rep. NSA-RD-2013-056002v1, 2013.

NSA
Big Graph
Experiment

2

Example Applications of Graph Analytics

Cyber

• Graphs represent
communication patterns of
computers on a network

• 1,000,000s – 1,000,000,000s
network events

• GOAL: Detect cyber attacks
or malicious software

• Graphs represent
communication patterns of
computers on a network

• 1,000,000s – 1,000,000,000s
network events

• GOAL: Detect cyber attacks
or malicious software

Social

• Graphs represent
relationships between
individuals or documents

• 10,000s – 10,000,000s
individual and interactions

• GOAL: Identify hidden
social networks

• Graphs represent
relationships between
individuals or documents

• 10,000s – 10,000,000s
individual and interactions

• GOAL: Identify hidden
social networks

• Graphs represent entities
and relationships detected
through multiple sources

• 1,000s – 1,000,000s tracks
and locations

• GOAL: Identify anomalous
patterns of life

• Graphs represent entities
and relationships detected
through multiple sources

• 1,000s – 1,000,000s tracks
and locations

• GOAL: Identify anomalous
patterns of life

ISR

Cross-Mission Challenge:
Detection of subtle patterns in massive multi-source noisy datasets

Cross-Mission Challenge:
Detection of subtle patterns in massive multi-source noisy datasets

3

Statistical Detection Framework for Graphs

Develop fundamental graph
signal processing concepts
Develop fundamental graph
signal processing concepts

Demonstrate in simulationDemonstrate in simulation

Apply to real dataApply to real data

THRESHOLD

NOISE
SIGNAL

‘+’
NOISE

H0 H1

Graph Theory Detection Theory

4

SPG Processing Chain

GRAPH MODEL

CONSTRUCTION

GRAPH MODEL

CONSTRUCTION

RESIDUAL

DECOMPOSITION

RESIDUAL

DECOMPOSITION

COMPONENT

SELECTION

COMPONENT

SELECTION

ANOMALY

DETECTION

ANOMALY

DETECTION
IDENTIFICATIONIDENTIFICATION

TEMPORAL

INTEGRATION

TEMPORAL

INTEGRATION

DIMENSIONALITY REDUCTION

Input

• Graph

• No cue

• Graph

• No cue

Output

• Statistically anomalous
subgraph(s)

• Statistically anomalous
subgraph(s)

5

 Anomaly Detection in Very Large Graphs

 Eigenanalysis and Performance Challenges

 Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

 Partitioning: Dynamic Graphs and Sampling

 Summary

Outline

6

Computational Focus: Dimensionality Reduction

GRAPH MODEL

CONSTRUCTION

GRAPH MODEL

CONSTRUCTION

RESIDUAL

DECOMPOSITION

RESIDUAL

DECOMPOSITION

COMPONENT

SELECTION

COMPONENT

SELECTION

ANOMALY

DETECTION

ANOMALY

DETECTION
IDENTIFICATIONIDENTIFICATION

TEMPORAL

INTEGRATION

TEMPORAL

INTEGRATION

DIMENSIONALITY REDUCTION

• Dimensionality reduction dominates computation
• Eigen decomposition is key computational kernel
• Parallel implementation required for very large graph

problems
- Fit into memory, minimize runtime

Need fast parallel eigensolversNeed fast parallel eigensolvers
7

B  (A E[A])

Bxi  ixi, i 1,� , m
Solve:

Example: Modularity Matrix

E[As] k kT / (2 e)
|e| – Number of edges in graph G(A)

k – degree vector
ki = degree(vi), vi G(A)

Eigensystem

Detection Methods, Effectiveness, and Cost
D

e
te

c
ti

o
n

 P
o

w
e
r

Computation Cost

Notional Comparison of Power and Effectiveness

• More powerful methods require
more computation

• For detection of subtle
anomalies, need to calculate
100s of eigenvectors fast

• More powerful methods require
more computation

• For detection of subtle
anomalies, need to calculate
100s of eigenvectors fast

1 EV

2 EV

σ1, λ1

χ2 in 2 Principal
Components

Eigenvectors L1

Norms

Spectral Norm

100s EVs

O((|E|r+|V|r2+r3)h)* to compute r eigenvectors

8

Parallel Implementation

 Using Anasazi (Trilinos) Eigensolver
 Block Krylov-Schur

 Eigenpairs corresponding to eigenvalues with largest real
component

 User defined operators (don’t form matrix explicitly)

