

Sparse Matrix Partitioning for Parallel Eigenanalysis of Large Static and Dynamic Graphs

Michael Wolf, Sandia National Laboratories
Ben Miller, MIT Lincoln Laboratory

IEEE HPEC 2014
September 10, 2014

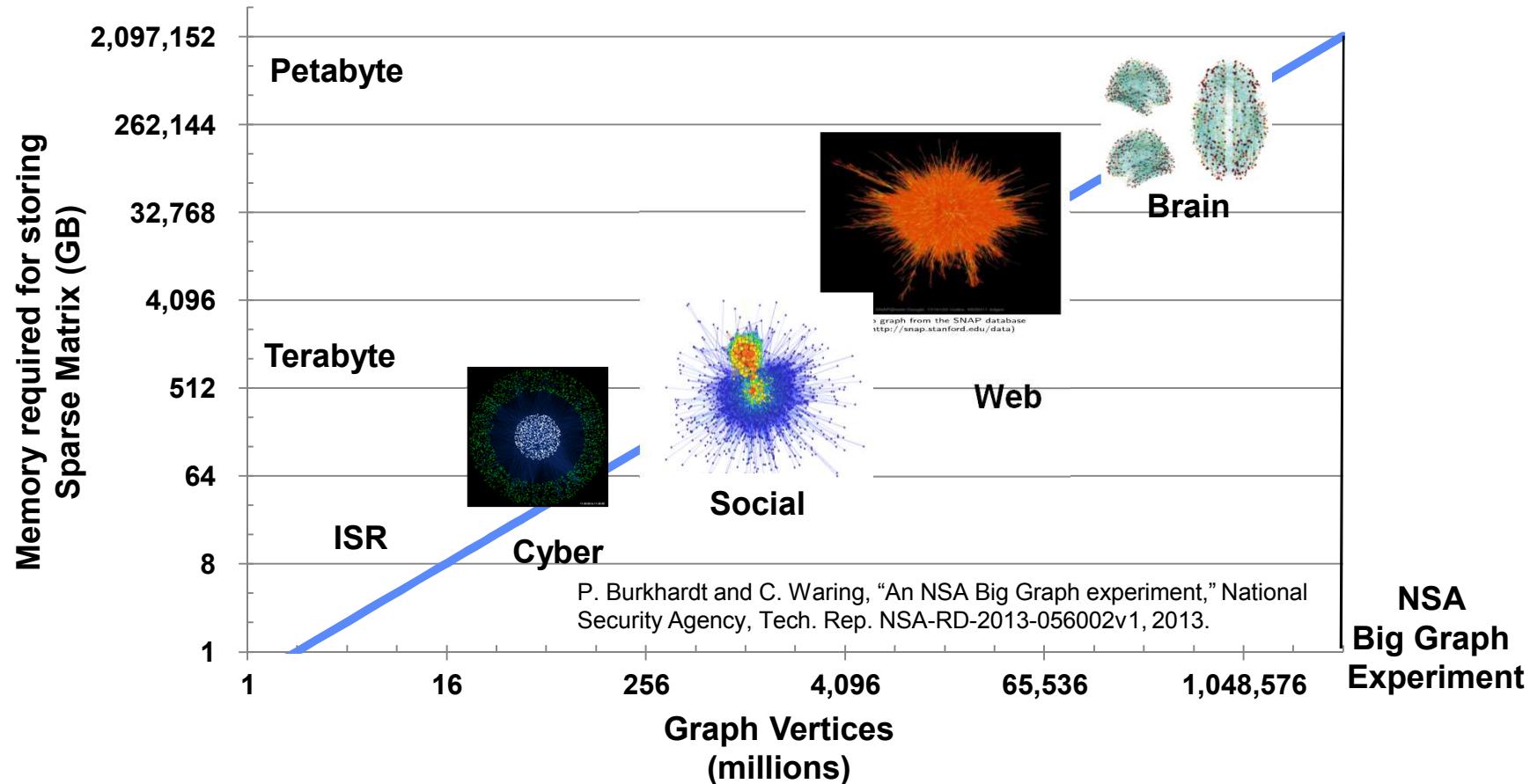
*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-XXXX

The Lincoln Laboratory portion of this work is sponsored by the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract FA8721-05-C-0002. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA or the U.S. Government.

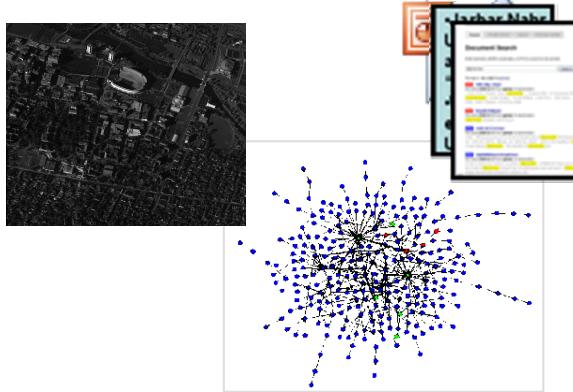
Big Data Challenge



How do we address the data storage and compute challenges posed by the problem scales of interest to the DoD/IC community?

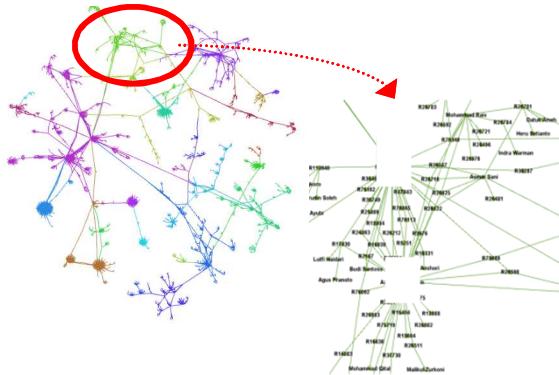
Example Applications of Graph Analytics

ISR



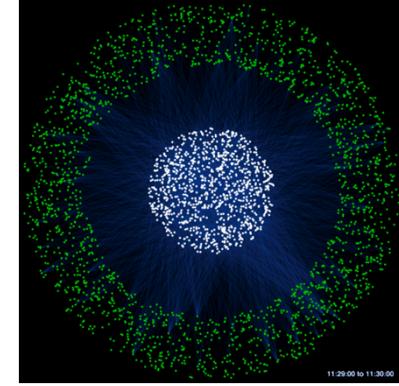
- Graphs represent entities and relationships detected through multiple sources
- 1,000s – 1,000,000s tracks and locations
- GOAL: Identify anomalous patterns of life

Social



- Graphs represent relationships between individuals or documents
- 10,000s – 10,000,000s individual and interactions
- GOAL: Identify hidden social networks

Cyber

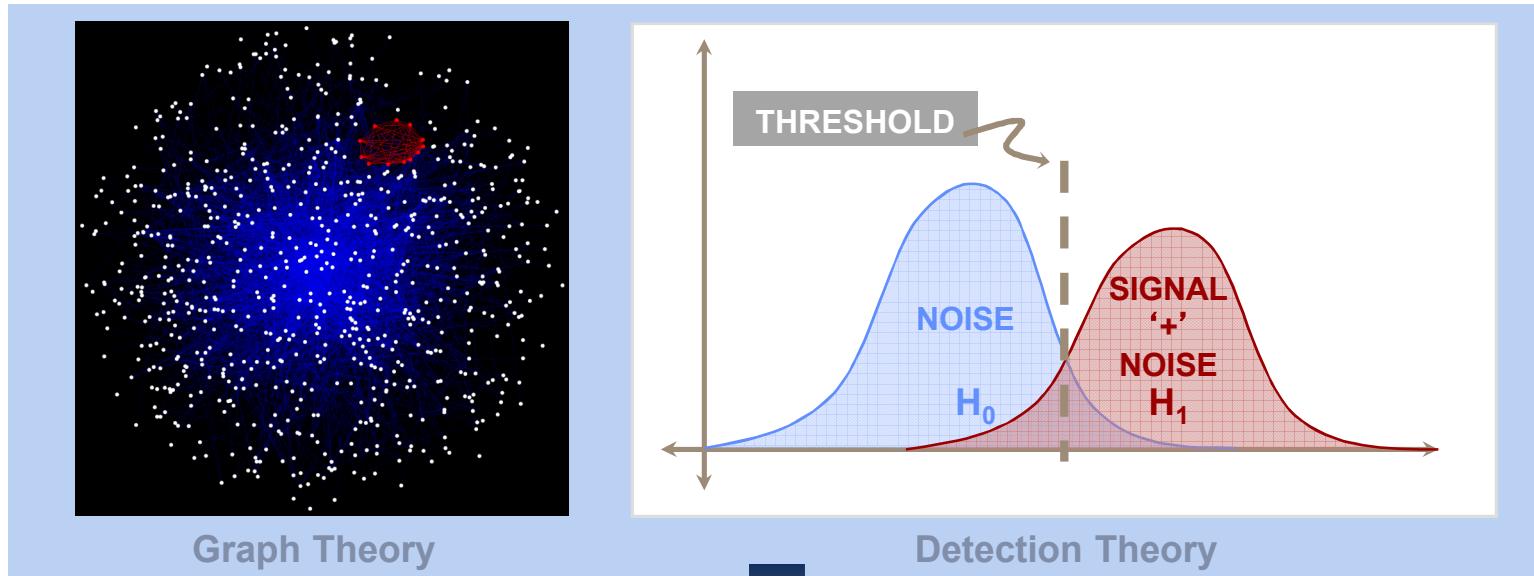
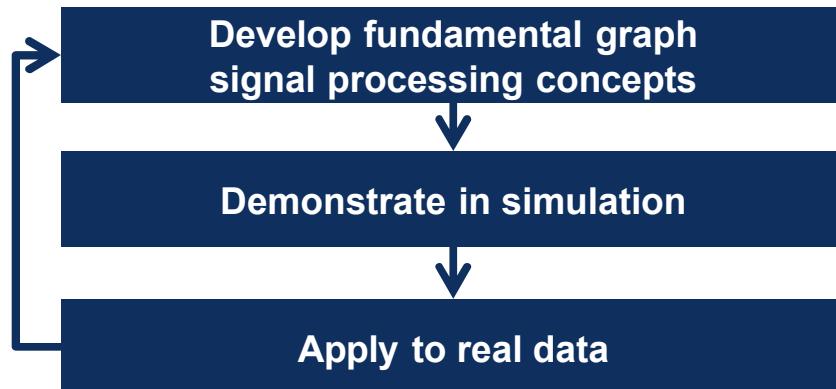


- Graphs represent communication patterns of computers on a network
- 1,000,000s – 1,000,000,000s network events
- GOAL: Detect cyber attacks or malicious software

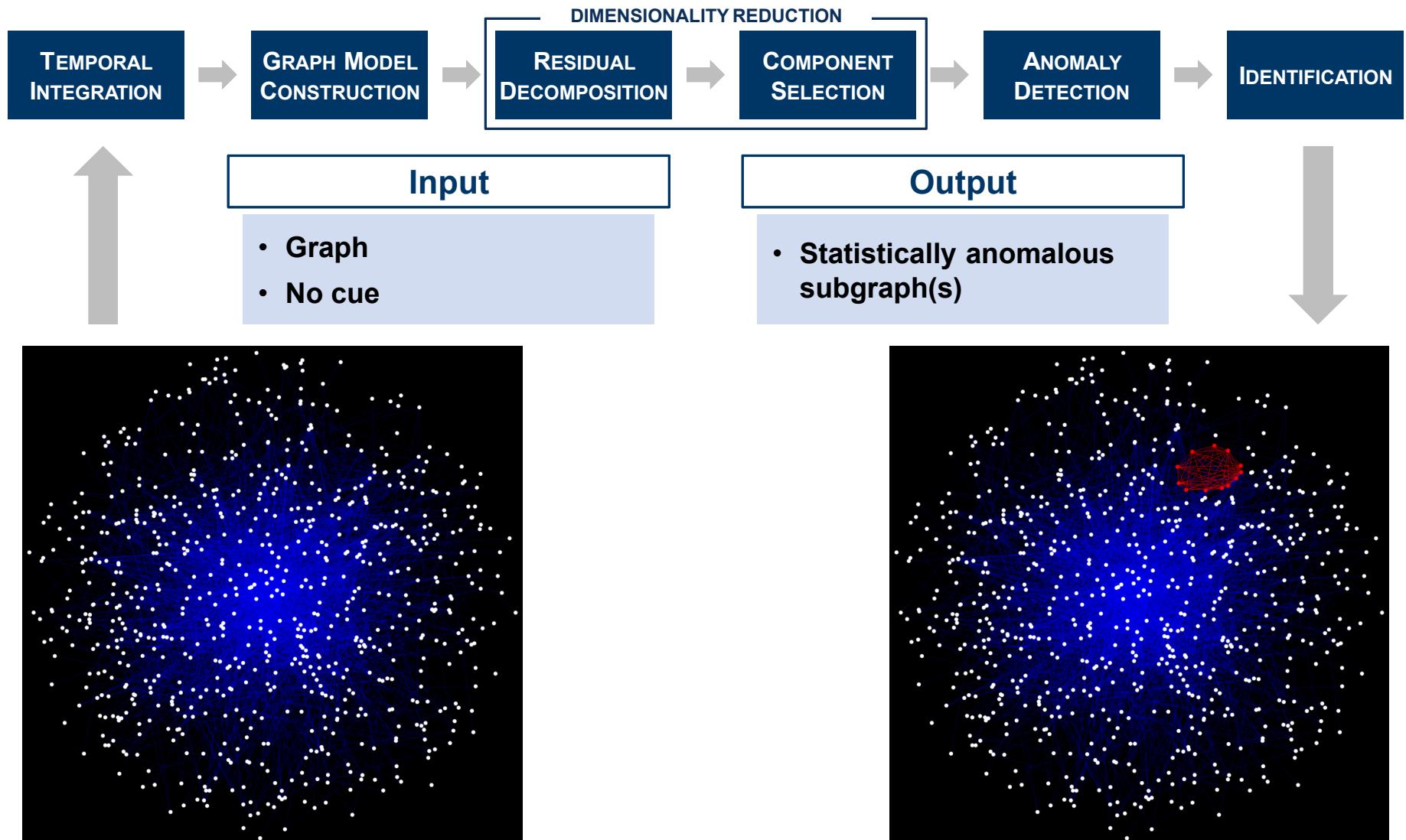
Cross-Mission Challenge:

Detection of subtle patterns in massive multi-source noisy datasets

Statistical Detection Framework for Graphs



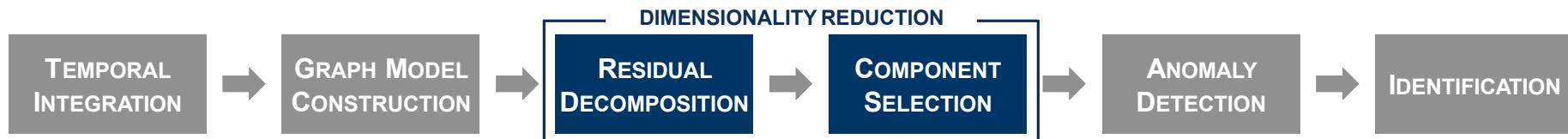
SPG Processing Chain



Outline

- Anomaly Detection in Very Large Graphs
- ■ Eigenanalysis and Performance Challenges
- Improving Sparse Matrix-Vector Multiplication (SpMV) Performance through Data Partitioning
- Partitioning: Dynamic Graphs and Sampling
- Summary

Computational Focus: Dimensionality Reduction



Eigensystem

$$B = (A - E[A])$$

Solve:

$$Bx_i = \lambda_i x_i, i = 1, \dots, m$$

Example: Modularity Matrix

$$E[A_s] = k k^T / (2|e|)$$

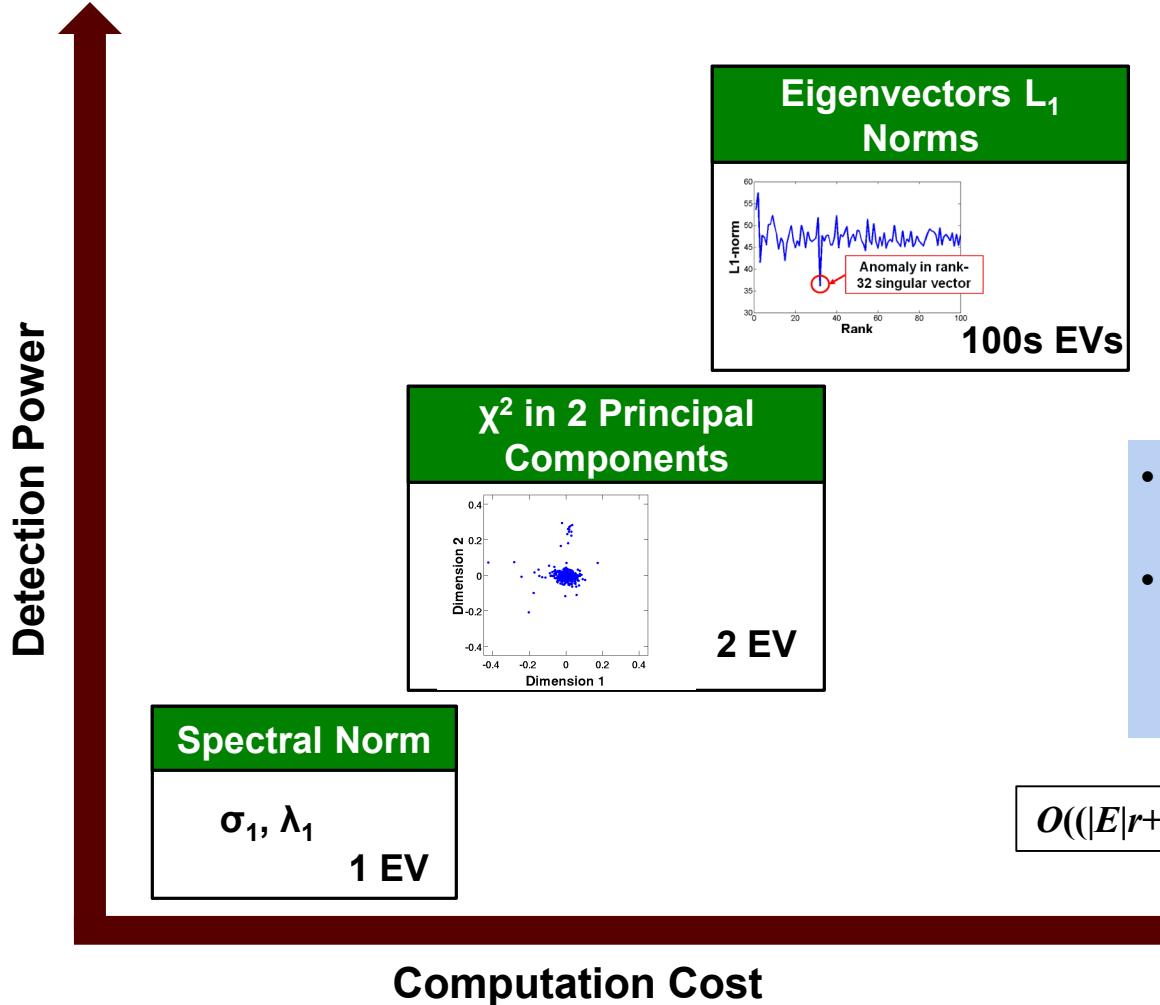
$|e|$ – Number of edges in graph $G(A)$
 k – degree vector
 $k_i = \text{degree}(v_i), v_i \in G(A)$

- Dimensionality reduction dominates computation
- Eigen decomposition is key computational kernel
- Parallel implementation required for very large graph problems
 - Fit into memory, minimize runtime

Need fast parallel eigensolvers

Detection Methods, Effectiveness, and Cost

Notional Comparison of Power and Effectiveness



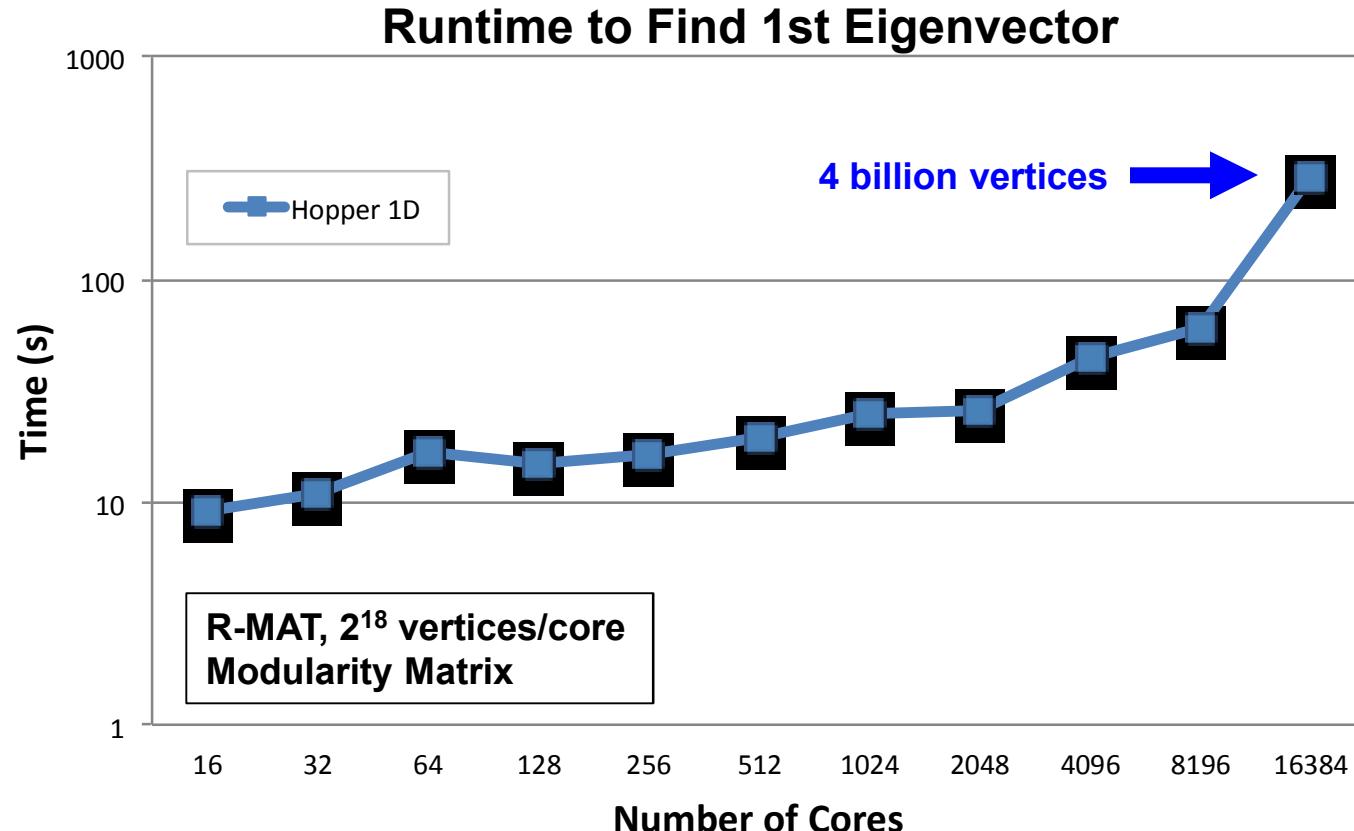
- More powerful methods require more computation
- For detection of subtle anomalies, need to calculate 100s of eigenvectors fast

$O((|E|r+|V|r^2+r^3)h)^*$ to compute r eigenvectors

Parallel Implementation

- Using Anasazi (Trilinos) Eigensolver
 - Block Krylov-Schur
 - Eigenpairs corresponding to eigenvalues with largest real component
 - User defined operators (don't form matrix explicitly)
- Initial Numerical Experiments
 - R-Mat ($a=0.5$, $b=0.125$, $c=0.125$, $d=0.25$)
 - Average nonzeros per row: 8
 - Number of rows: 2^{22} to 2^{32}
 - Two systems
 - LLGrid (MIT LL) – compute cluster (10 GB ethernet)
 - Hopper* (NERSC) -- Cray XE6 supercomputer
 - Initially: 1D random row distribution (good load balance)

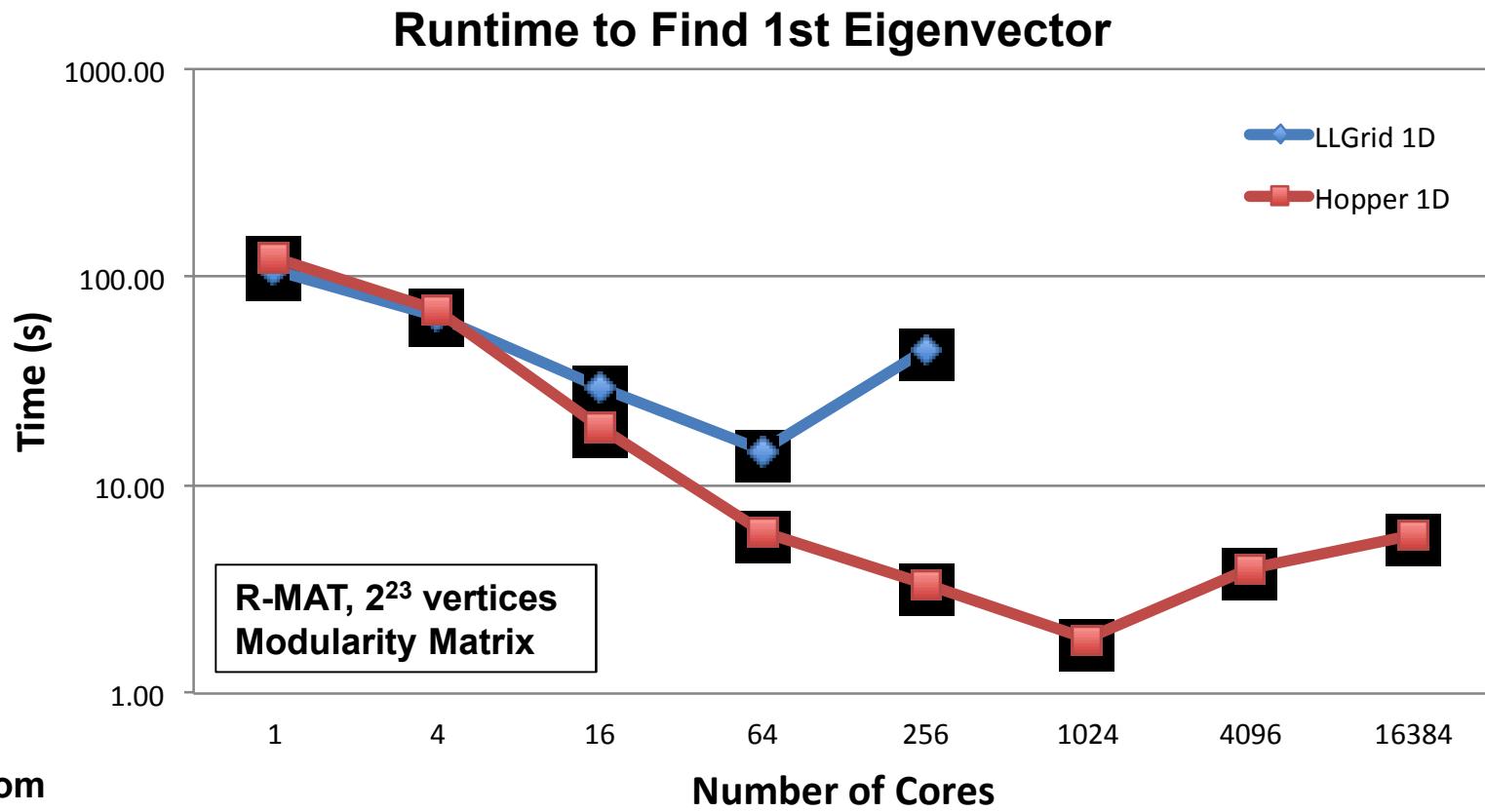
Weak Scaling – Hopper*



1D random
partitioning

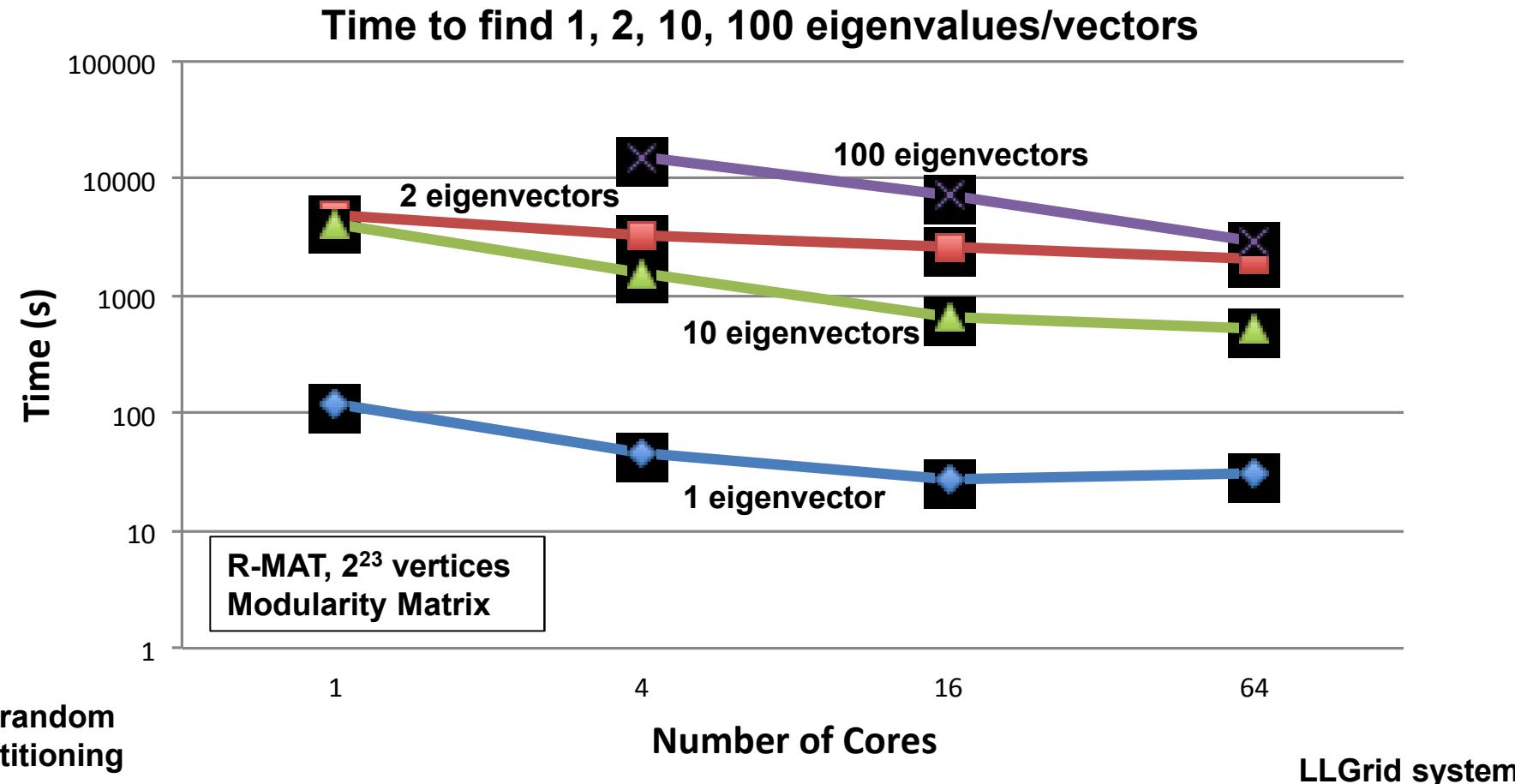
Solved system for up to 4 billion vertex graph

Strong Scaling Results



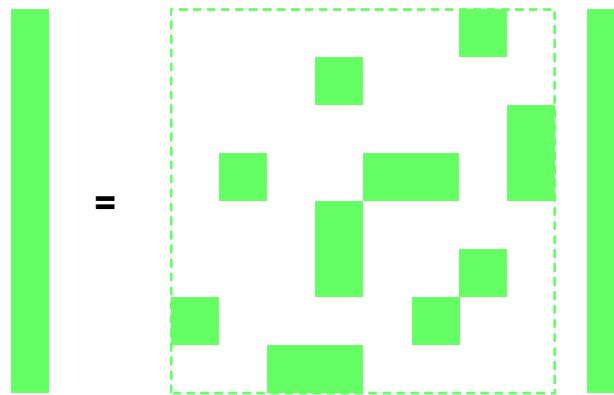
Scalability limited and runtime increases for large numbers of cores

Finding Multiple Eigenvectors – LLGrid



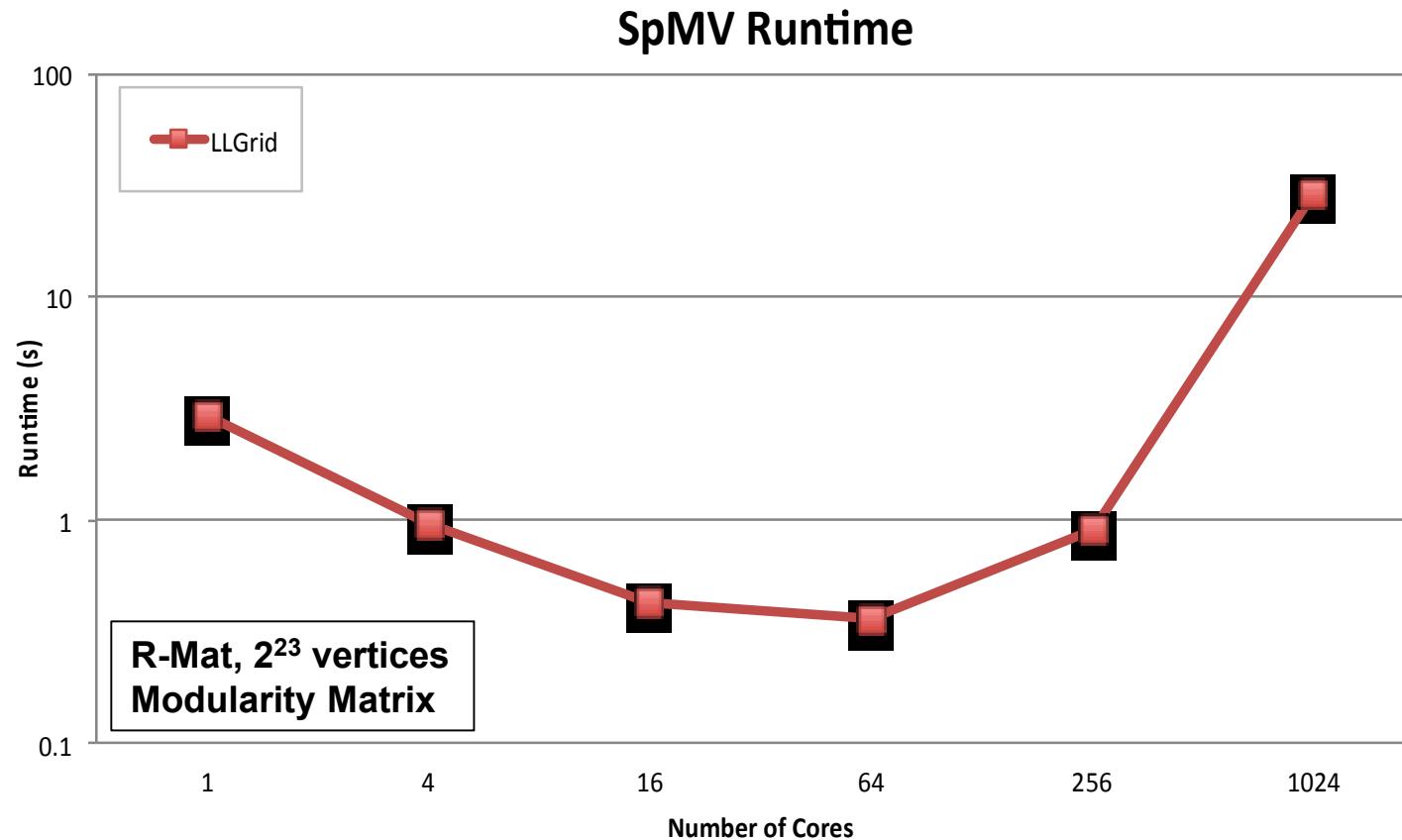
Significant increase in runtime when finding additional eigenvectors

Sparse Matrix-Vector Multiplication



- Sparse matrix-dense vector multiplication (SpMV) key computational kernel in eigensolver
- Performance of SpMV challenging for matrices resulting from power-law graphs
 - Load imbalance
 - Irregular communication
 - Little data locality
- Important to improve performance of SpMV

SpMV Strong Scaling -- LLGrid



1D random
partitioning

Scalability limited and runtime increases for large numbers of cores

Outline

- Anomaly Detection in Very Large Graphs
- Eigenanalysis and Performance Challenges
- ■ Improving Sparse Matrix-Vector Multiplication (SpMV) Performance through Data Partitioning
- Partitioning: Dynamic Graphs and Sampling
- Summary

Data Partitioning to Improve SpMV

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\ 0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\ 4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 \\ 0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 3 \\ 1 \\ 4 \\ 2 \\ 1 \end{bmatrix}$$

$$\mathbf{y} = \mathbf{Ax}$$

- Partition matrix nonzeros
- Partition vector elements

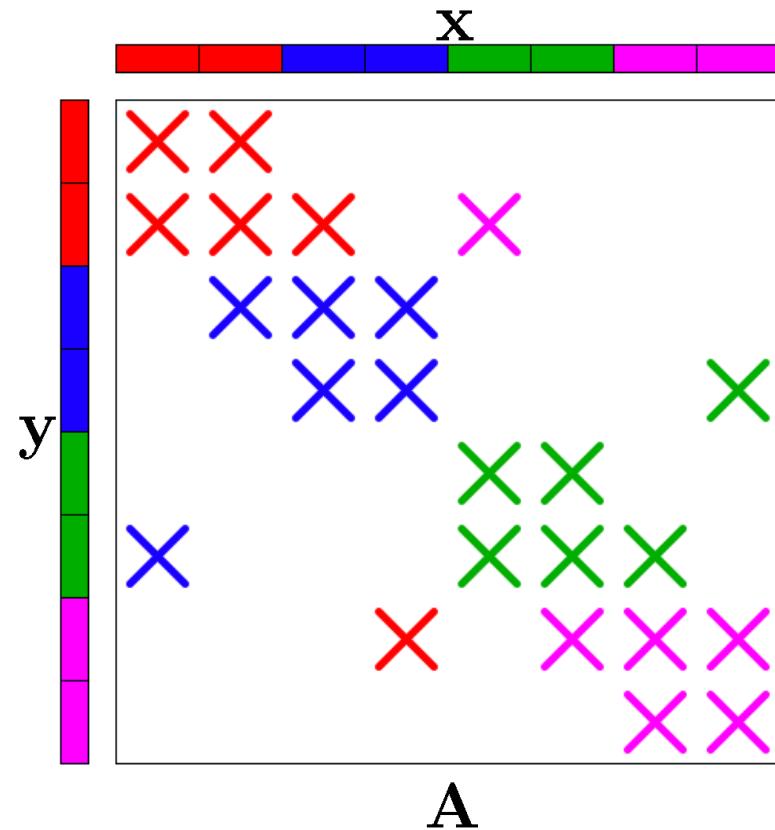
Partitioning Objective

- Ideally we minimize total execution time of SpMV
- Settle for easier objectives
 - Balance computational work
 - Minimize communication metric
 - Total communication volume
 - Bound number of messages
- Can Partition matrices in different ways
 - 1D
 - 2D
- Can model problem in different ways
 - Graph
 - Bipartite graph
 - Hypergraph

Parallel SpMV

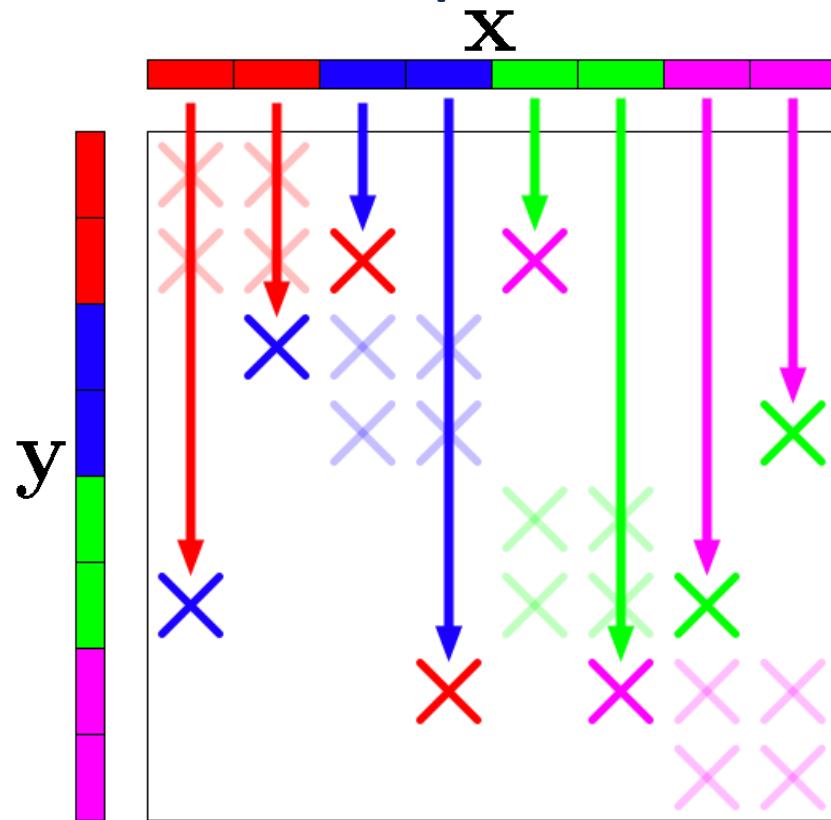
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\ 0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\ 4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 \\ 0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 3 \\ 1 \\ 4 \\ 2 \\ 1 \end{bmatrix}$$

$y = Ax$



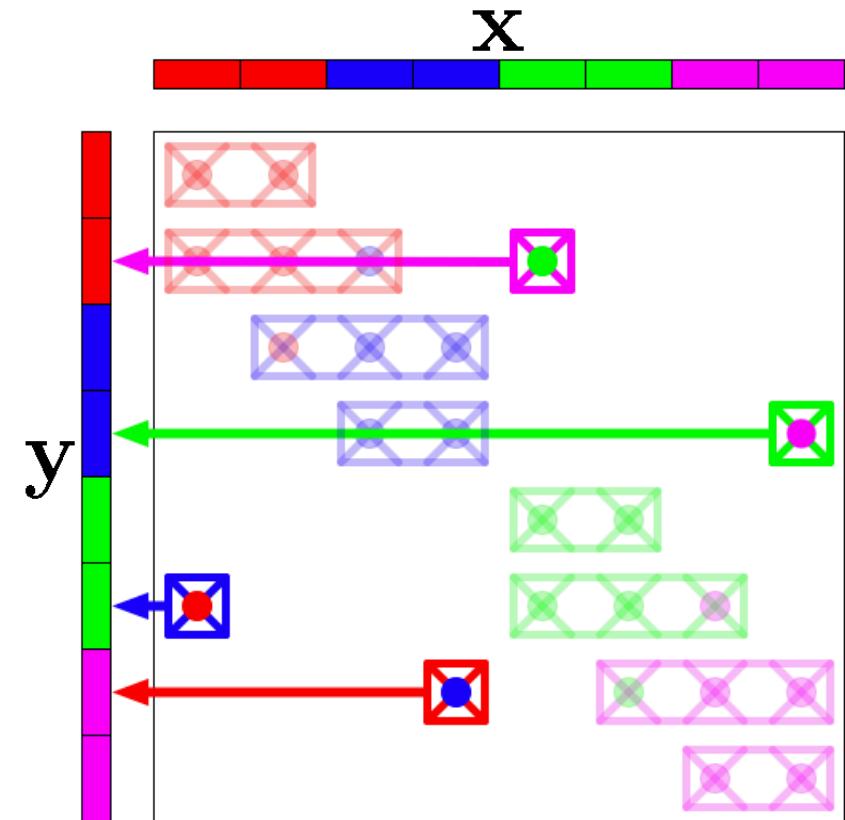
- Alternative way of visualizing partitioning

Parallel SpMV Communication



“fan-out”