 Initial Numerical Experiments
 R-Mat (a=0.5, b=0.125, c=0.125, d=0.25)

 Average nonzeros per row: 8

 Number of rows: 222 to 232

 Two systems

 LLGrid (MIT LL) – compute cluster (10 GB ethernet)

 Hopper* (NERSC) -- Cray XE6 supercomputer

 Initially: 1D random row distribution (good load balance) 9

Weak Scaling – Hopper*

Solved system for up to 4 billion vertex graph Solved system for up to 4 billion vertex graph

1

10

100

1000

16 32 64 128 256 512 1024 2048 4096 8196 16384

Ti
m

e
(s

)

Number of Cores

Hopper 1D
4 billion vertices

Runtime to Find 1st Eigenvector

R-MAT, 218 vertices/core
Modularity Matrix

1D random
partitioning

10

* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Strong Scaling Results

Scalability limited and runtime increases for large numbers of coresScalability limited and runtime increases for large numbers of cores

1.00

10.00

100.00

1000.00

1 4 16 64 256 1024 4096 16384

Ti
m

e
(s

)

Number of Cores

LLGrid 1D

Hopper 1D

R-MAT, 223 vertices
Modularity Matrix

Runtime to Find 1st Eigenvector

1D random
partitioning

11

* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Finding Multiple Eigenvectors – LLGrid

Significant increase in runtime when finding additional eigenvectorsSignificant increase in runtime when finding additional eigenvectors

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
(s

)

Number of Cores

1 eigenvector

2 eigenvectors

10 eigenvectors

100 eigenvectors

LLGrid system

R-MAT, 223 vertices
Modularity Matrix

1D random
partitioning

Time to find 1, 2, 10, 100 eigenvalues/vectors

12

Sparse Matrix-Vector Multiplication

 Sparse matrix-dense vector multiplication (SpMV) key
computational kernel in eigensolver

 Performance of SpMV challenging for matrices resulting from
power-law graphs
 Load imbalance

 Irregular communication

 Little data locality

 Important to improve performance of SpMV

=

13

SpMV Strong Scaling -- LLGrid

0.1

1

10

100

1 4 16 64 256 1024

R
u

n
m

e
(s

)

Number of Cores

SpMV Run me

LLGrid

R-Mat, 223 vertices
Modularity Matrix

1D random
partitioning

Scalability limited and runtime increases for large numbers of coresScalability limited and runtime increases for large numbers of cores

14

 Anomaly Detection in Very Large Graphs

 Eigenanalysis and Performance Challenges

 Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

 Partitioning: Dynamic Graphs and Sampling

 Summary

Outline

15

Data Partitioning to Improve SpMV

 Partition matrix nonzeros

 Partition vector elements
16

Partitioning Objective

 Ideally we minimize total execution time of SpMV

 Settle for easier objectives
 Balance computational work

 Minimize communication metric

 Total communication volume

 Bound number of messages

 Can Partition matrices in different ways
 1D

 2D

 Can model problem in different ways
 Graph

 Bipartite graph

 Hypergraph

17

Parallel SpMV

 Alternative way of visualizing partitioning
18

Parallel SpMV Communication

 sent to remote
processes that have
nonzeros in column

19

 Partial inner-products sent
to process that owns vector
element

“fan-out” “fan-in”

1D Partitioning

 Each process assigned
nonzeros for set of columns

20

 Each process assigned
nonzeros for set of rows

1D Column 1D Row

Communication Pattern: 1D Block Partitioning

NNZ/process
min: 1.17E+06
max: 1.18E+06
avg: 1.18E+06
max/avg: 1.00

Messages (Phase 1)
total: 126
max: 2

Volume (Phase 1)
total: 2.58E+05
max: 4.10E+03

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Nice properties:
Great load balance
Small number of messages
Low communication volume