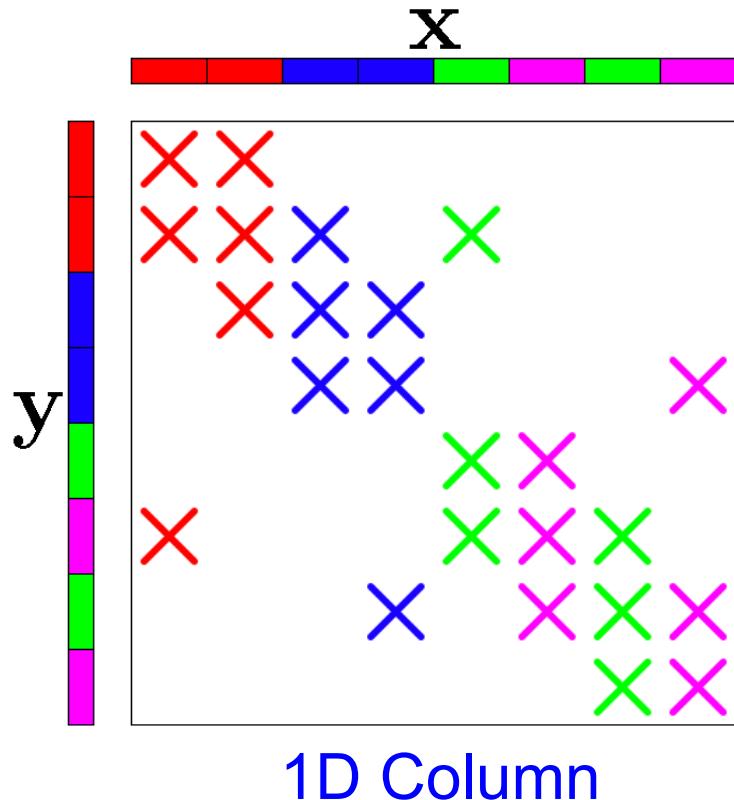
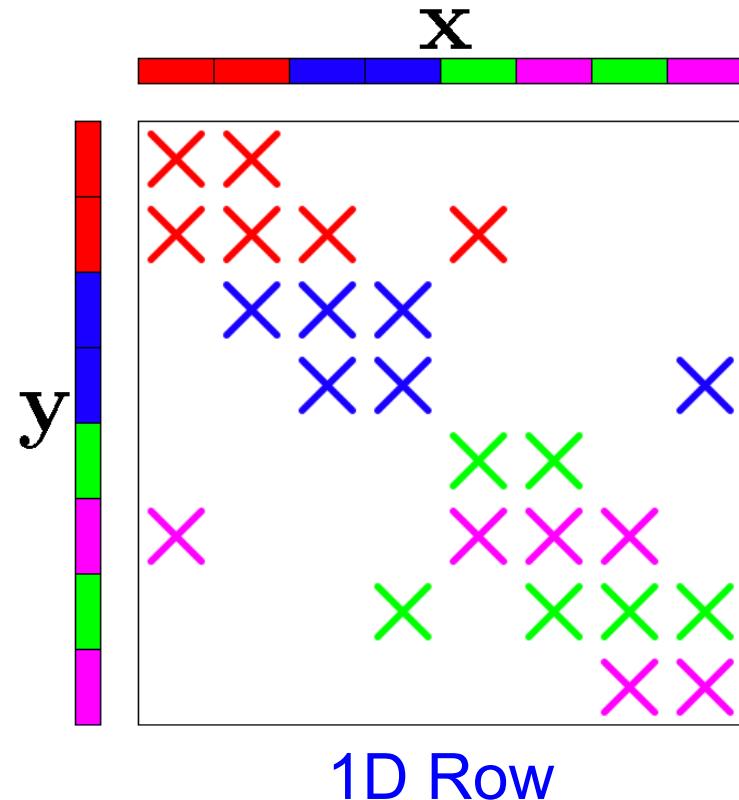
- x_j sent to remote processes that have nonzeros in column j



“fan-in”

- Partial inner-products sent to process that owns vector element y_i

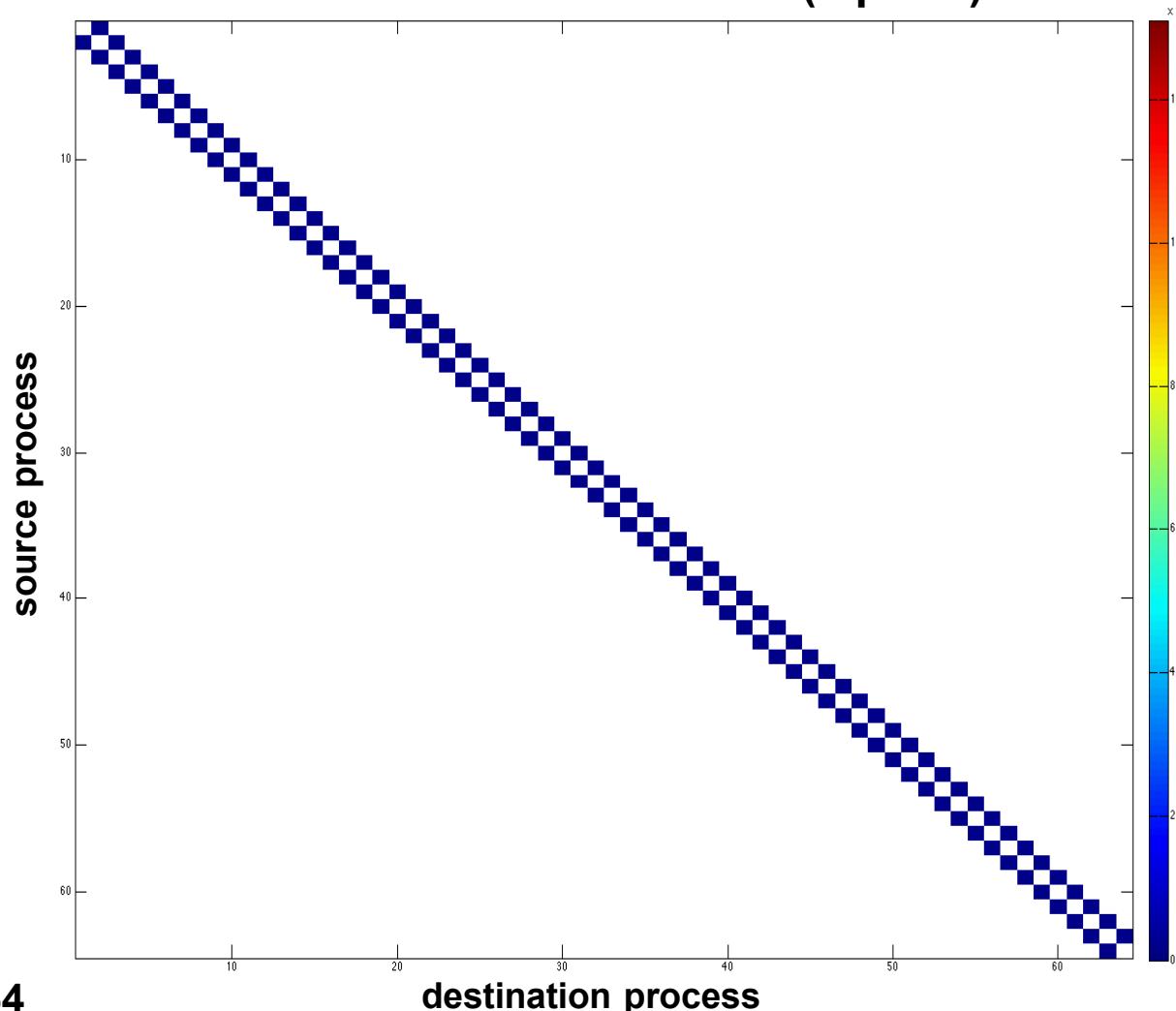
1D Partitioning



- Each process assigned nonzeros for set of columns
- Each process assigned nonzeros for set of rows

Communication Pattern: 1D Block Partitioning

2D Finite Difference Matrix (9 point)



Number of Rows: 2^{23}
Nonzeros/Row: 9

NNZ/process

min: 1.17E+06
max: 1.18E+06
avg: 1.18E+06
max/avg: 1.00

Messages (Phase 1)

total: 126
max: 2

Volume (Phase 1)

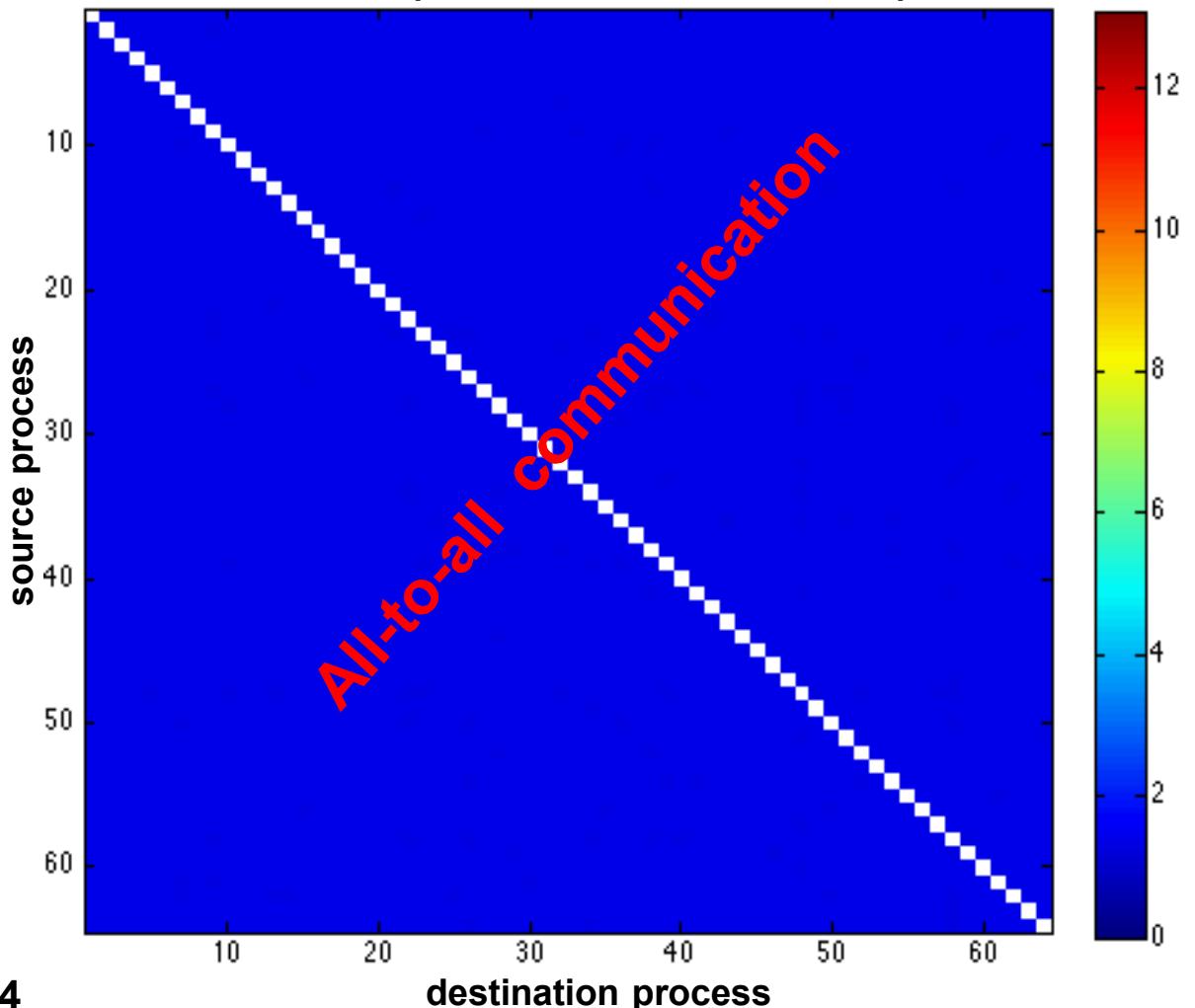
total: 2.58E+05
max: 4.10E+03

Nice properties:

Great load balance
Small number of messages
Low communication volume

Communication Pattern: 1D Random Partitioning

R-Mat (0.5, 0.125, 0.125, 0.25)



Number of Rows: 2^{23}
Nonzeros/Row: 8

NNZ/process

min: 1.05E+06
max: 1.07E+06
avg: 1.06E+06
max/avg: 1.01

Messages (Phase 1)

total: 4032
max: 63

Volume (Phase 1)

total: 5.48E+07
max: 8.62E+05

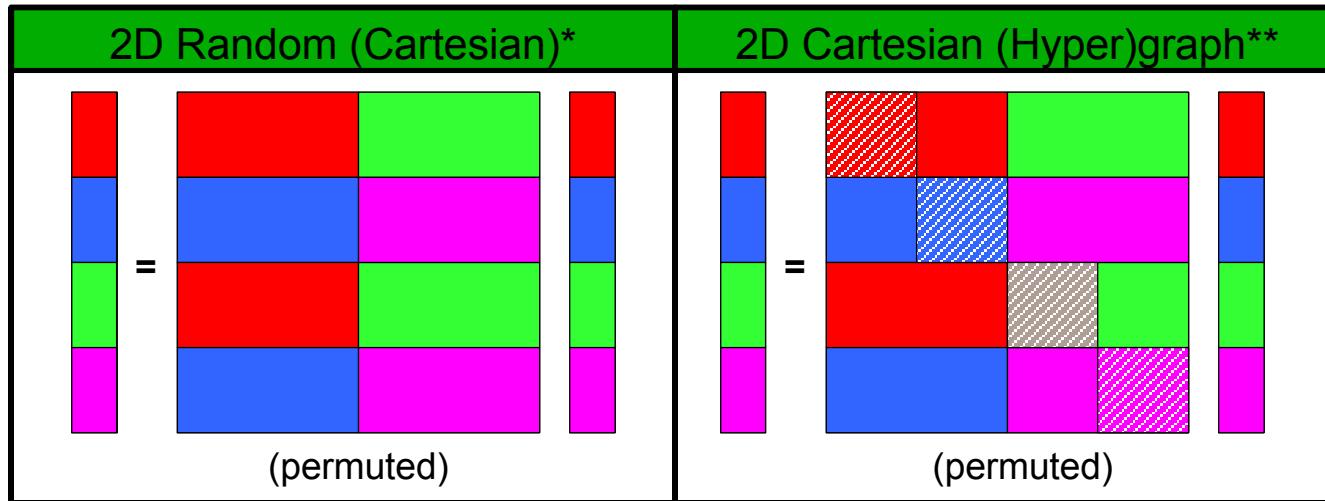
Nice properties:

Great load balance

Challenges:

All-to-all communication

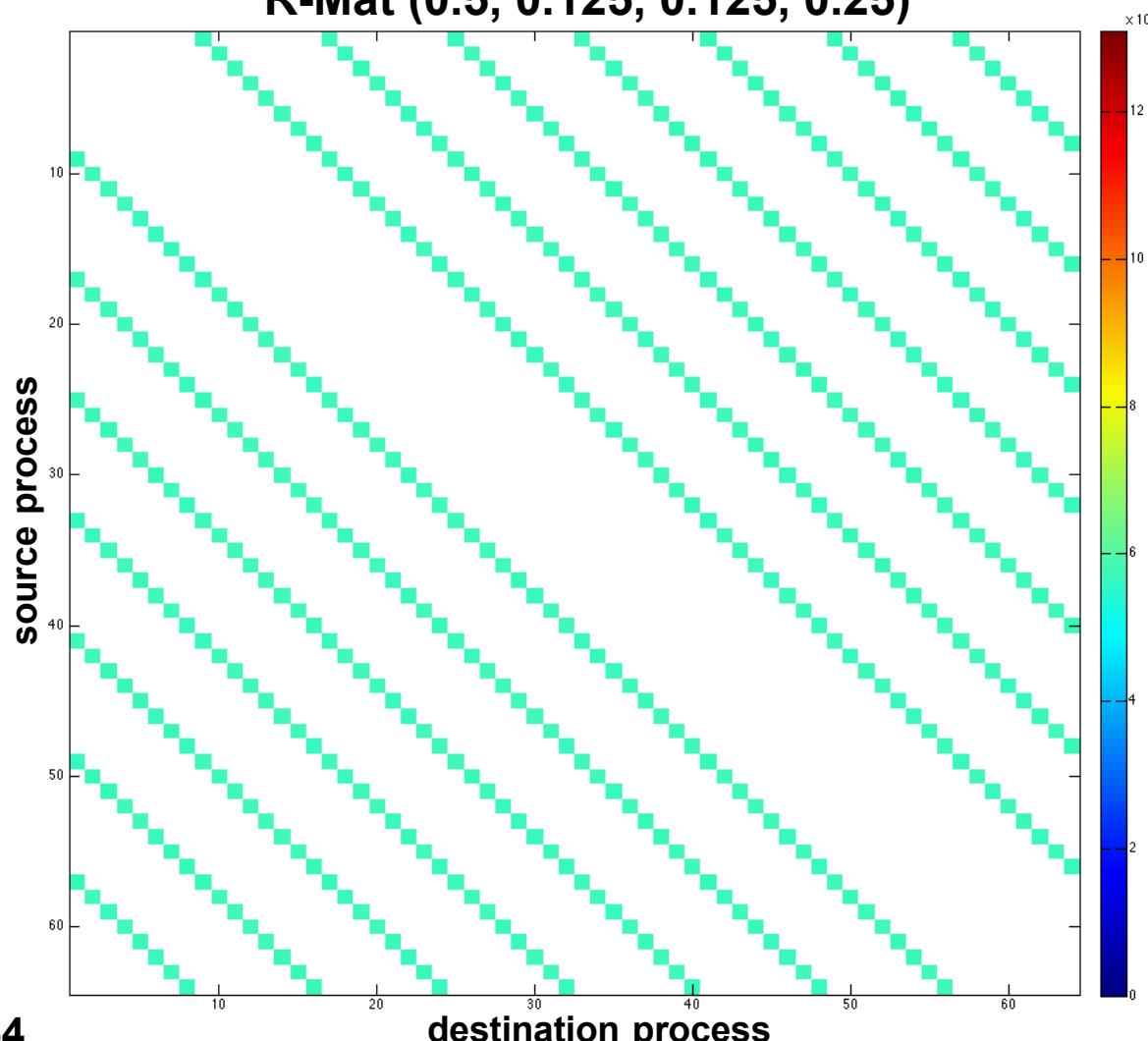
2D Partitioning



- 2D Partitioning
 - More flexibility: no particular part for entire row/column, more general sets of nonzeros
- Use flexibility of 2D partitioning to bound number of messages
 - Distribute nonzeros in permuted 2D Cartesian block manner
- 2D Random (Cartesian)*
 - Block Cartesian with rows/columns randomly distributed
 - Cyclic striping to minimize number of messages
- 2D Cartesian (Hyper)graph**
 - Replace random partitioning with hyper(graph) partitioning to minimize communication volume

Communication Pattern: 2D Random Partitioning Cartesian Blocks (2DR)

R-Mat (0.5, 0.125, 0.125, 0.25)



Number of Rows: 2^{23}
Nonzeros/Row: 8

NNZ/process

min: 1.04E+06
max: 1.05E+06
avg: 1.05E+06
max/avg: 1.01

Messages (Phase 1)

total: 448
max: 7

Volume (Phase 1)

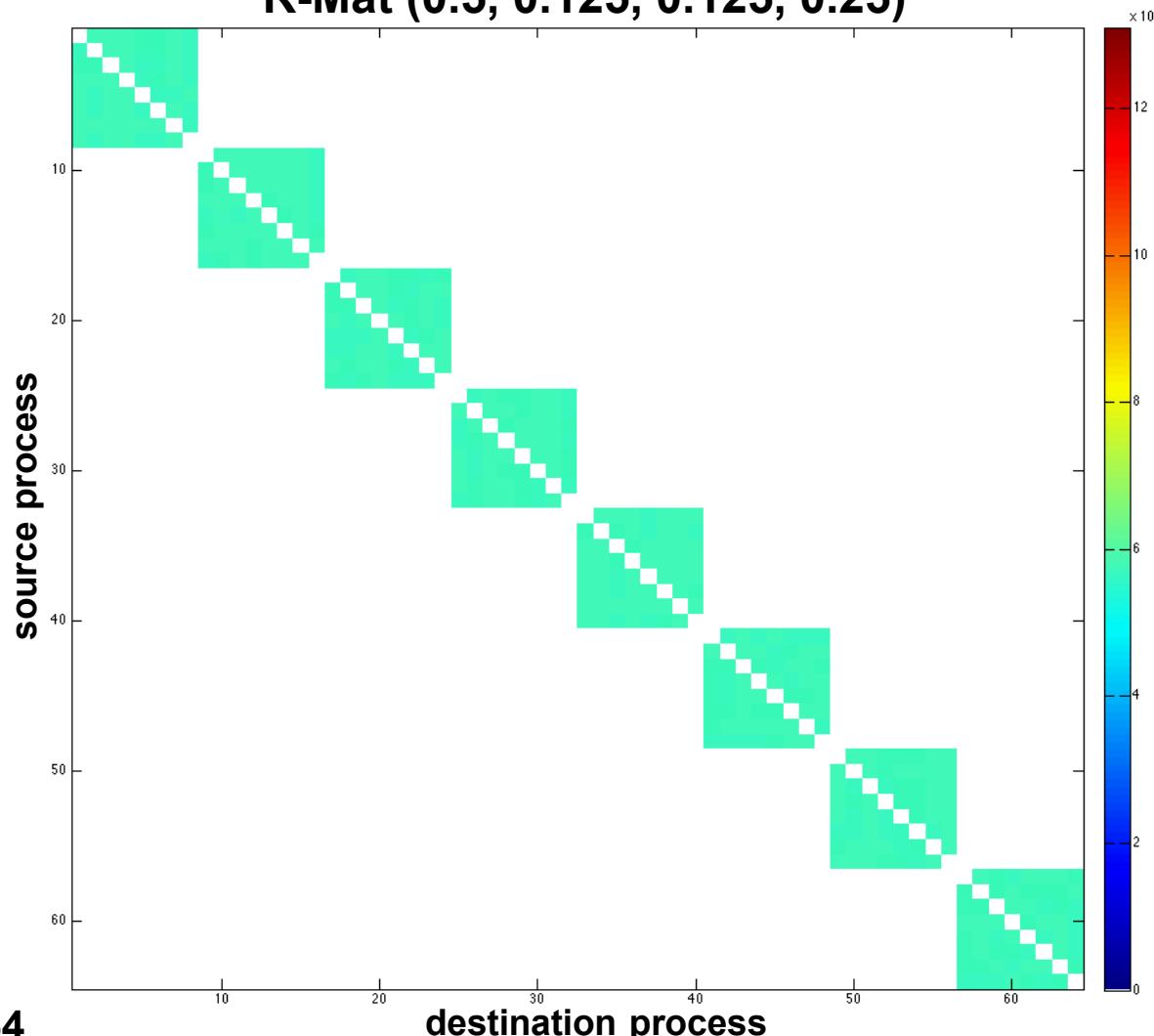
total: 2.57E+07
max: 4.03E+05

Nice properties:

No all-to-all communication
Total volume lower than 1DR

Communication Pattern: 2D Random Partitioning Cartesian Blocks (2DR)

R-Mat (0.5, 0.125, 0.125, 0.25)



Number of Rows: 2^{23}
Nonzeros/Row: 8

NNZ/process

min: 1.04E+06
max: 1.05E+06
avg: 1.05E+06
max/avg: 1.01

Messages (Phase 2)

total: 448
max: 7

Volume (Phase 2)

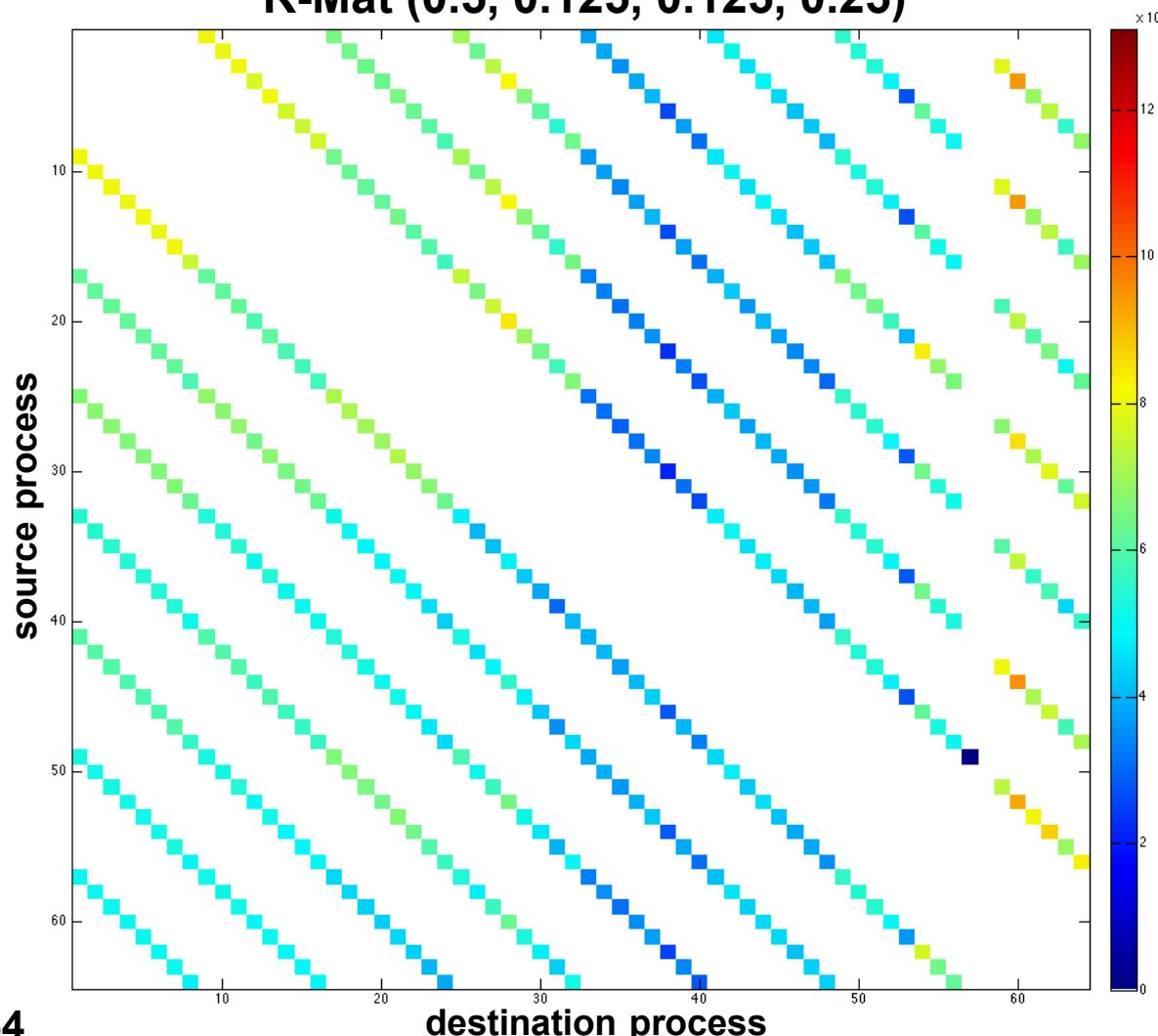
total: 2.57E+07
max: 4.03E+05

Nice properties:

No all-to-all communication
Total volume lower than 1DR

Communication Pattern: 2D Cartesian Hypergraph Partitioning

R-Mat (0.5, 0.125, 0.125, 0.25)



P=64

Number of Rows: 2^{23}
Nonzeros/Row: 8

NNZ/process

min: 5.88E+05
max: 1.29E+06
avg: 1.05E+06
max/avg: 1.23

Messages (Phase 1)

total: 448
max: 7

Volume (Phase 1)

total: 2.33E+07
max: 4.52E+05

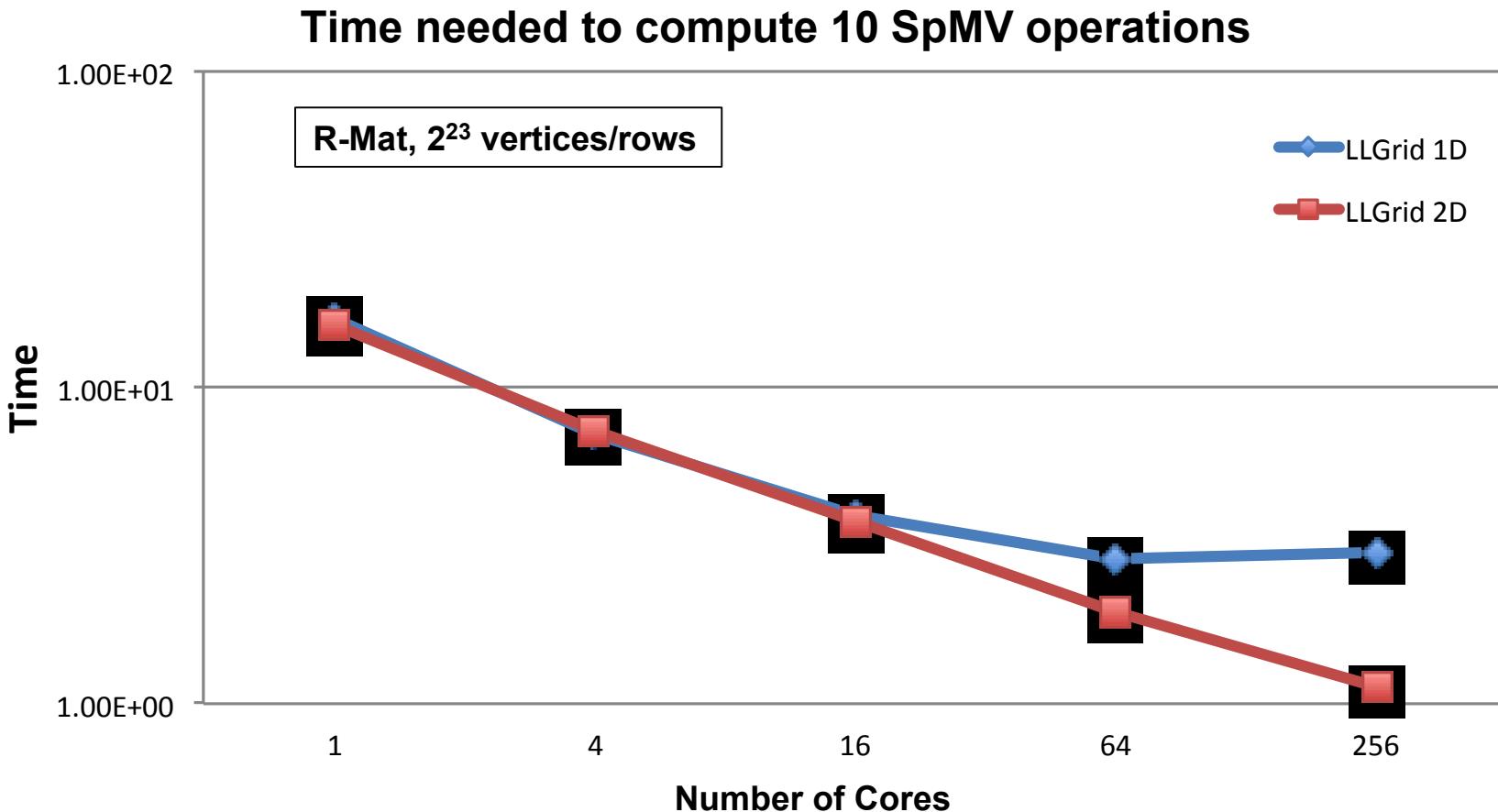
Nice properties:

No all-to-all communication
Total volume lower than 2DR

Challenges:

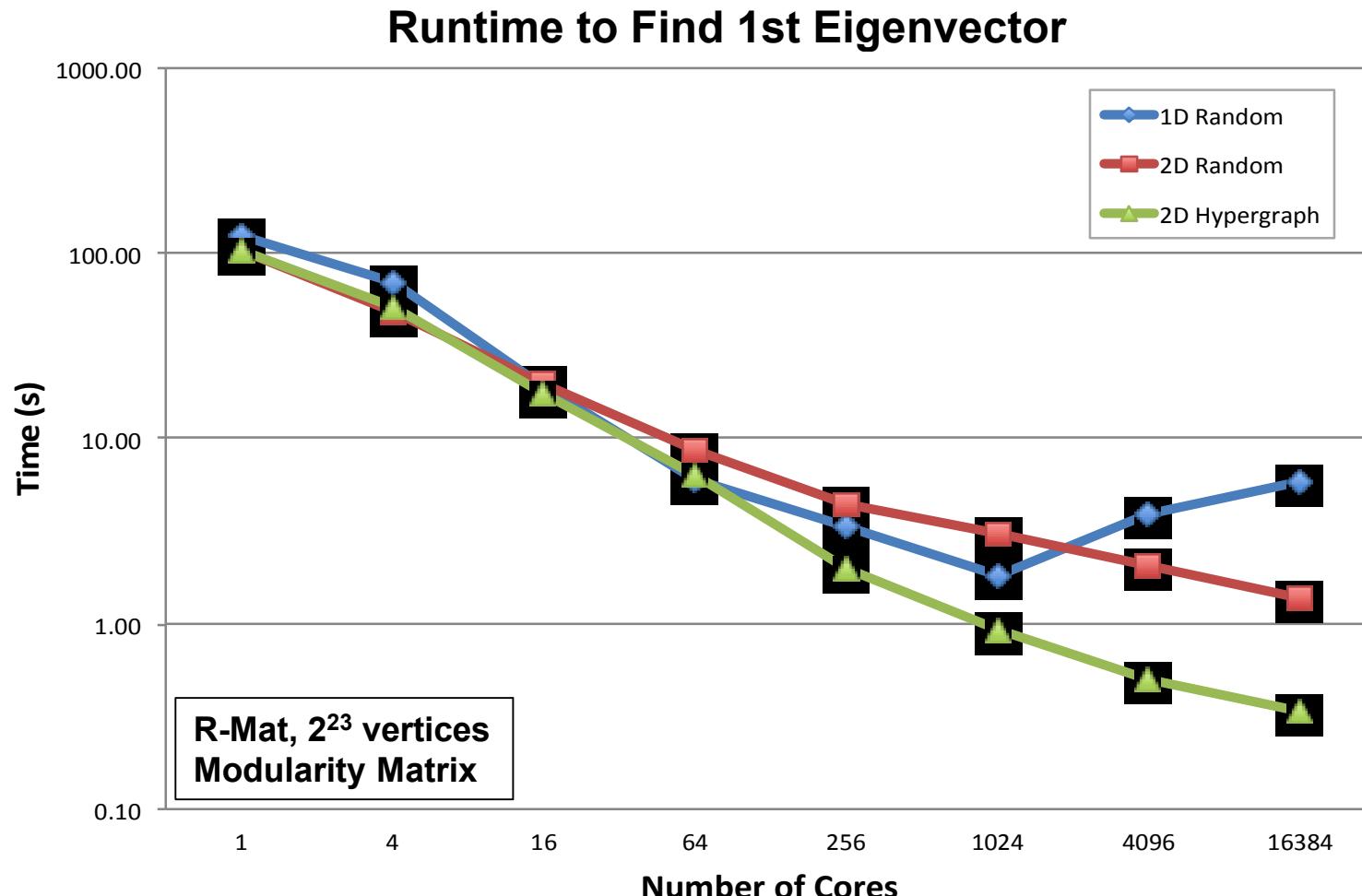
Imbalance worse than 2DR

Improved Results: SpMV – LLGrid



Simple 2D method shows improved scalability

Improved Results – NERSC Hopper*

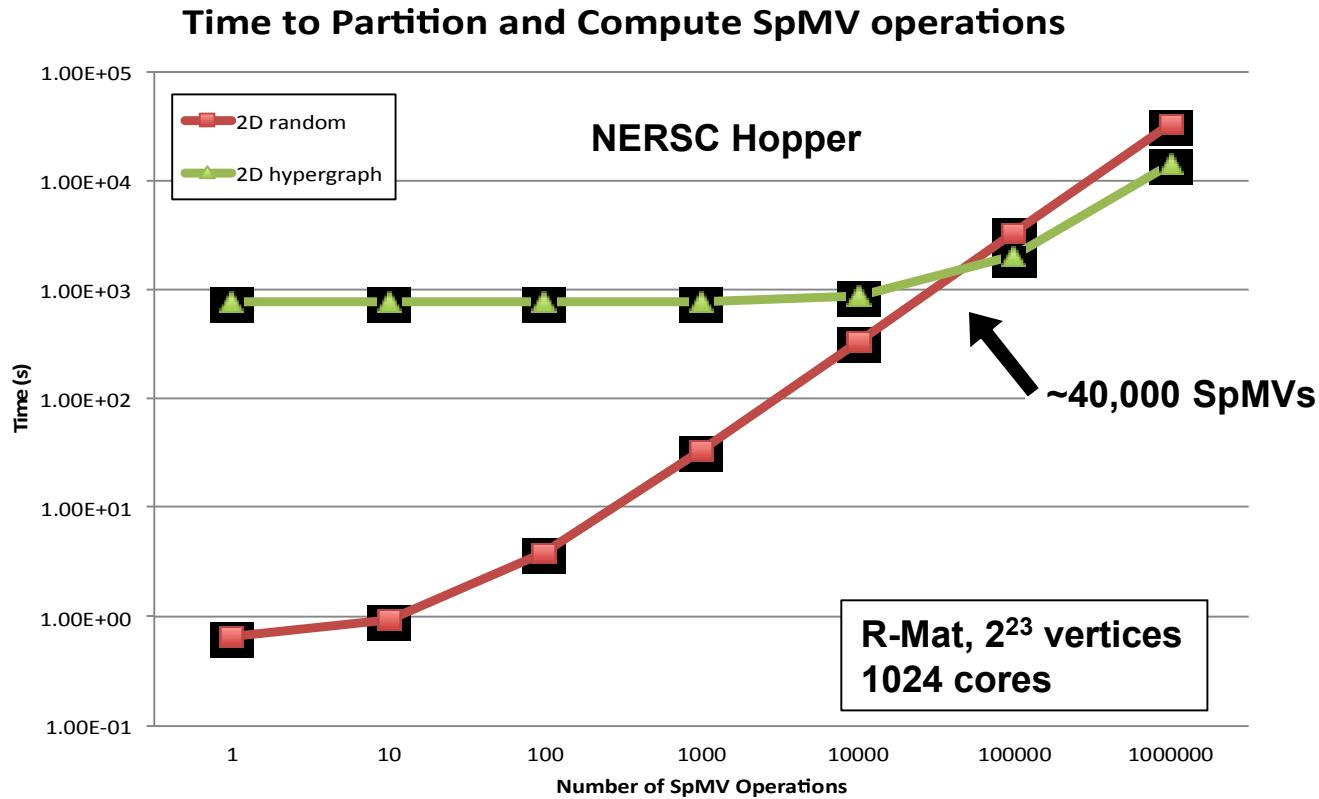


2D methods show improved scalability

Outline

- Anomaly Detection in Very Large Graphs
- Eigenanalysis and Performance Challenges
- Improving Sparse Matrix-Vector Multiplication (SpMV) Performance through Data Partitioning
- ■ Partitioning: Dynamic Graphs and Sampling
- Summary

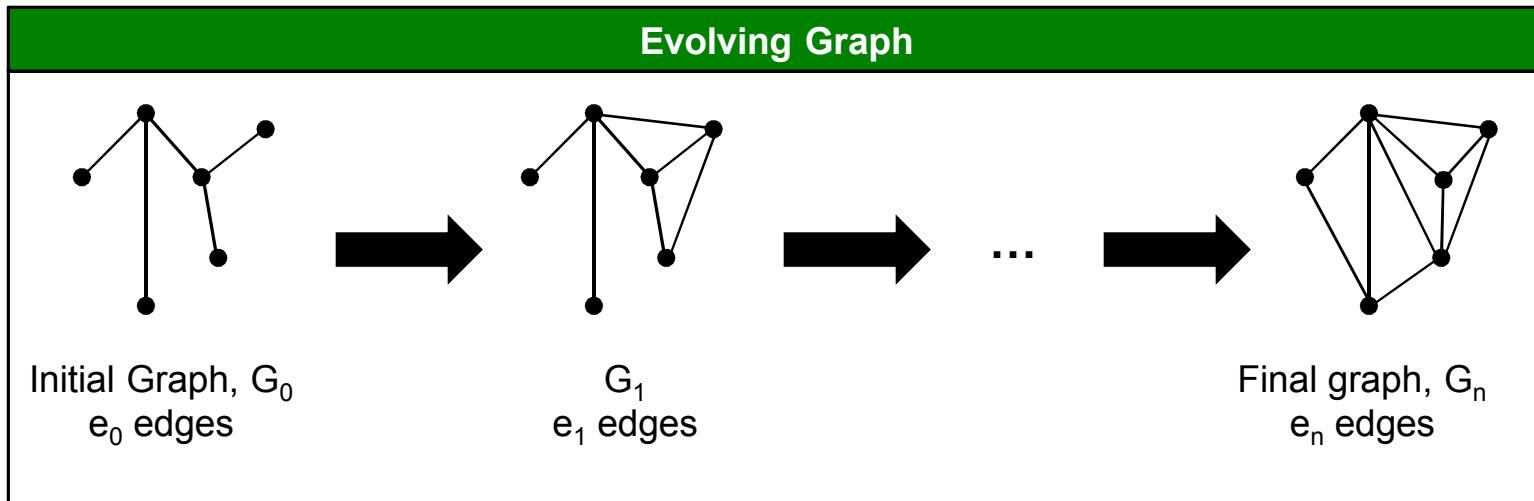
Challenge with Hypergraph/Graph Partitioning



- High partitioning cost of graph/hypergraph methods must be amortized by computing many SpMV operations
- Detection* requires at most 1000s of SpMV operations
- Expensive partitions need to be effective for multiple graphs

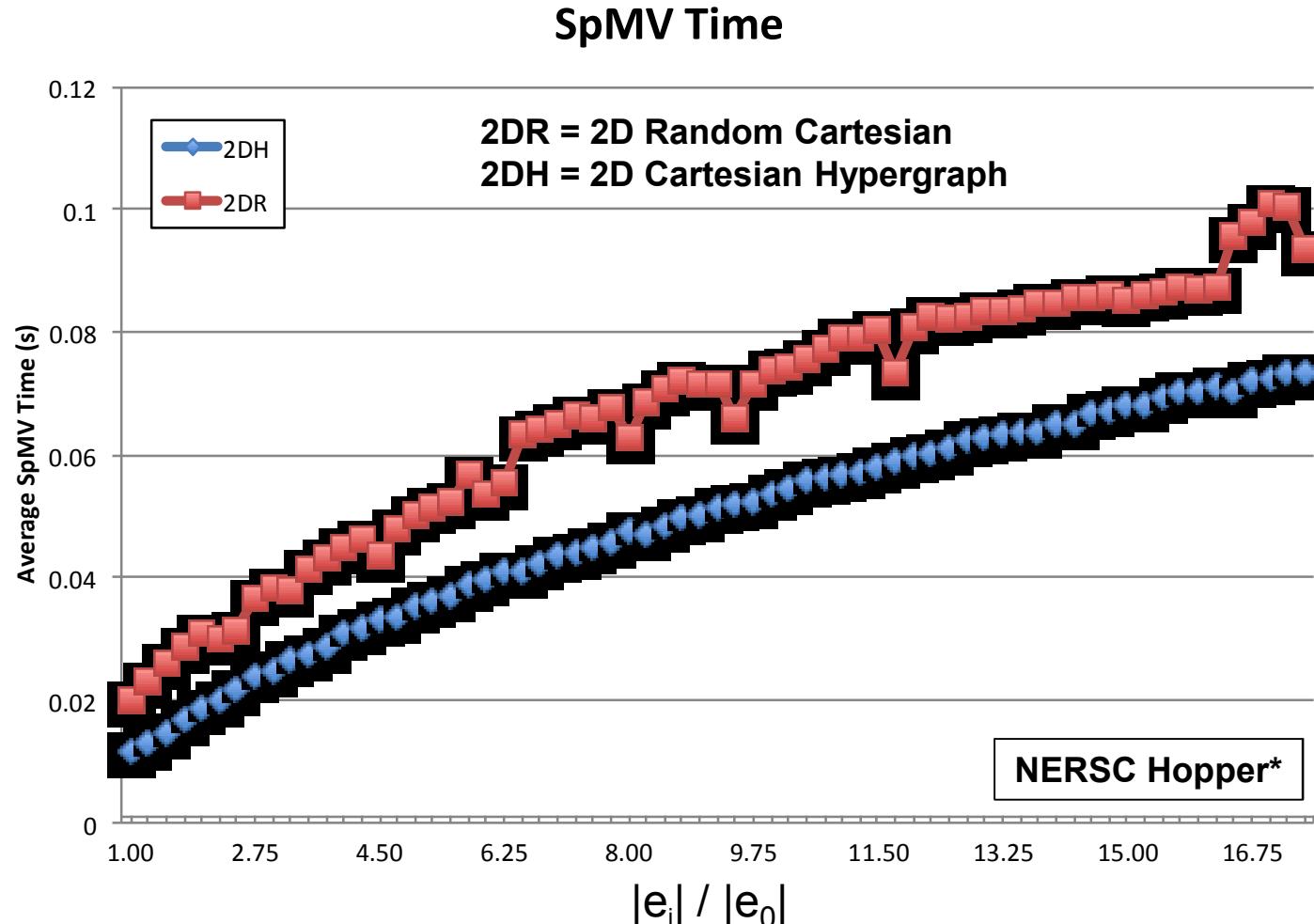
*L1 norm method: computing 100 eigenvectors