2D Finite Difference Matrix (9 point)
Number of Rows: 223

Nonzeros/Row: 9

21

Communication Pattern: 1D Random Partitioning

NNZ/process
min: 1.05E+06
max: 1.07E+06
avg: 1.06E+06
max/avg: 1.01

Messages (Phase 1)
total: 4032
max: 63

Volume (Phase 1)
total: 5.48E+07
max: 8.62E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Challenges:
All-to-all communication

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223

Nonzeros/Row: 8

Nice properties:
Great load balance

22

2D Partitioning

 2D Partitioning
 More flexibility: no particular part for entire row/column, more general sets of nonzeros

 Use flexibility of 2D partitioning to bound number of messages

 Distribute nonzeros in permuted 2D Cartesian block manner

 2D Random (Cartesian)*

 Block Cartesian with rows/columns randomly distributed

 Cyclic striping to minimize number of messages

 2D Cartesian (Hyper)graph**

 Replace random partitioning with hyper(graph) partititioning to minimize
communication volume

*Hendrickson, et al.; Bisseling; Yoo, et al.
**Boman, Devine, Rajamanickam, “Scalable Matrix Computations on Large Scale-Free Graphs Using 2D Partitioning, SC2013.

2D Cartesian (Hyper)graph**2D Random (Cartesian)*

= =

(permuted) (permuted)

23

Communication Pattern: 2D Random Partitioning
Cartesian Blocks (2DR)

NNZ/process
min: 1.04E+06
max: 1.05E+06
avg: 1.05E+06
max/avg: 1.01

Messages (Phase 1)
total: 448
max: 7

Volume (Phase 1)
total: 2.57E+07
max: 4.03E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Number of Rows: 223

Nonzeros/Row: 8

Nice properties:
No all-to-all communication
Total volume lower than 1DR

1DR = 1D Random

R-Mat (0.5, 0.125, 0.125, 0.25)

24

Communication Pattern: 2D Random Partitioning
Cartesian Blocks (2DR)

NNZ/process
min: 1.04E+06
max: 1.05E+06
avg: 1.05E+06
max/avg: 1.01

Messages (Phase 2)
total: 448
max: 7

Volume (Phase 2)
total: 2.57E+07
max: 4.03E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Number of Rows: 223

Nonzeros/Row: 8

Nice properties:
No all-to-all communication
Total volume lower than 1DR

1DR = 1D Random

R-Mat (0.5, 0.125, 0.125, 0.25)

25

Communication Pattern: 2D Cartesian
Hypergraph Partitioning

NNZ/process
min: 5.88E+05
max: 1.29E+06
avg: 1.05E+06
max/avg: 1.23

Messages (Phase 1)
total: 448
max: 7

Volume (Phase 1)
total: 2.33E+07
max: 4.52E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

R-Mat (0.5, 0.125, 0.125, 0.25)
Number of Rows: 223

Nonzeros/Row: 8

Challenges:
Imbalance worse than 2DR

Nice properties:
No all-to-all communication
Total volume lower than 2DR

2DR = 2D Random Cartesian

26

Improved Results: SpMV – LLGrid

1.00E+00

1.00E+01

1.00E+02

1 4 16 64 256

T
im

e

Number of Processors

LLGrid 1D

LLGrid 2D

R-Mat, 223 vertices/rows

Time needed to compute 10 SpMV operations

Number of Cores

Simple 2D method shows improved scalabilitySimple 2D method shows improved scalability

27

Improved Results – NERSC Hopper*

2D methods show improved scalability2D methods show improved scalability

Runtime to Find 1st Eigenvector

0.10

1.00

10.00

100.00

1000.00

1 4 16 64 256 1024 4096 16384

Ti
m

e
(s

)

Number of Cores

1D Random

2D Random

2D Hypergraph

R-Mat, 223 vertices
Modularity Matrix

28

* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

 Anomaly Detection in Very Large Graphs

 Eigenanalysis and Performance Challenges

 Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

 Partitioning: Dynamic Graphs and Sampling

 Summary

Outline

29

 High partitioning cost of graph/hypergraph methods must be amortized by computing
many SpMV operations

 Detection* requires at most 1000s of SpMV operations

 Expensive partitions need to be effective for multiple graphs

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 10 100 1000 10000 100000 1000000

Ti
m

e
(s

)

Number of SpMV Opera ons

Time to Par on and Compute SpMV opera ons

2D random

2D hypergraph

~40,000 SpMVs

R-Mat, 223 vertices
1024 cores

NERSC Hopper

*L1 norm method: computing 100 eigenvectors
30

Challenge with Hypergraph/Graph Partitioning

Wolf, Miller: “Sparse Matrix Partitioning for Parallel Eigenanalysis of Large Static and Dynamic Graphs,” 2014 IEEE HPEC Proc.

 Key question: How long will a partition be effective?

 Initial experiment
 Evolving R-Mat matrices: fixed number of rows, R-Mat parameters

(a,b,c,d)

 Start with a given number of nonzeros (|e0|)

 Iteratively add nonzeros until target number of nonzeros is reached
(|en|)

Experiment: Partitioning for Dynamic Graphs

…

Evolving Graph

Initial Graph, G0

e0 edges
G1

e1 edges
Final graph, Gn

en edges

31

Wolf, Miller: 2014 IEEE HPEC Proc.

Results: Partitioning for Dynamic Graphs

32

0

0.02

0.04

0.06

0.08

0.1

0.12

1.00 2.75 4.50 6.25 8.00 9.75 11.50 13.25 15.00 16.75

A
ve

ra
ge

Sp
M

V
Ti

m
e

(s
)

SpMV Time

2DH

2DR

NERSC Hopper*

2DR = 2D Random Cartesian
2DH = 2D Cartesian Hypergraph

|ei| / |e0|

Hypergraph partition surprising effective after more
than 16x |e0| edges added

Hypergraph partition surprising effective after more
than 16x |e0| edges added

Wolf, Miller: 2014 IEEE HPEC Proc.
* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Sampling and Partitioning for Web/SN Graphs

 Idea: Partition sampled graph to reduce partitioning time

 Steps:
1. Produce smaller graph G’ by sampling edges in graph G (uniform

random sampling), keep vertices same

2. Partition G’ (2D Cartesian Hypergraph)

3. Apply partition to G

33

Graph Sampling and Partitioning

Input Graph,
G=(V, E)

G’=(V,E’) G1=(V1,E1)
G2=(V2,E2)

Sample E Partition G’

G1’=(V1,E1’)
G2’=(V2,E2’)

Apply partition
to G

Wolf, Miller: 2014 IEEE HPEC Proc.

hollywood-2009* Graph

*The University of Florida Sparse Matrix Collection

34

Edge sampling greatly reduces partitioning timeEdge sampling greatly reduces partitioning time

0

100

200

300

400

500

600

700

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

T
im

e
(s

)

Sampling Rate

hollywood-2009 Graph: Par oning Time

P=16

P=64

P=256

P=1024

NERSC Hopper

2D Cartesian Hypergraph

Wolf, Miller: 2014 IEEE HPEC Proc.

hollywood-2009* Graph

*The University of Florida Sparse Matrix Collection

35

Resulting SpMV time does not increase for modest samplingResulting SpMV time does not increase for modest sampling

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

T
im

e
(s

)

Sampling Rate

hollywood-2009 Graph: SpMV Time

P=16

P=64

P=256

P=1024

NERSC Hopper

2D Cartesian Hypergraph

Wolf, Miller: 2014 IEEE HPEC Proc.