Experiment: Partitioning for Dynamic Graphs



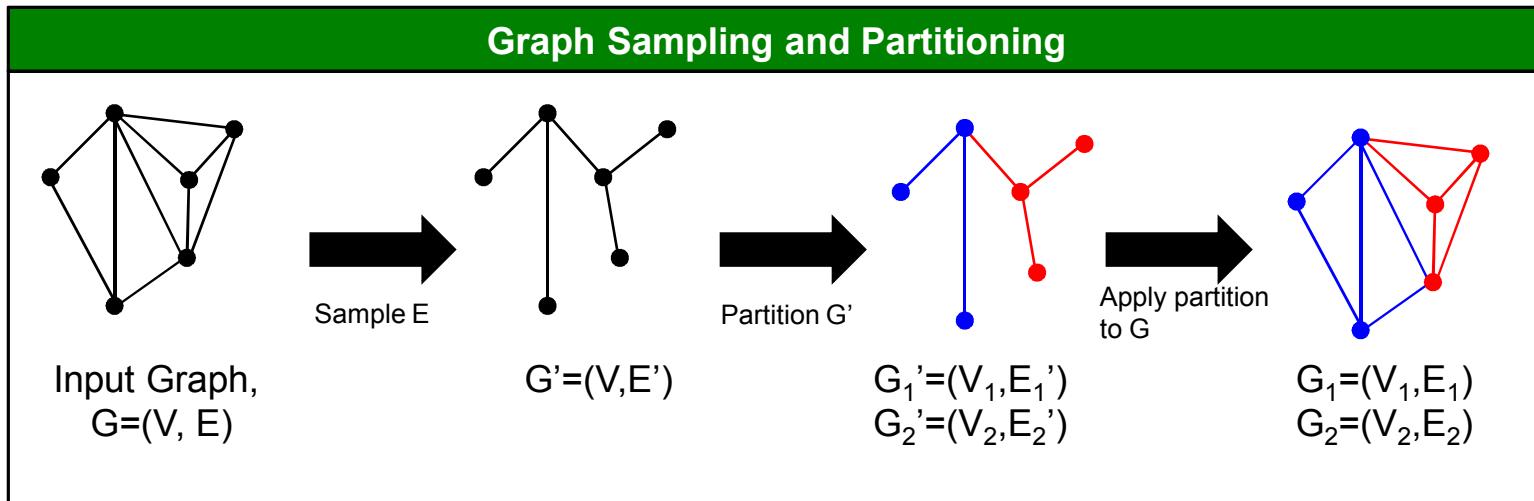
- Key question: How long will a partition be effective?
- Initial experiment
 - Evolving R-Mat matrices: fixed number of rows, R-Mat parameters (a, b, c, d)
 - Start with a given number of nonzeros ($|e_0|$)
 - Iteratively add nonzeros until target number of nonzeros is reached ($|e_n|$)

Results: Partitioning for Dynamic Graphs



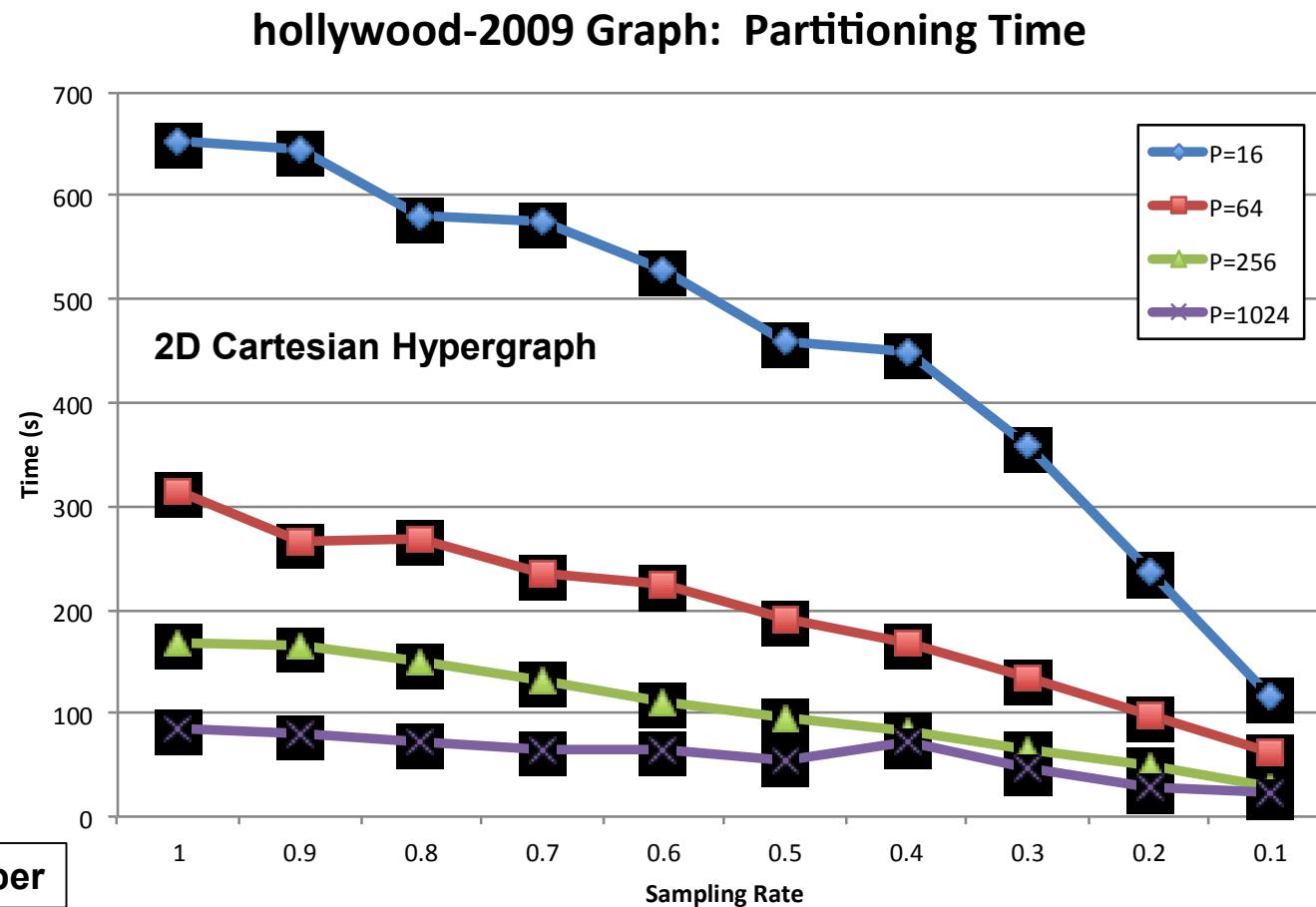
Hypergraph partition surprising effective after more than 16x $|e_0|$ edges added

Sampling and Partitioning for Web/SN Graphs



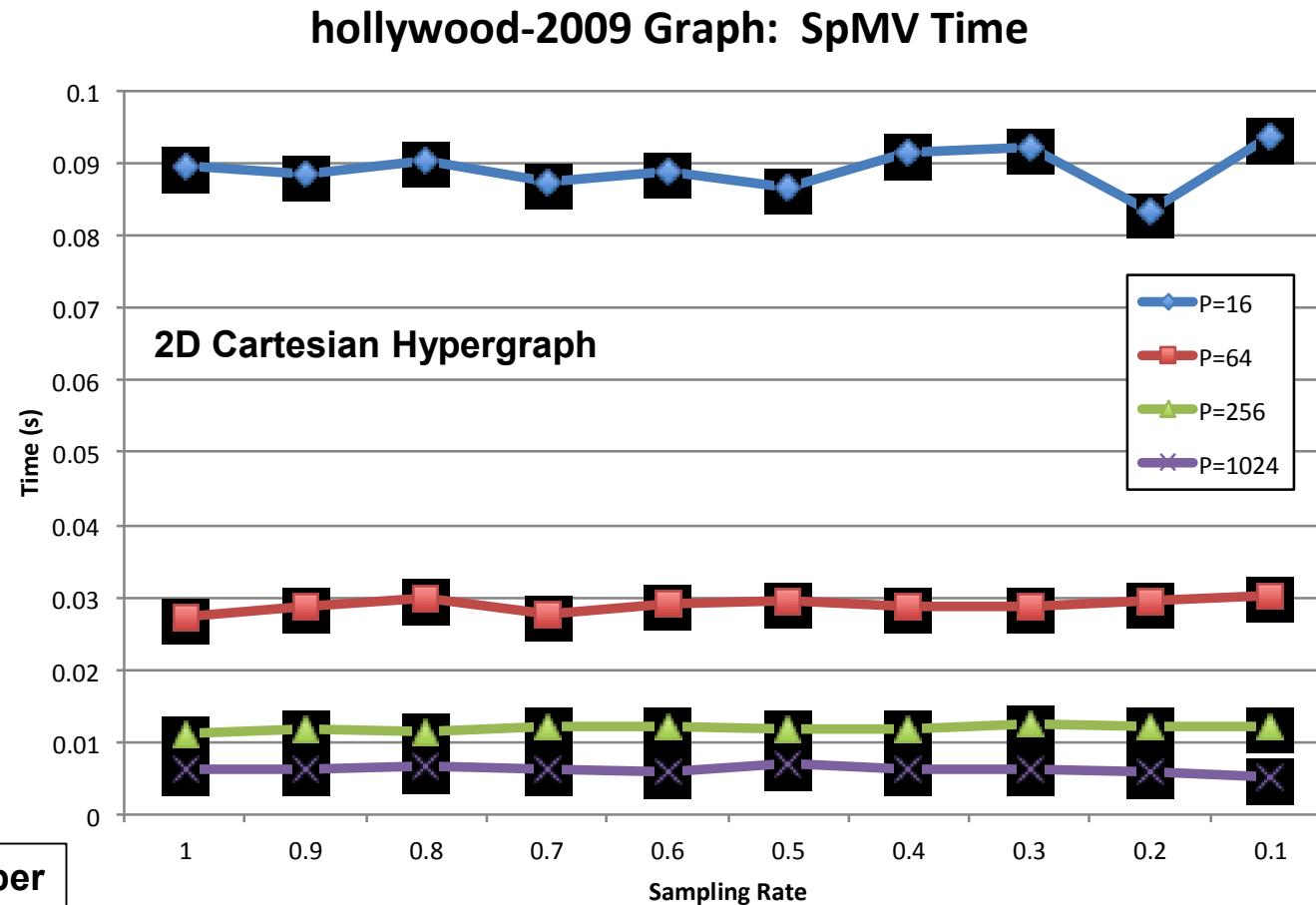
- Idea: Partition sampled graph to reduce partitioning time
- Steps:
 1. Produce smaller graph G' by sampling edges in graph G (uniform random sampling), keep vertices same
 2. Partition G' (2D Cartesian Hypergraph)
 3. Apply partition to G

hollywood-2009* Graph



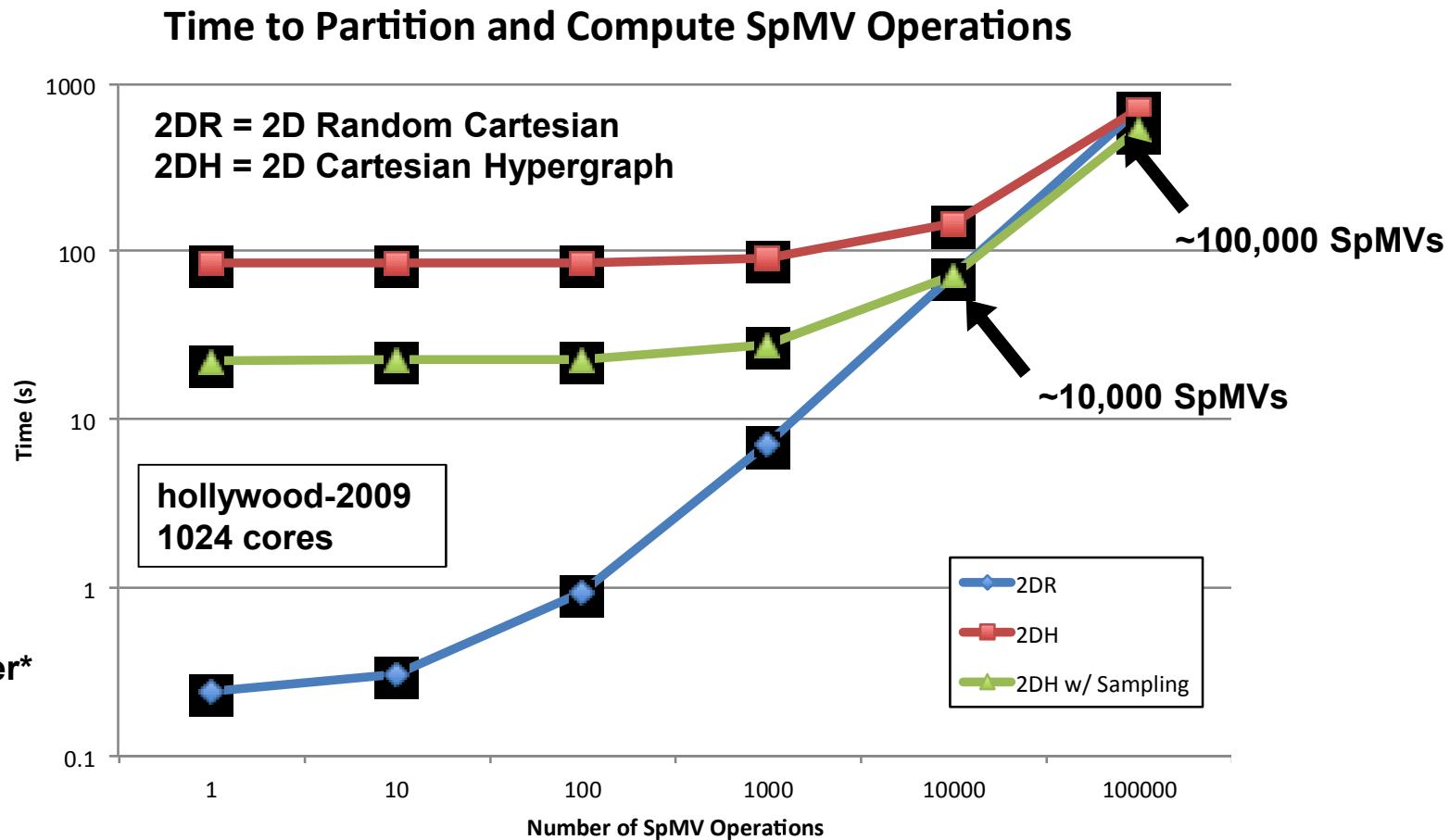
Edge sampling greatly reduces partitioning time

hollywood-2009* Graph



Resulting SpMV time does not increase for modest sampling

Challenge with Hypergraph Partitioning Revisited



**Sampling reduces overhead of hypergraph partitioning
(fewer SpMVs needed to amortize partitioning cost)**

Outline

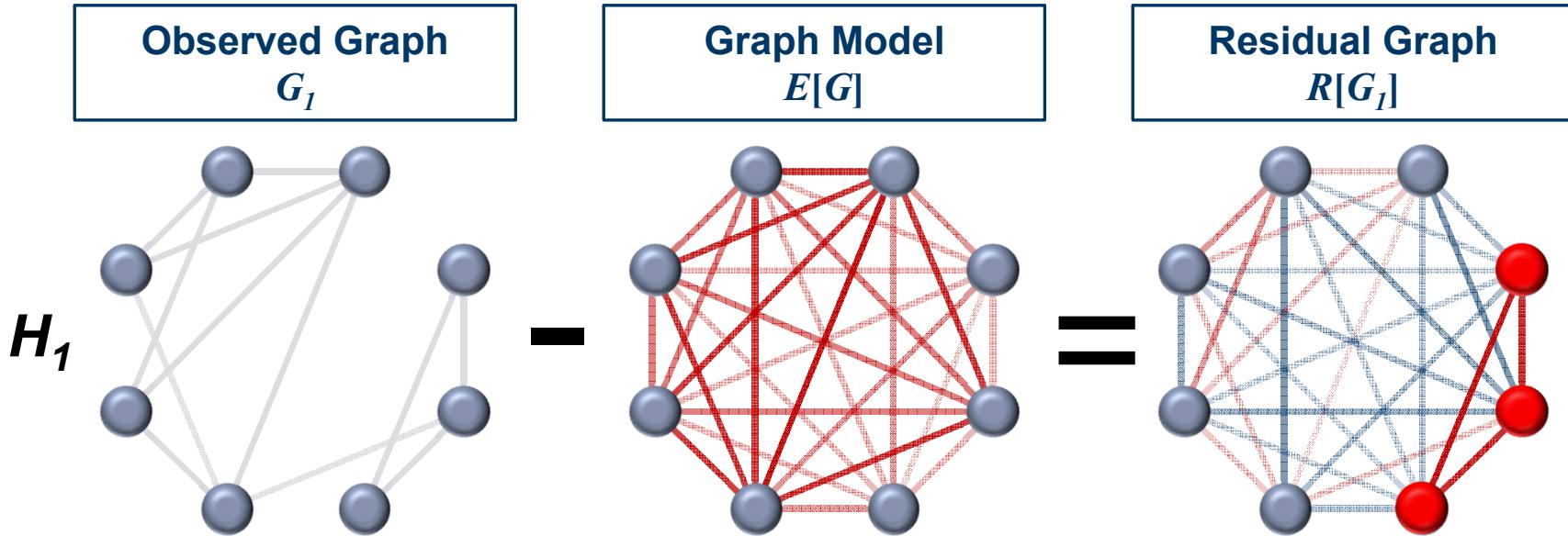
- Anomaly Detection in Very Large Graphs
- Eigenanalysis and Performance Challenges
- Improving Sparse Matrix-Vector Multiplication (SpMV) Performance through Data Partitioning
- Partitioning: Dynamic Graphs and Sampling
- ■ Summary

Summary

- Outlined HPC approach to processing big data
 - Signal processing for graphs
 - Statistical framework for anomaly detection in graphs
- Key component is eigensolver for dimensionality reduction
- Solving eigensystems resulting from power law graphs challenging
 - Load imbalance
 - Poor data locality
- SpMV key computational kernel
 - 1D data partitioning limits performance due to all-to-all communication
 - 2D data partitioning can be used to improve scalability
- Sampling can improve hypergraph-based partitioning performance for web/SN graphs

Extra

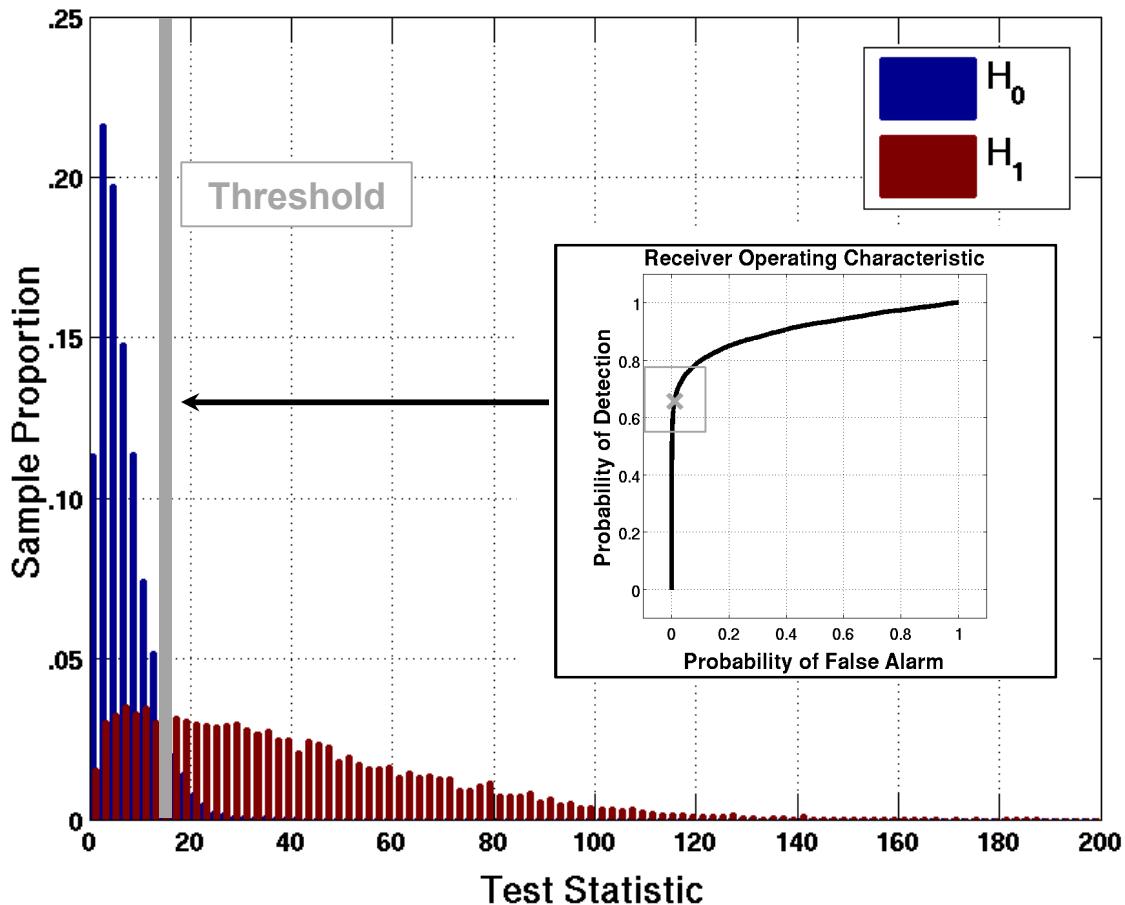
Residuals Example: Anomalous Subgraph



- Residual graph represents the difference between the observed and expected
- *Coordinated* vertices (subsets of vertices connected by edges with large edge weights) in residual graph will produce much stronger signal than uncoordinated vertices

Detection framework is designed to detect coordinated deviations from the expected topology