36

* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Challenge with Hypergraph Partitioning Revisited

0.1

1

10

100

1000

1 10 100 1000 10000 100000

T
im

e
(s

)

Number of SpMV Opera ons

Time to Par on and Compute SpMV Opera ons

2DR

2DH

2DH w/ Sampling
NERSC Hopper*

~100,000 SpMVs

~10,000 SpMVs

hollywood-2009
1024 cores

Sampling reduces overhead of hypergraph partitioning
(fewer SpMVs needed to amortize partitioning cost)

Sampling reduces overhead of hypergraph partitioning
(fewer SpMVs needed to amortize partitioning cost)

2DR = 2D Random Cartesian
2DH = 2D Cartesian Hypergraph

Wolf, Miller: 2014 IEEE HPEC Proc.

 Anomaly Detection in Very Large Graphs

 Eigenanalysis and Performance Challenges

 Improving Sparse Matrix-Vector Multiplication (SpMV)
Performance through Data Partitioning

 Partitioning: Dynamic Graphs and Sampling

 Summary

Outline

37

Summary

 Outlined HPC approach to processing big data
 Signal processing for graphs

 Statistical framework for anomaly detection in graphs

 Key component is eigensolver for dimensionality reduction

 Solving eigensystems resulting from power law graphs
challenging
 Load imbalance

 Poor data locality

 SpMV key computational kernel
 1D data partitioning limits performance due to all-to-all communication

 2D data partitioning can be used to improve scalability

 Sampling can improve hypergraph-based partitioning
performance for web/SN graphs

38

Extra

39

Residuals Example: Anomalous Subgraph

- =H1

Detection framework is designed to detect coordinated
deviations from the expected topology

• Residual graph represents the difference between the observed and
expected

• Coordinated vertices (subsets of vertices connected by edges with
large edge weights) in residual graph will produce much stronger
signal than uncoordinated vertices

Graph Model
E[G]

Observed Graph
G1

Residual Graph
R[G1]

40

Anomaly Detection: Setup Phase

GRAPH MODEL

CONSTRUCTION

GRAPH MODEL

CONSTRUCTION

RESIDUAL

DECOMPOSITION

RESIDUAL

DECOMPOSITION

COMPONENT

SELECTION

COMPONENT

SELECTION

ANOMALY

DETECTION

ANOMALY

DETECTION
IDENTIFICATIONIDENTIFICATION

TEMPORAL

INTEGRATION

TEMPORAL

INTEGRATION

H0 – Null hypothesis, no signal
H1 – Alternative hypothesis, signal

Detection Setup

× 1. Monte-Carlo simulations to
generate density functions

2. ROC-curve generated from
density function

3. Threshold chosen from ROC-
curve (e.g., based on specific
false alarm rate)

1. Monte-Carlo simulations to
generate density functions

1. Monte-Carlo simulations to
generate density functions

2. ROC-curve generated from
density function

Threshold

41

Anomaly Detection

GRAPH MODEL

CONSTRUCTION

GRAPH MODEL

CONSTRUCTION

RESIDUAL

DECOMPOSITION

RESIDUAL

DECOMPOSITION

COMPONENT

SELECTION

COMPONENT

SELECTION

ANOMALY

DETECTION

ANOMALY

DETECTION
IDENTIFICATIONIDENTIFICATION

TEMPORAL

INTEGRATION

TEMPORAL

INTEGRATION

Test statistic value significantly
larger than test statistic value

threshold corresponding to 1%
false alarm rate

Test statistic value significantly
larger than test statistic value

threshold corresponding to 1%
false alarm rate

Test statistic calculated for
observed graph:

Threshold

H0 – Null hypothesis, no signal
H1 – Alternative hypothesis, signal

Test statistic

42

Modularity Matrix: Computation Breakdown

Bx  Asx  k (kTx) / (2 e)

Bx can be computed without storing B (modularity matrix)Bx can be computed without storing B (modularity matrix)

dense matrix-vector
product: O(|V|2)

sparse matrix-vector
product: O(|e|)

Matrix-vector multiplication is at the heart of eigensolver algorithms

Operator apply:

dot product: O(|V|)
scalar-vector product: O(|V|)

43

Communication Pattern: 1D Block Partitioning

NNZ/process
min: 1.88E+05
max: 4.00E+06
avg: 1.06E+06
max/avg: 3.78

Messages (Phase 1)
total: 4032
max: 63

Volume (Phase 1)
total: 4.02E+07
max: 1.48E+06

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Challenges:
Poor load balance
All-to-all communication

Number of Rows: 223

Nonzeros/Row: 8

R-Mat (0.5, 0.125, 0.125, 0.25)

44

2D Partitioning

• More flexibility: no particular part for entire row or column

• More general sets of nonzeros assigned parts

Mondriaan (Vastenhouw, Bisseling)Block/Cartesian

Fine-grain (Catalyurek, Aykanat) Nested-dissection (Boman, Wolf)*

*Boman and Wolf, “A Nested Dissection Partitioning Method for Parallel
Sparse Matrix-Vector Multiplication,” IEEE HPEC 2013.

45

Communication Pattern: 2D Cartesian
Hypergraph Partitioning

NNZ/process
min: 5.88E+05
max: 1.29E+06
avg: 1.05E+06
max/avg: 1.23

Messages (Phase 2)
total: 448
max: 7

Volume (Phase 2)
total: 2.54E+07
max: 4.80E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

R-Mat (0.5, 0.125, 0.125, 0.25)
Number of Rows: 223

Nonzeros/Row: 8

Challenges:
Imbalance worse than 2DR

Nice properties:
No all-to-all communication
Total volume lower than 2DR

2DR = 2D Random Cartesian

46

Communication Pattern: 1D Block Partitioning

NNZ/process
min: 2.31E+04
max: 1.26E+07
avg: 1.78E+06
max/avg: 7.08

Messages (Phase 1)
total: 3660
max: 60

Volume (Phase 1)
total: 7.68E+06
max: 3.99E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Hollywood-2009
Number of Rows: 1.1M
Number of Nonzeros: 113.9M

47

Communication Pattern: 1D Random Partitioning

NNZ/process
min: 1.70E+06
max: 1.87E+06
avg: 1.78E+06
max/avg: 1.05

Messages (Phase 1)
total: 4032
max: 63

Volume (Phase 1)
total: 3.06E+07
max: 4.87E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Hollywood-2009

Number of Rows: 1.1M
Number of Nonzeros: 113.9M

48

Communication Pattern: 2D Random Partitioning
(Cartesian Blocks)

NNZ/process
min: 1.75E+06
max: 1.82E+06
avg: 1.78E+06
max/avg: 1.02

Messages (Phase 1)
total: 448
max: 7

Volume (Phase 1)
total: 6.63E+06
max: 1.04E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Number of Rows: 1.1M
Number of Nonzeros: 113.9M

Nice properties:
No all-to-all communication
Total volume lower than 1DR

1DR = 1D Random

Hollywood-2009

49

Communication Pattern: 2D Random Partitioning
(Cartesian Blocks)

NNZ/process
min: 1.75E+06
max: 1.82E+06
avg: 1.78E+06
max/avg: 1.02

Messages (Phase 2)
total: 448
max: 7

Volume (Phase 2)
total: 6.63E+06
max: 1.04E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Hollywood-2009
Number of Rows: 1.1M
Number of Nonzeros: 113.9M