Anomaly Detection: Setup Phase

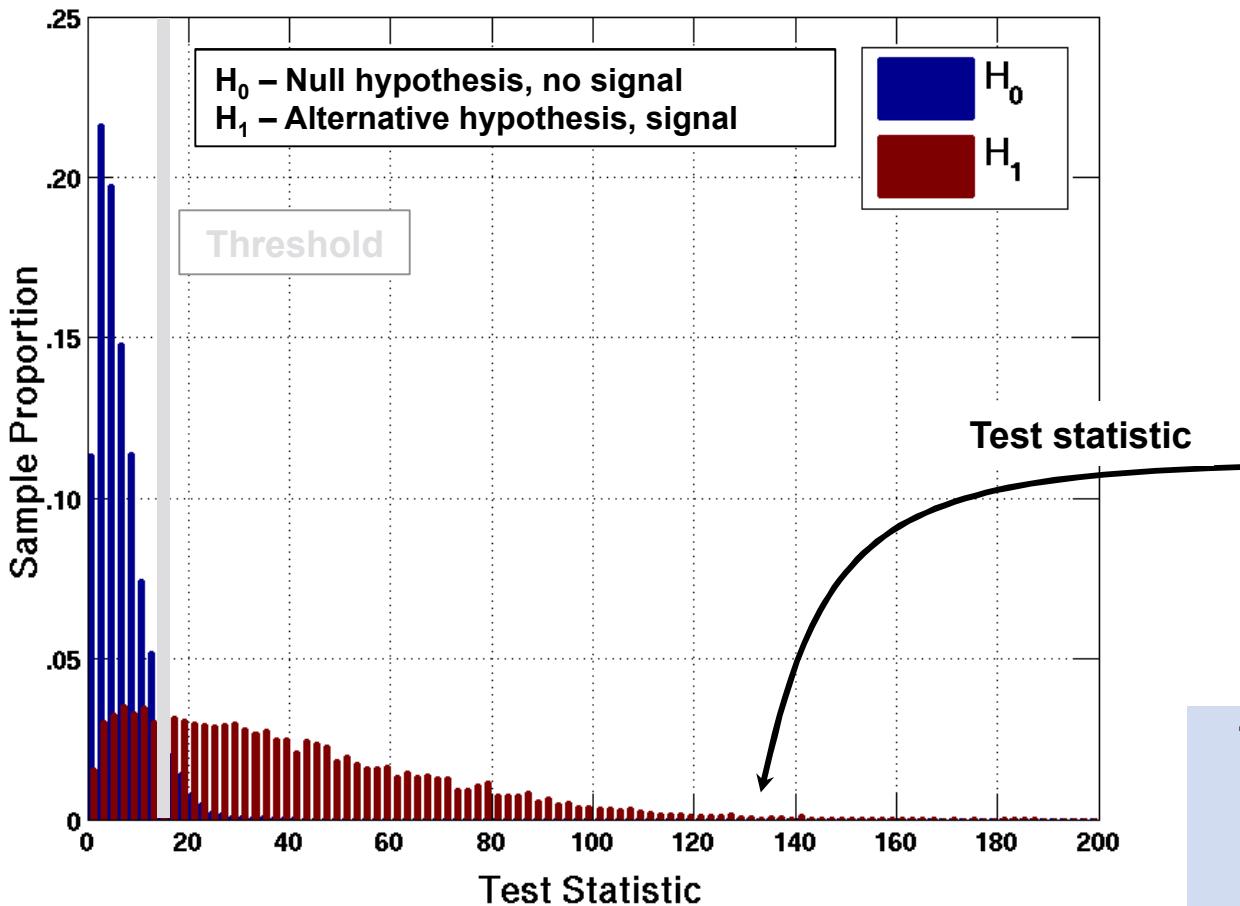


H_0 – Null hypothesis, no signal
 H_1 – Alternative hypothesis, signal

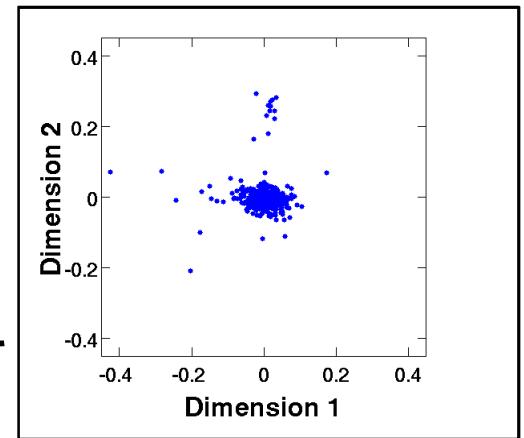
Detection Setup

1. Monte-Carlo simulations to generate density functions
2. ROC-curve generated from density function

Anomaly Detection



Test statistic calculated for observed graph:



$$\chi^2_{\max} = \max_{\theta} \chi^2 \left(\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} [u_1 \ u_2]^T \right)$$

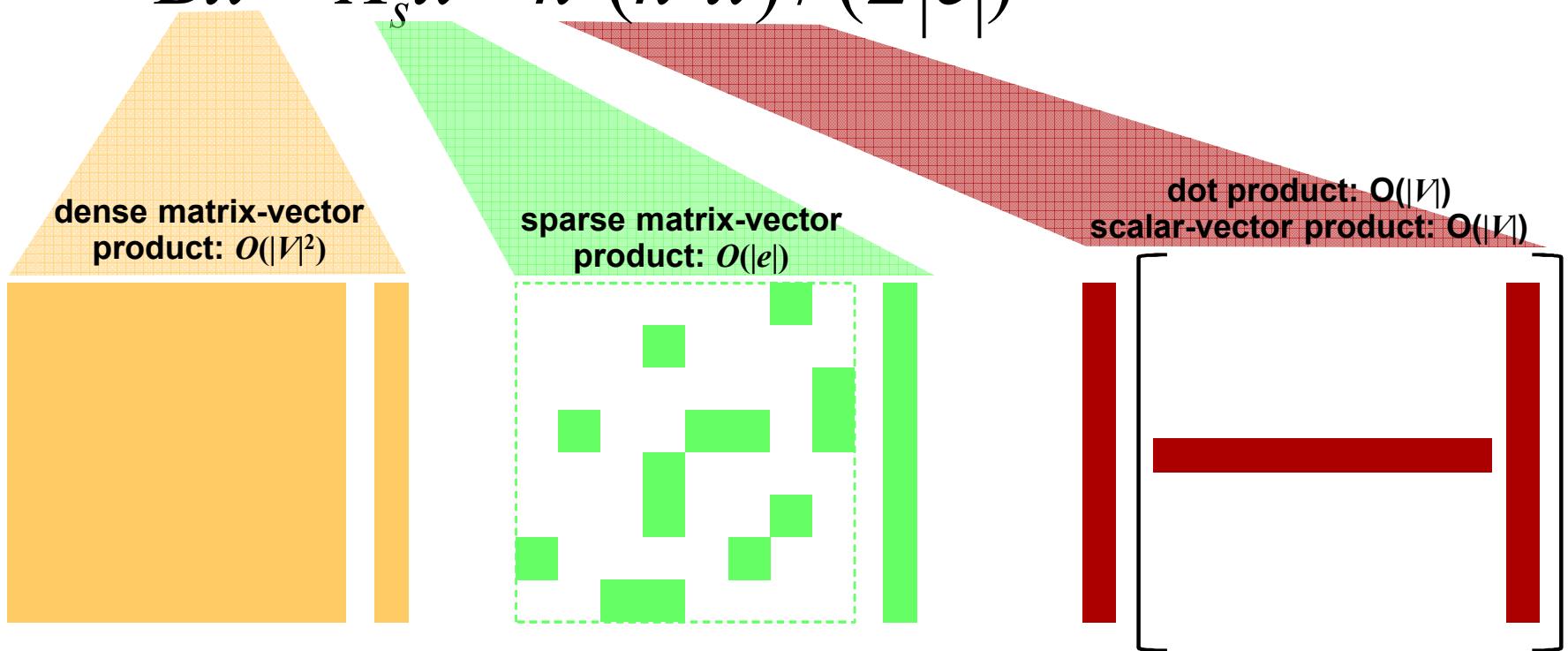
Test statistic value significantly larger than test statistic value threshold corresponding to 1% false alarm rate

Modularity Matrix: Computation Breakdown

Matrix-vector multiplication is at the heart of eigensolver algorithms

Operator apply:

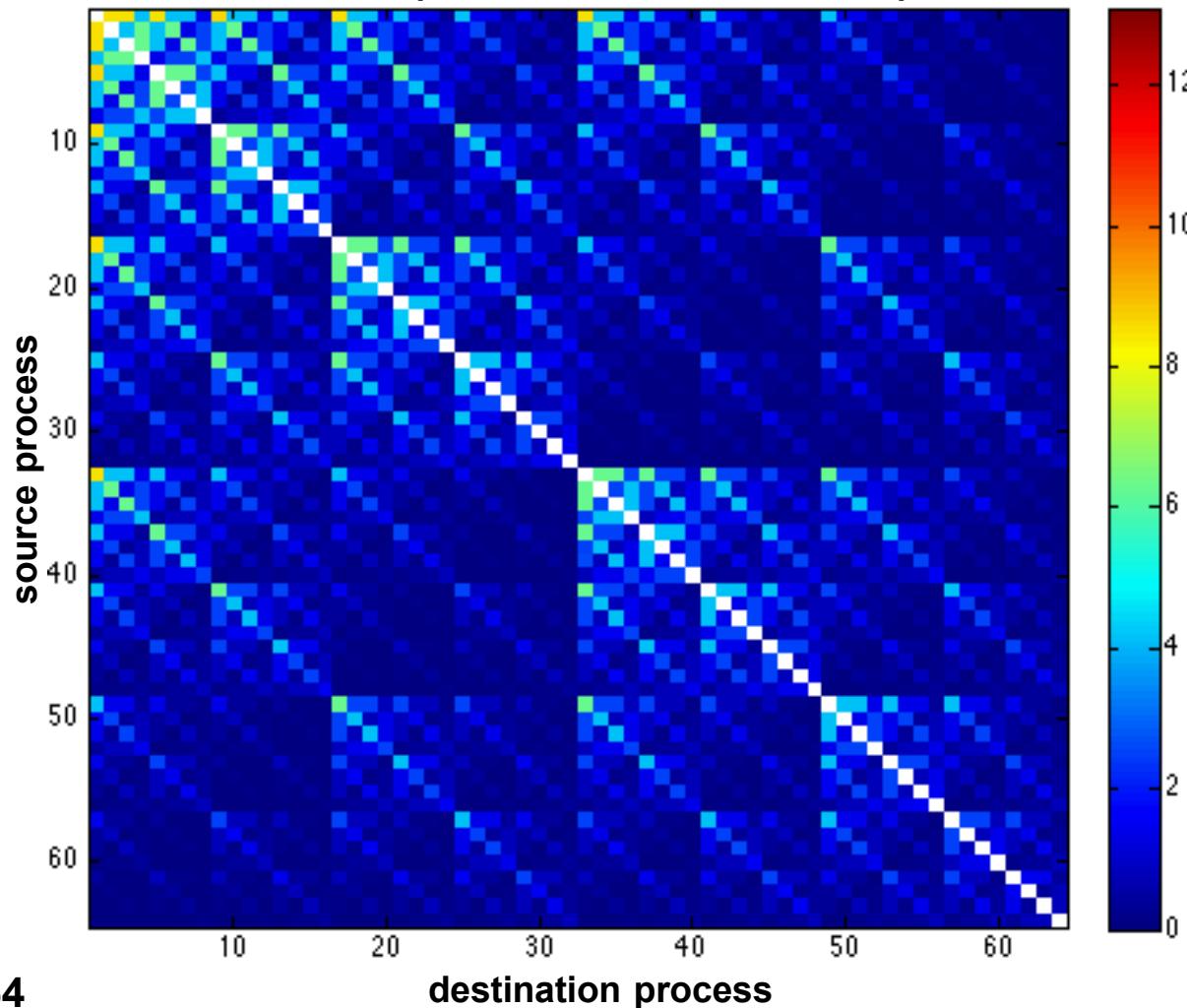
$$Bx = A_s x - k (k^T x) / (2|e|)$$



Bx can be computed without storing B (modularity matrix)

Communication Pattern: 1D Block Partitioning

R-Mat (0.5, 0.125, 0.125, 0.25)



$\times 10^4$

Number of Rows: 2^{23}
Nonzeros/Row: 8

NNZ/process

min: 1.88E+05
max: 4.00E+06
avg: 1.06E+06
max/avg: 3.78

Messages (Phase 1)

total: 4032
max: 63

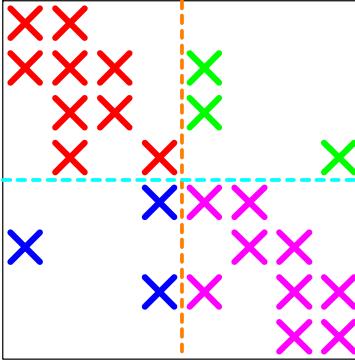
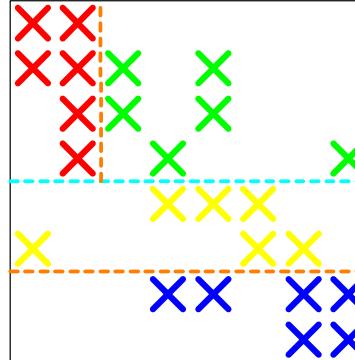
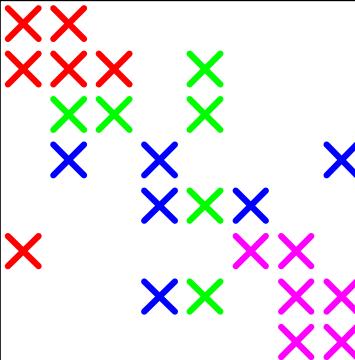
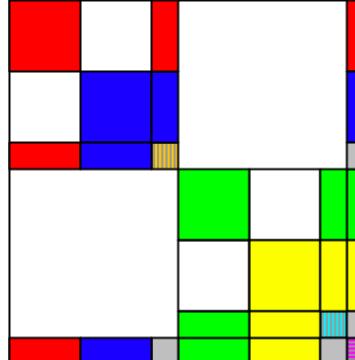
Volume (Phase 1)

total: 4.02E+07
max: 1.48E+06

Challenges:

Poor load balance
All-to-all communication

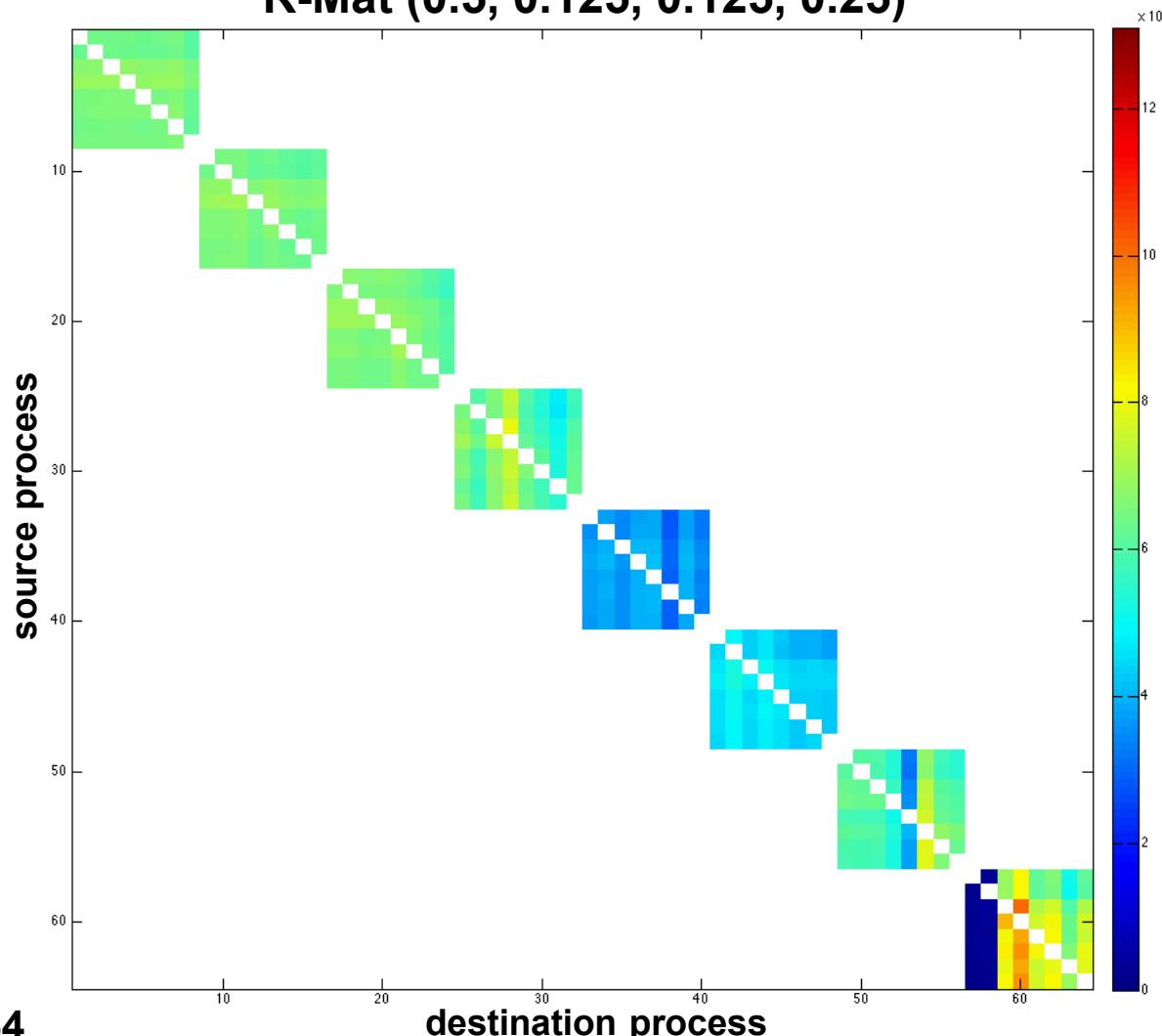
2D Partitioning

Block/Cartesian	Mondriaan (Vastenhoud, Bisseling)
	
Fine-grain (Catalyurek, Aykanat)	Nested-dissection (Boman, Wolf)*
	

- More flexibility: no particular part for entire row or column
- More general sets of nonzeros assigned parts

Communication Pattern: 2D Cartesian Hypergraph Partitioning

R-Mat (0.5, 0.125, 0.125, 0.25)



Number of Rows: 2^{23}
Nonzeros/Row: 8

NNZ/process

min: 5.88E+05
max: 1.29E+06
avg: 1.05E+06
max/avg: 1.23

Messages (Phase 2)

total: 448
max: 7

Volume (Phase 2)

total: 2.54E+07
max: 4.80E+05

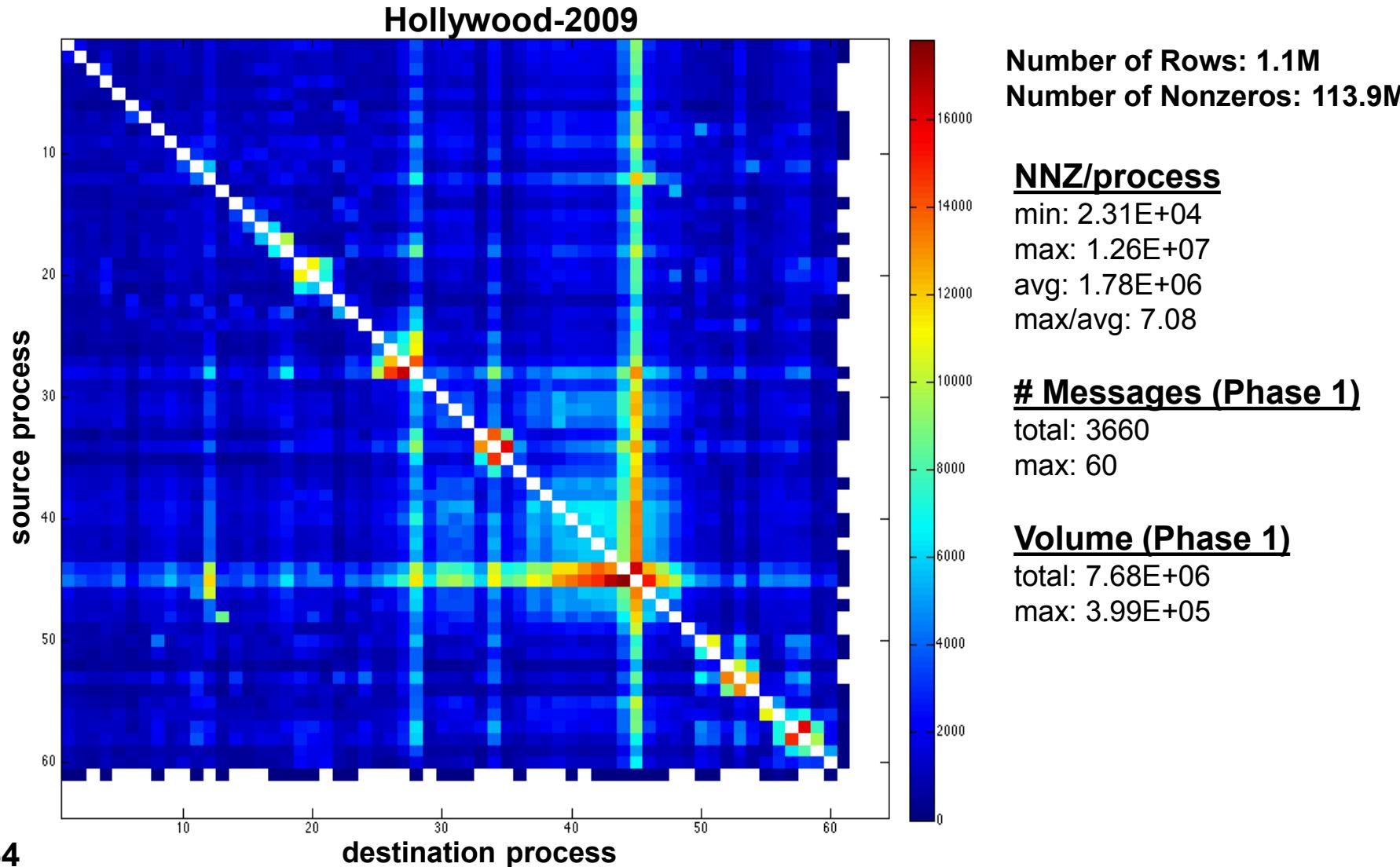
Nice properties:

No all-to-all communication
Total volume lower than 2DR

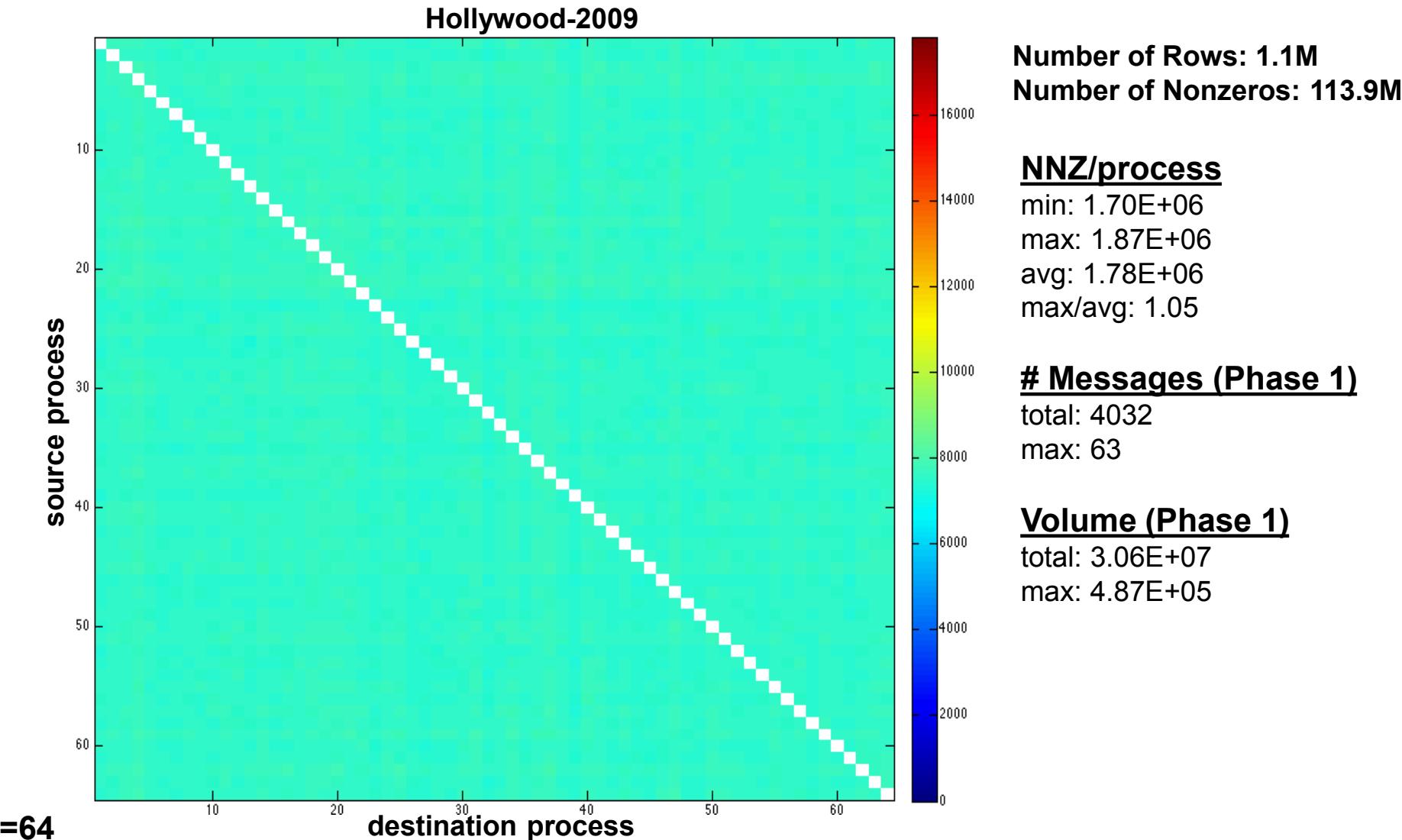
Challenges:

Imbalance worse than 2DR

Communication Pattern: 1D Block Partitioning

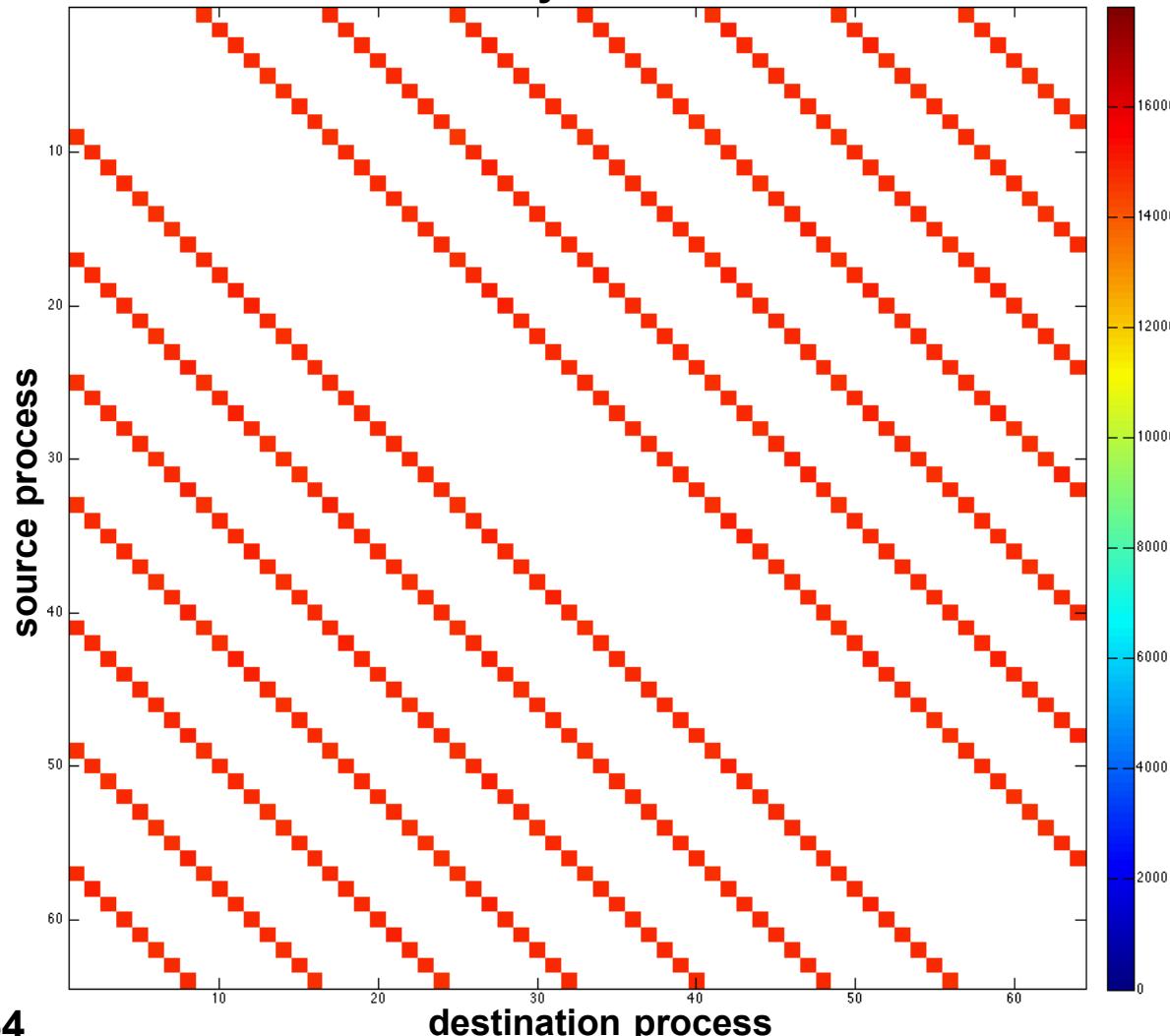


Communication Pattern: 1D Random Partitioning



Communication Pattern: 2D Random Partitioning (Cartesian Blocks)

Hollywood-2009



Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process

min: 1.75E+06
max: 1.82E+06
avg: 1.78E+06
max/avg: 1.02

Messages (Phase 1)

total: 448
max: 7

Volume (Phase 1)

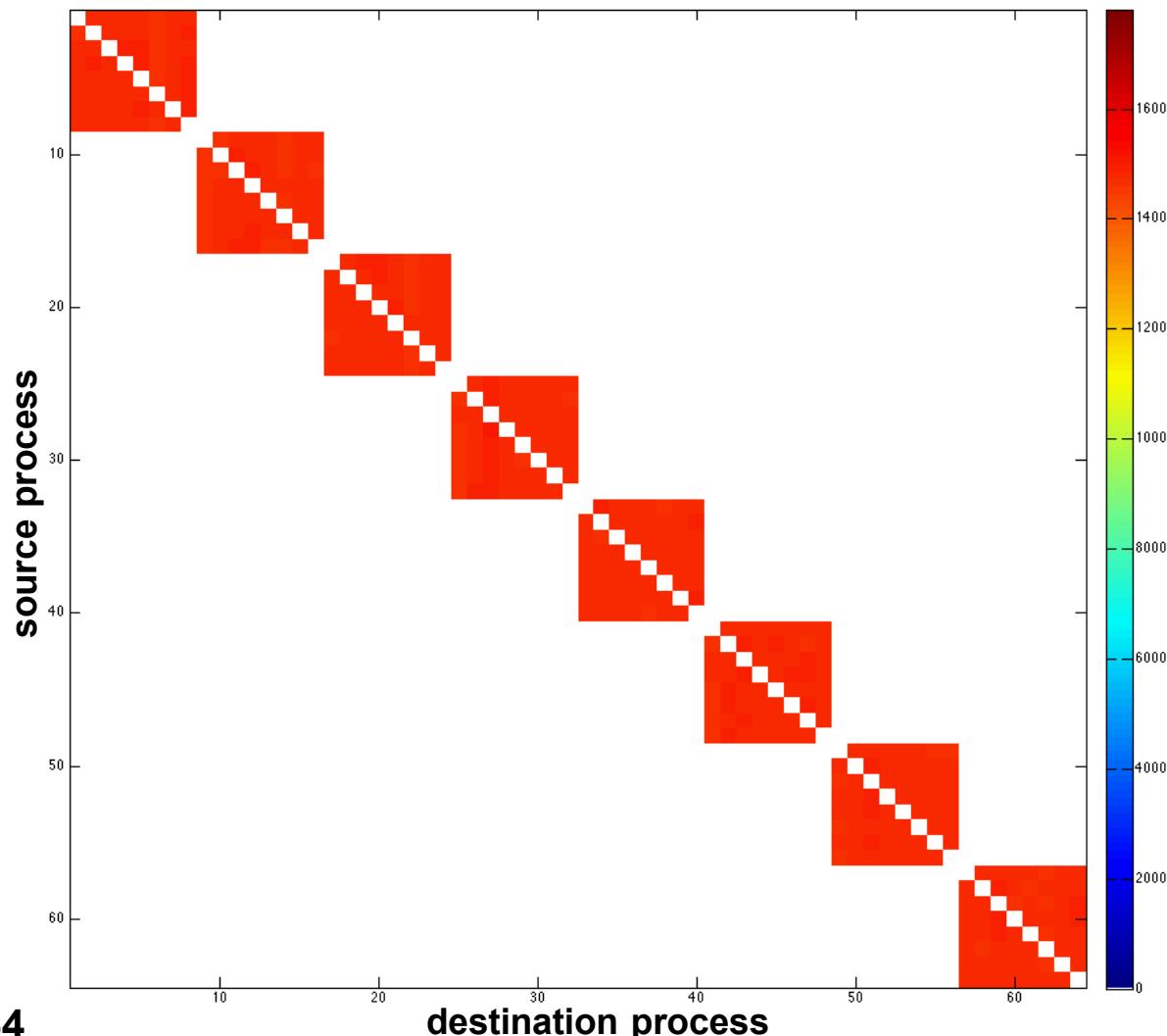
total: 6.63E+06
max: 1.04E+05

Nice properties:

No all-to-all communication
Total volume lower than 1DR

Communication Pattern: 2D Random Partitioning (Cartesian Blocks)

Hollywood-2009



Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process

min: 1.75E+06
max: 1.82E+06
avg: 1.78E+06
max/avg: 1.02

Messages (Phase 2)

total: 448
max: 7

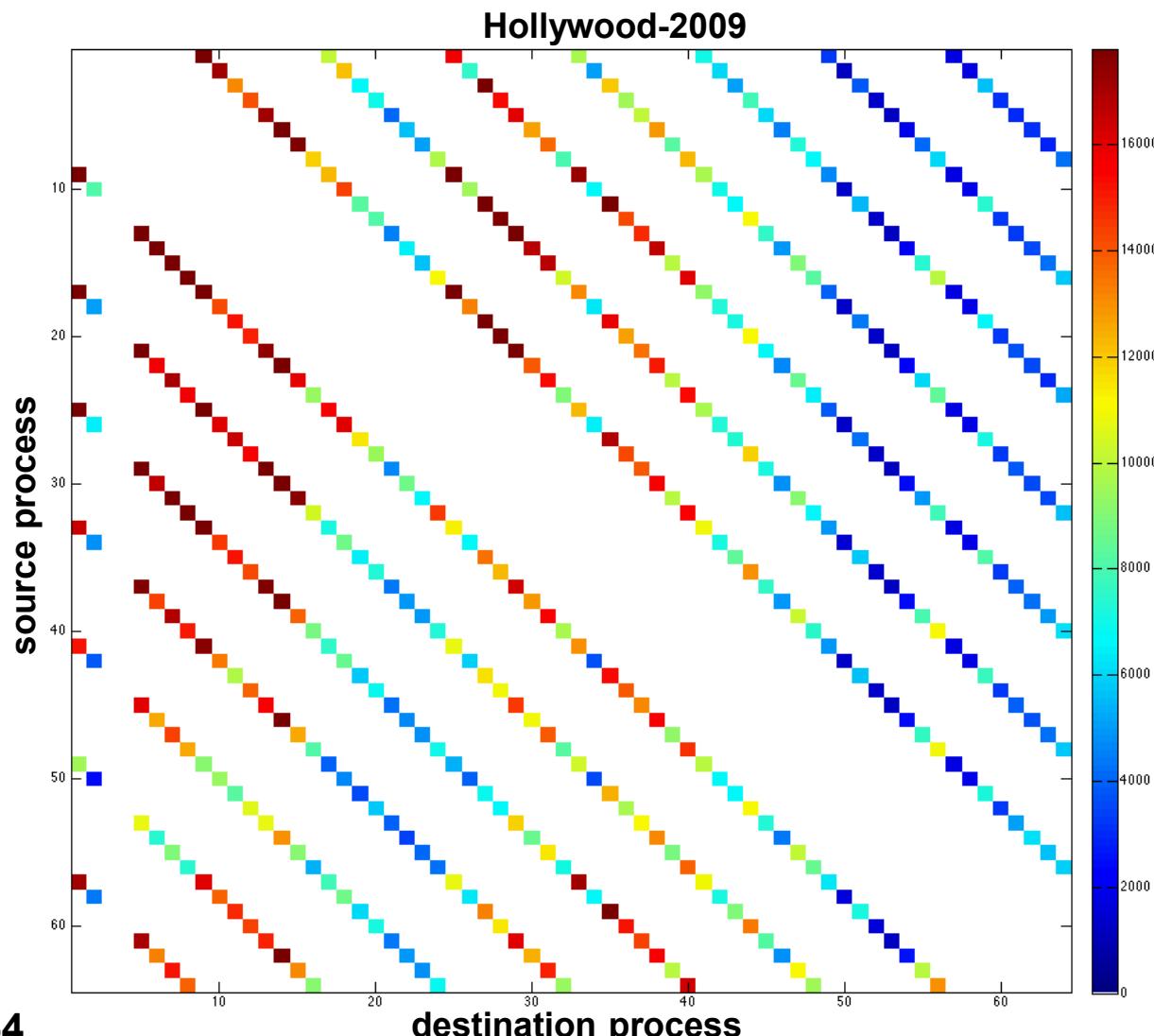
Volume (Phase 2)

total: 6.63E+06
max: 1.04E+05

Nice properties:

No all-to-all communication
Total volume lower than 1DR

Communication Pattern: 2D Cartesian Hypergraph Partitioning



Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process

min: 5.16E+05
max: 2.61E+06
avg: 1.78E+06
max/avg: 1.47

Messages (Phase 1)

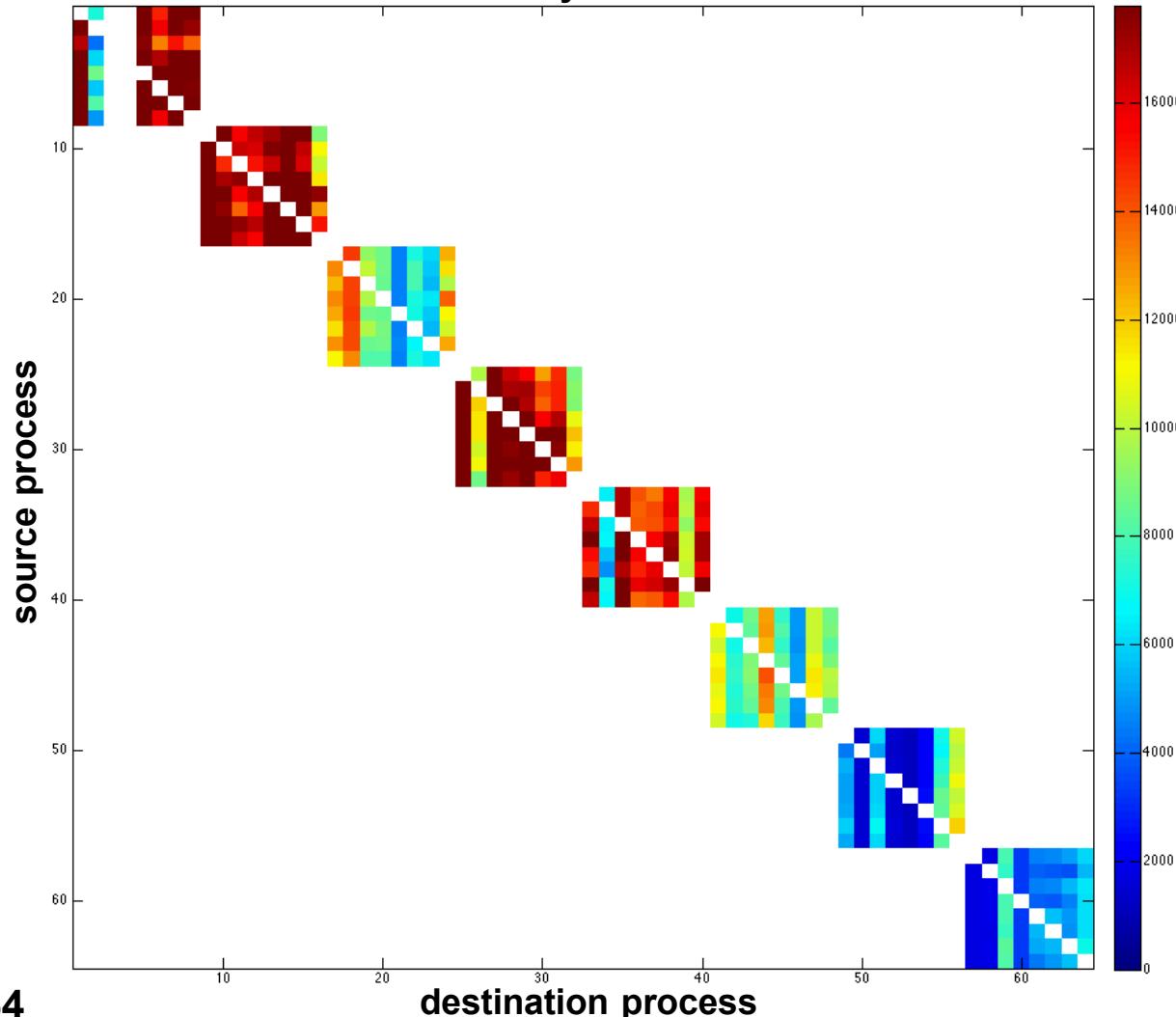
total: 439
max: 7

Volume (Phase 1)

total: 4.17E+06
max: 9.38E+04

Communication Pattern: 2D Cartesian Hypergraph Partitioning

Hollywood-2009



Number of Rows: 1.1M
Number of Nonzeros: 113.9M

NNZ/process

min: 5.16E+05
max: 2.61E+06
avg: 1.78E+06
max/avg: 1.47

Messages (Phase 2)

total: 444
max: 7

Volume (Phase 2)

total: 5.06E+06
max: 1.49E+05

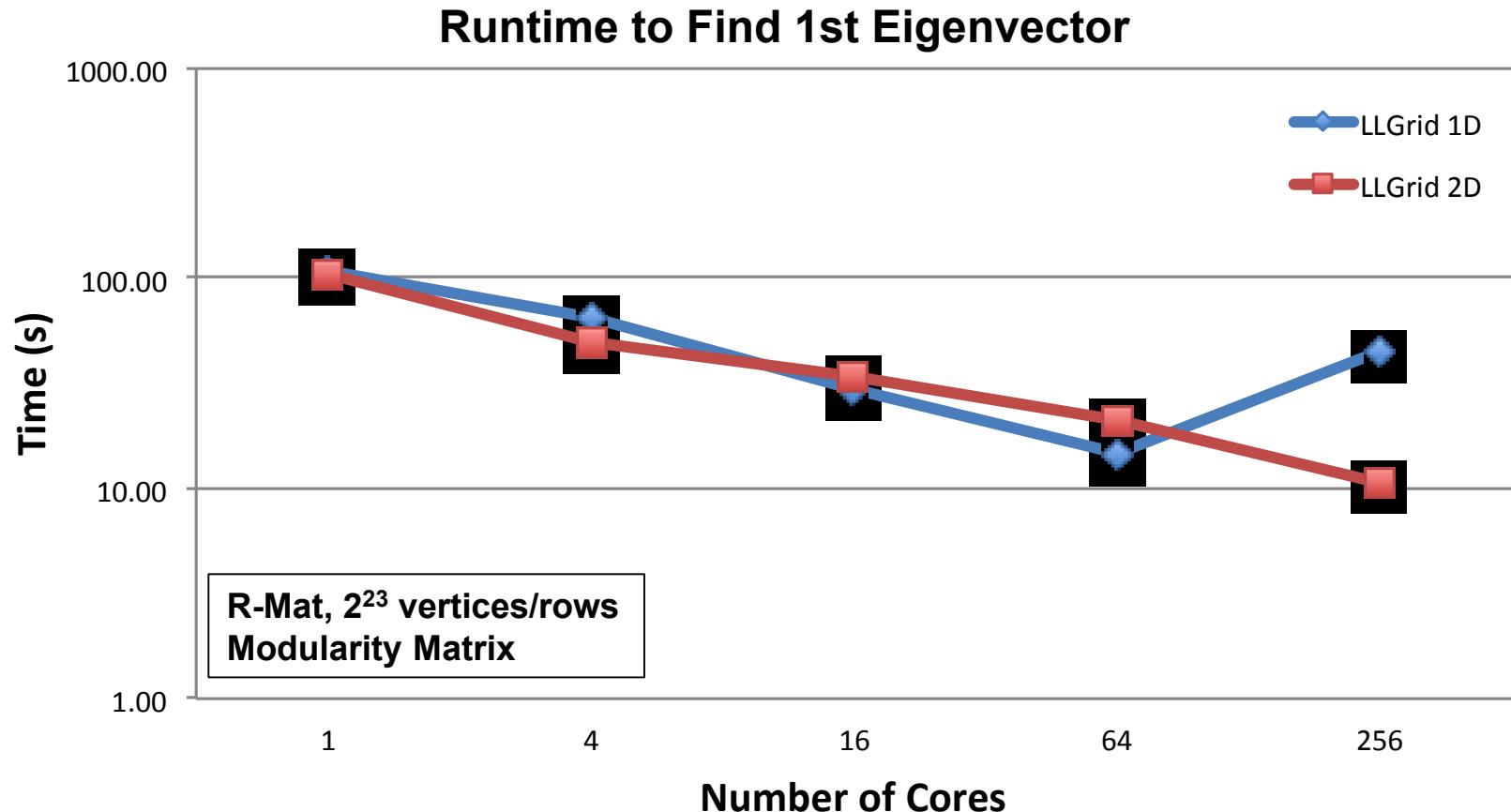
Parallel Implementation

- Using Anasazi (Trilinos) Eigensolver
- 64 bit global ordinals
 - Necessary for graphs with 2^{31} vertices or more
- User defined operators
 - Modularity matrix
 - Moving average filter
 - Apply defined efficiently for particular operator
- Block Krylov-Schur method
 - Symmetric
 - Eigenvalues with largest real component
 - Blocksize=1