Nice properties:
No all-to-all communication
Total volume lower than 1DR

1DR = 1D Random

50

Communication Pattern: 2D Cartesian
Hypergraph Partitioning

NNZ/process
min: 5.16E+05
max: 2.61E+06
avg: 1.78E+06
max/avg: 1.47

Messages (Phase 1)
total: 439
max: 7

Volume (Phase 1)
total: 4.17E+06
max: 9.38E+04

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Hollywood-2009

Number of Rows: 1.1M
Number of Nonzeros: 113.9M

51

Communication Pattern: 2D Cartesian Hypergraph
Partitioning

NNZ/process
min: 5.16E+05
max: 2.61E+06
avg: 1.78E+06
max/avg: 1.47

Messages (Phase 2)
total: 444
max: 7

Volume (Phase 2)
total: 5.06E+06
max: 1.49E+05

s
o

u
rc

e
 p

ro
c
e
s
s

destination processP=64

Hollywood-2009

Number of Rows: 1.1M
Number of Nonzeros: 113.9M

52

Parallel Implementation

 Using Anasazi (Trilinos) Eigensolver

 64 bit global ordinals
 Necessary for graphs with 231 vertices or more

 User defined operators
 Modularity matrix

 Moving average filter

 Apply defined efficiently for particular operator

 Block Krylov-Schur method
 Symmetric

 Eigenvalues with largest real component

 Blocksize=1

53

Initial Numerical Experiments

 Matrices
 R-Mat (a=0.5, b=0.125, c=0.125, d=0.25)

 Average nonzeros per row: 8

 Number of rows: 222 to 232

 Two systems
 LLGrid (MIT LL)

 274 compute nodes (8,768 cores)

 Node: two 16-core AMD Opteron 6274 (2.2 GHz)

 Network: 10 GB Ethernet

 Hopper* (NERSC)

 Cray XE6

 6,384 nodes (153,216 cores)

 Node: two 12-core AMD 'MagnyCours' (2.1 GHz)

 Network: 3D torus (Cray Gemini)

 Initially: 1D random row distribution (good load balance)

* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

54

Improved Results – LLGrid

Simple 2D method shows improved scalabilitySimple 2D method shows improved scalability

1.00

10.00

100.00

1000.00

1 4 16 64 256

Ti
m

e
(s

)

Number of Cores

LLGrid 1D

LLGrid 2D

Runtime to Find 1st Eigenvector

R-Mat, 223 vertices/rows
Modularity Matrix

55

Strong Scaling Results: Hollywood

0.1

1

10

1 4 16 64 256

T
im

e
(s

)

Number of Cores

SpMV Run me

1D LLGrid

Scalability limited and runtime increases for large numbers of coresScalability limited and runtime increases for large numbers of cores

1D random
partitioning

56

SpMV: Strong Scaling Results - Hollywood

0.01

0.1

1

10

1 4 16 64 256

T
im

e
(s

)

Number of Cores

SpMV Run me

1D LLGrid

2D LLGrid

Simple 2D method shows improved scalabilitySimple 2D method shows improved scalability

57

SpMV: Strong Scaling Results - Hollywood

Hypergraph partitioning further reduces runtimeHypergraph partitioning further reduces runtime

58

0.001

0.01

0.1

1

16 64 256 1024

T
im

e
(s

)

Number of Cores

SpMV Time

2DR

2DH

Results: Partitioning for Dynamic Graphs

 |e0| = 0.3 |en|

 2D hypergraph surprisingly effective as edges are added to graph

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

3.50E-10

4.00E-10

4.50E-10

30 40 50 60 70 79 89 99

2D random

2D hypergraph

1.00.90.80.70.60.50.40.3

|ei|/|en|

S
p

M
V

T
im

e
 /

 |
e

i|
(s

e
c
o

n
d

s
)

NERSC Hopper*

59

* This research used resources of the National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

com-youtube* Graph

0

10

20

30

40

50

60

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

T
im

e
(s

)

Sampling Rate

Par oning Time

P=16

P=64

P=256

P=1024

*SNAP: J. Yang and J. Leskovec. Defining and Evaluating Network Communities
based on Ground-truth. ICDM, 2012.

60

Edge sampling greatly reduces partitioning timeEdge sampling greatly reduces partitioning time

To appear in 2014 IEEE HPEC Proc.

NERSC Hopper

com-youtube* Graph

0

0.005

0.01

0.015

0.02

0.025

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

T
im

e
(s

)

Sampling Rate

SpMV Time

P=16

P=64

P=256

P=1024

61

Resulting SpMV time does not increase for modest samplingResulting SpMV time does not increase for modest sampling

*SNAP: J. Yang and J. Leskovec. Defining and Evaluating Network Communities
based on Ground-truth. ICDM, 2012. To appear in 2014 IEEE HPEC Proc.

NERSC Hopper