Initial Numerical Experiments

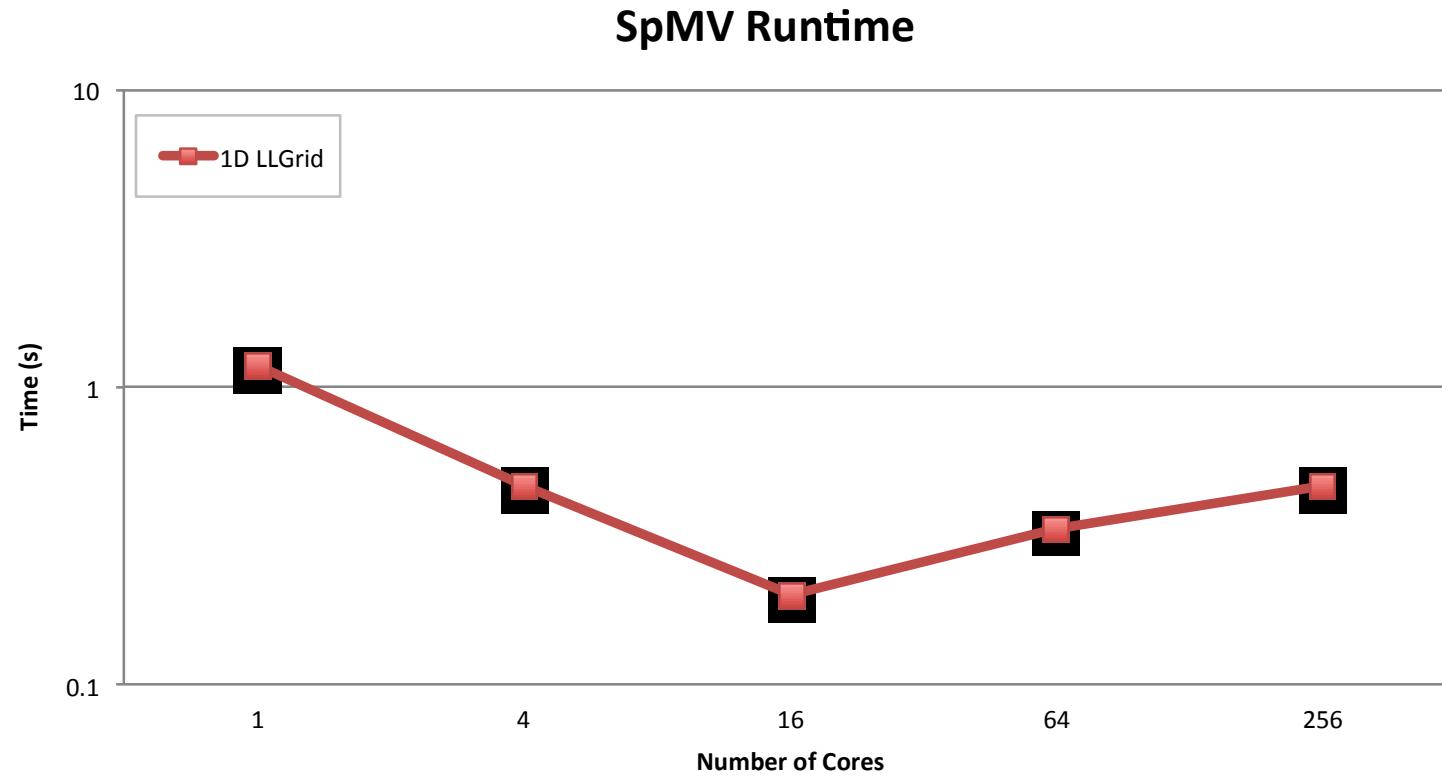
- Matrices
 - R-Mat ($a=0.5$, $b=0.125$, $c=0.125$, $d=0.25$)
 - Average nonzeros per row: 8
 - Number of rows: 2^{22} to 2^{32}
- Two systems
 - LLGrid (MIT LL)
 - 274 compute nodes (8,768 cores)
 - Node: two 16-core AMD Opteron 6274 (2.2 GHz)
 - Network: 10 GB Ethernet
 - Hopper* (NERSC)
 - Cray XE6
 - 6,384 nodes (153,216 cores)
 - Node: two 12-core AMD 'MagnyCours' (2.1 GHz)
 - Network: 3D torus (Cray Gemini)
- Initially: 1D random row distribution (good load balance)

Improved Results – LLGrid



Simple 2D method shows improved scalability

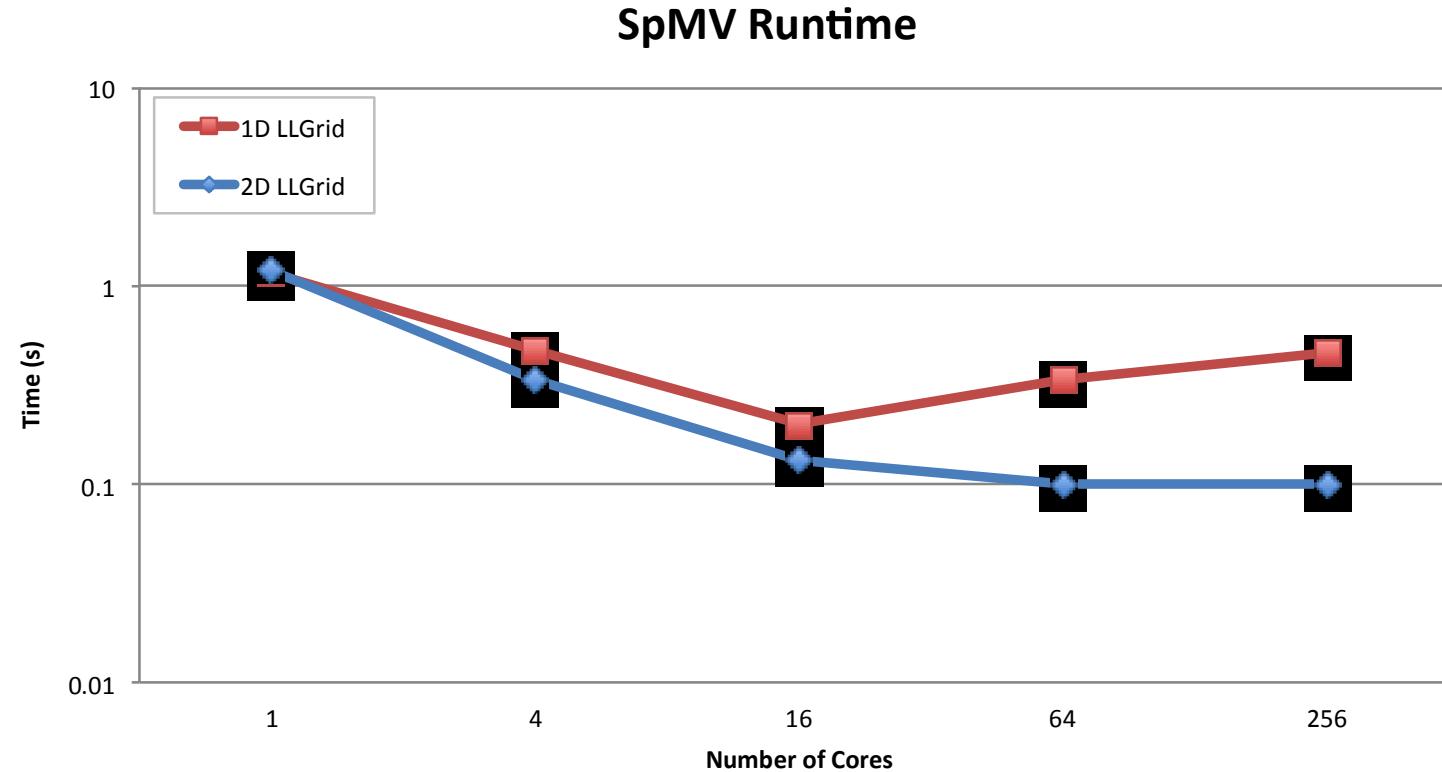
Strong Scaling Results: Hollywood



1D random
partitioning

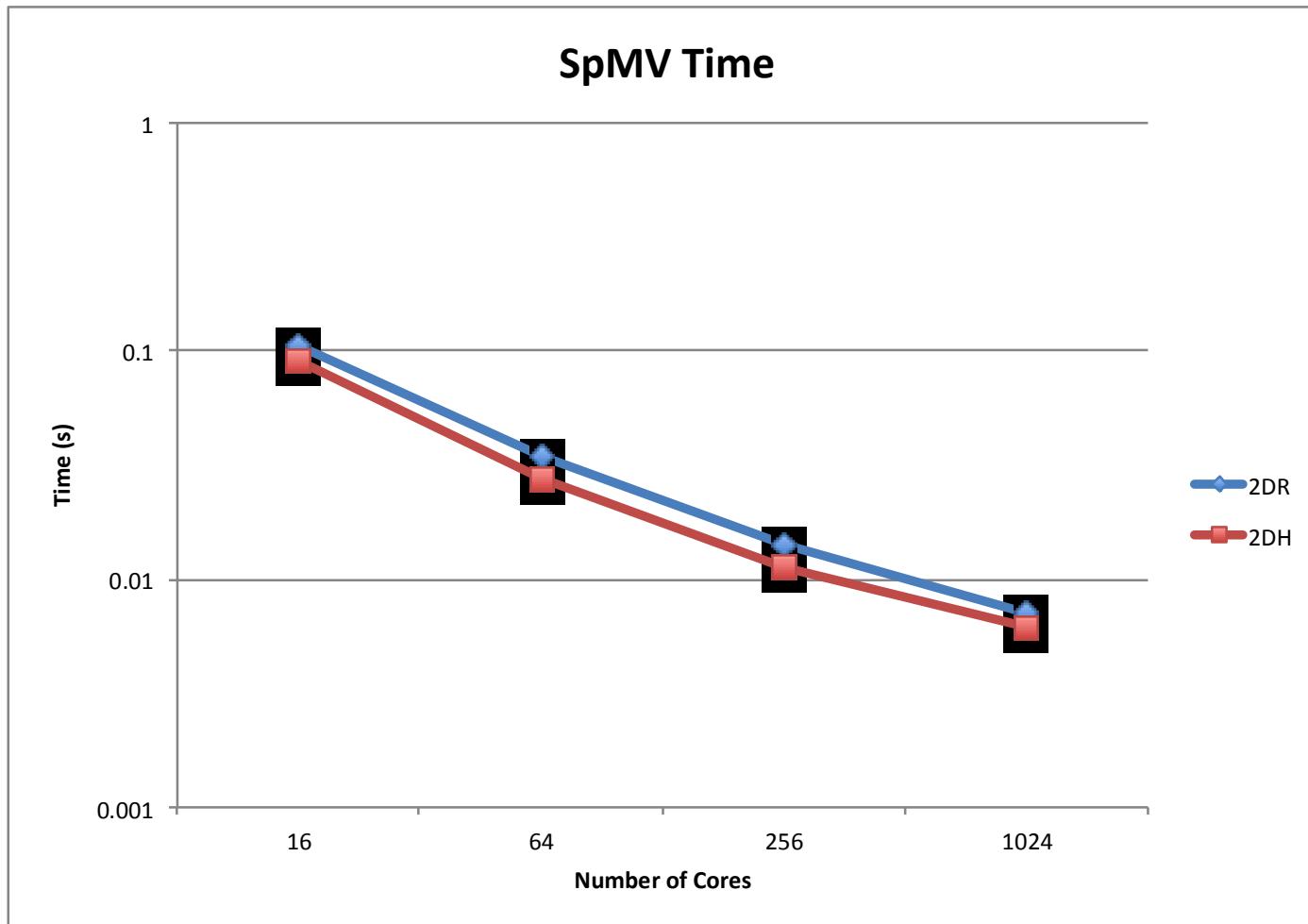
Scalability limited and runtime increases for large numbers of cores

SpMV: Strong Scaling Results - Hollywood



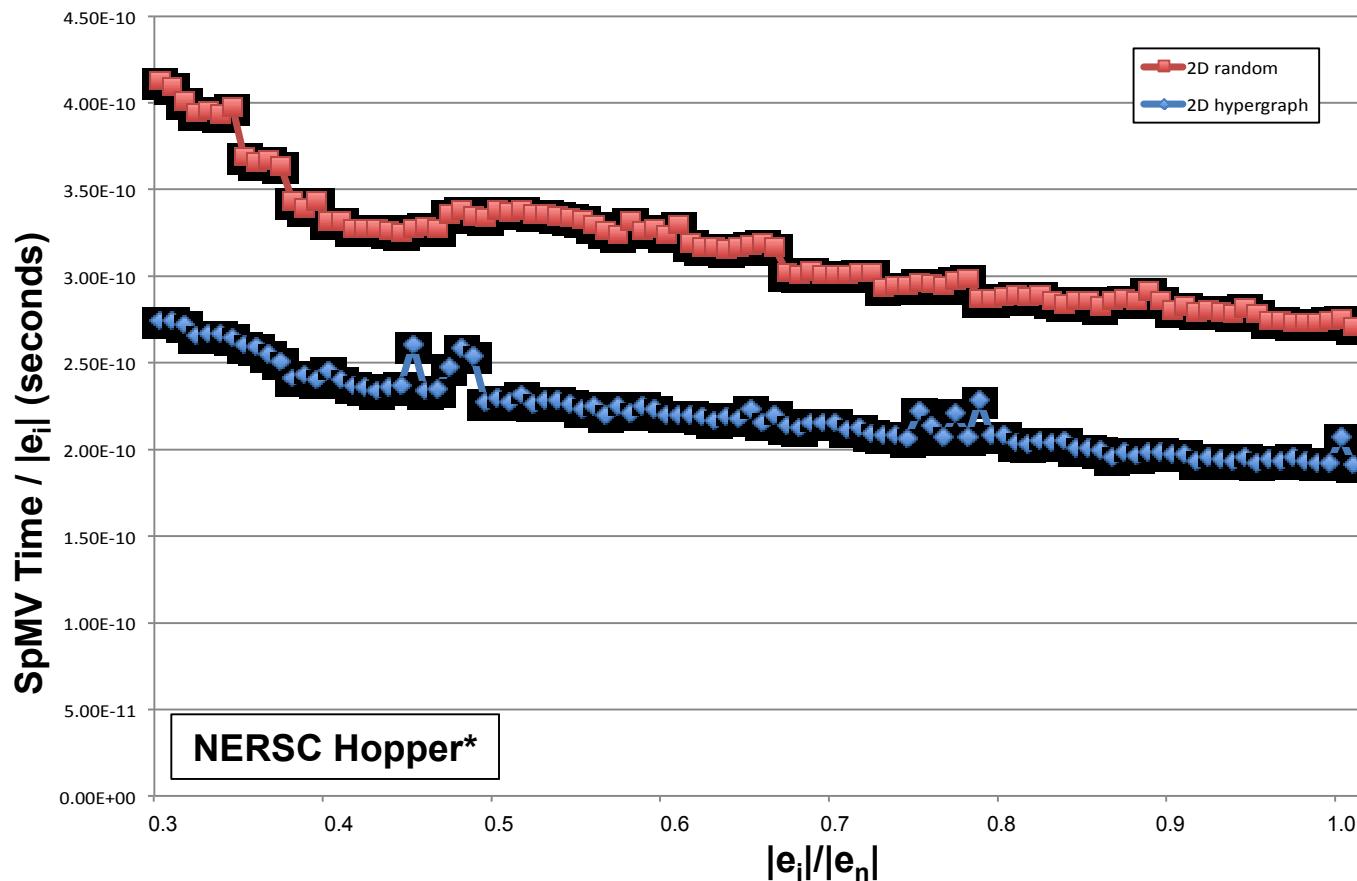
Simple 2D method shows improved scalability

SpMV: Strong Scaling Results - Hollywood



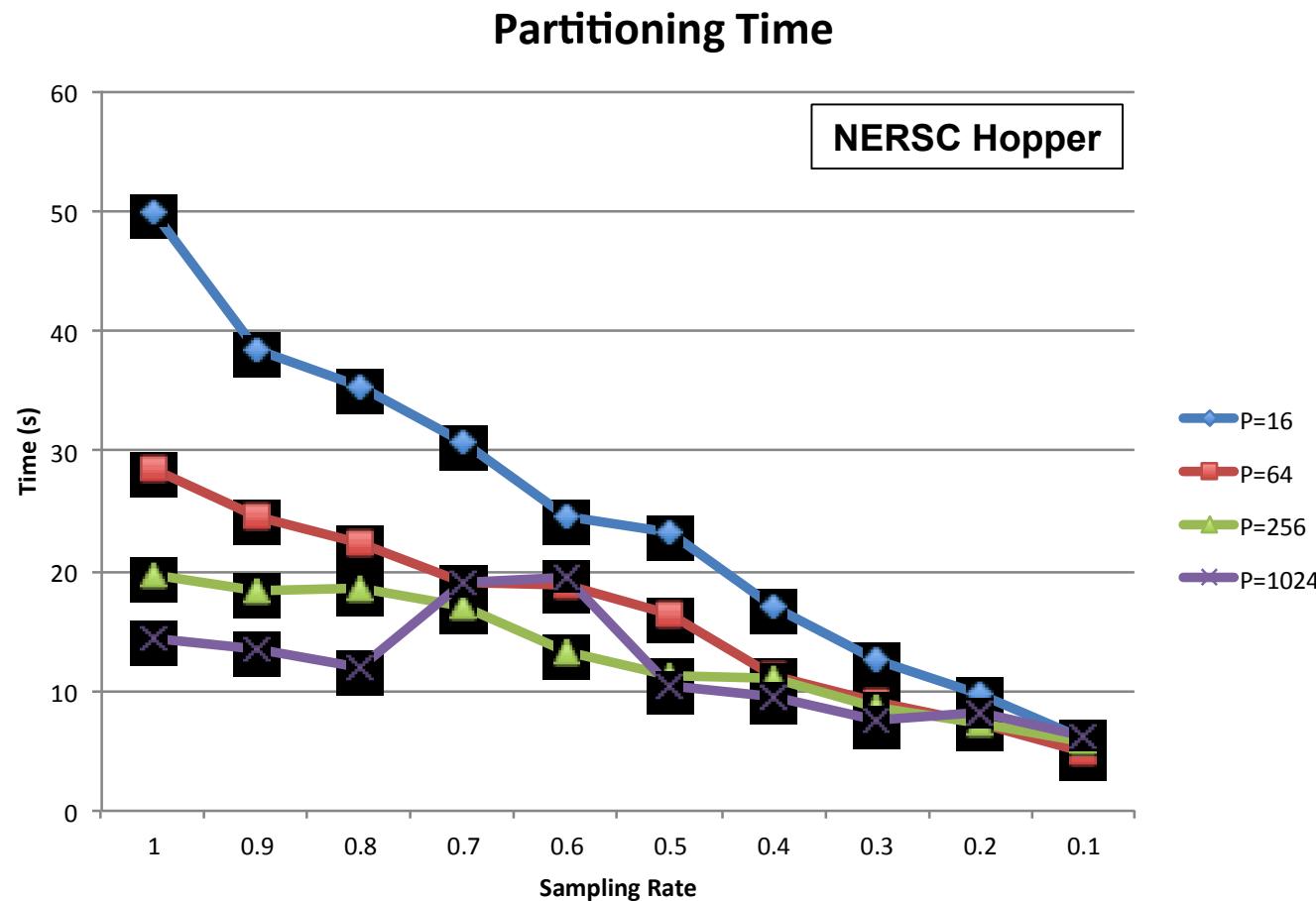
Hypergraph partitioning further reduces runtime

Results: Partitioning for Dynamic Graphs



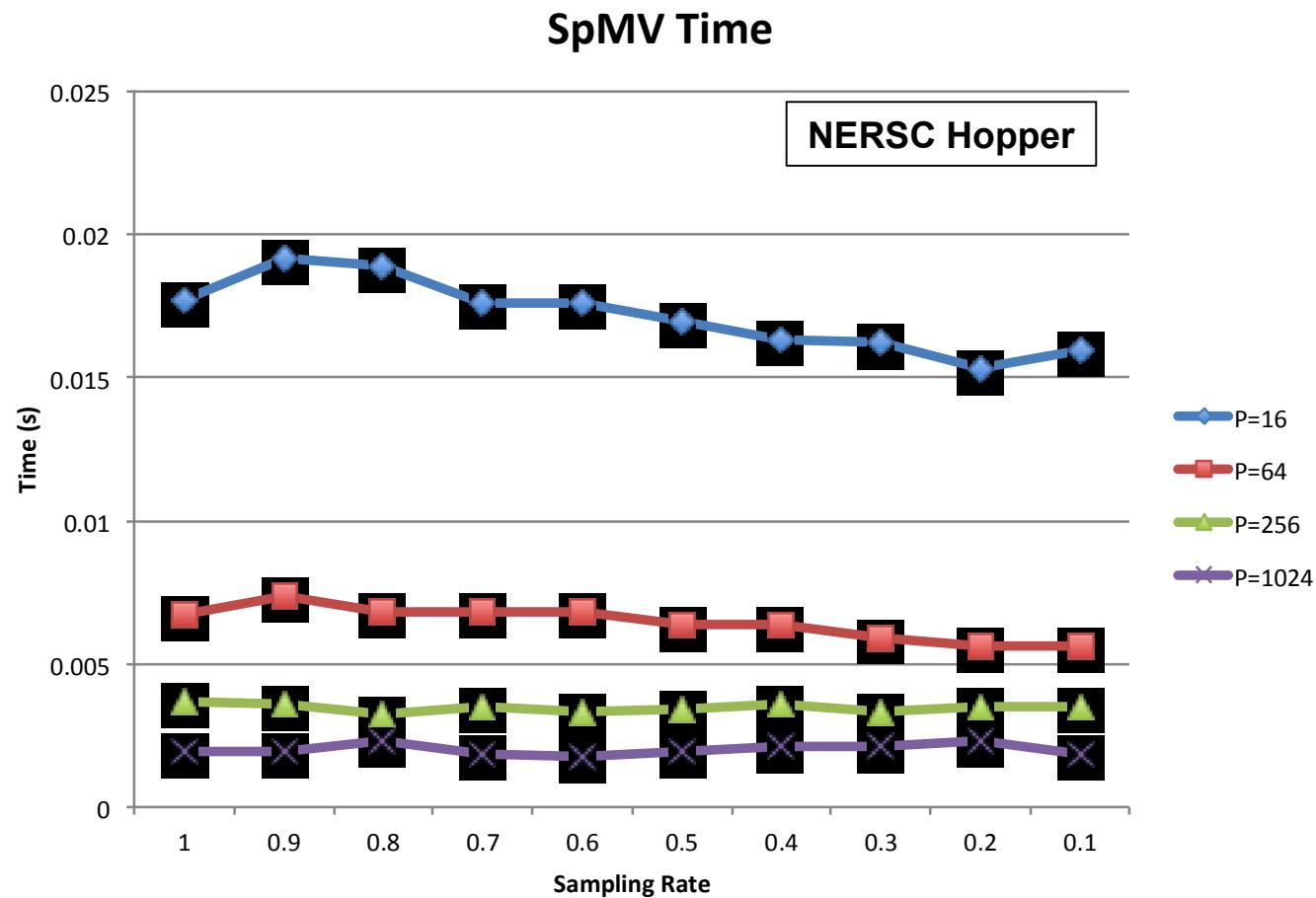
- $|e_0| = 0.3 |e_n|$
- 2D hypergraph surprisingly effective as edges are added to graph

com-youtube* Graph



Edge sampling greatly reduces partitioning time

com-youtube* Graph



Resulting SpMV time does not increase for modest sampling