

Exceptional service in the national interest

Energy Storage Analytics

Ray Byrne, Ph.D.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Energy Storage Analytics

- Estimating the value of energy storage
 - Production cost modeling (vertically integrated utility)
 - LP Optimization (market area)
 - Stochastic unit commitment/planning studies (vertically integrated utility)
- Control strategies for energy storage
 - Wide area damping control
 - Maximizing revenue
- Public policy: identifying and mitigating barriers
- Standards development
- Project evaluation
 - Technical performance
 - Financial performance
- Model development (e.g. for dynamic simulation)

Maximizing Revenue - Market Area

- Linear Program Optimization
 - MATLAB
 - Python/Cooper
- Typically look at the following revenue streams
 - Arbitrage
 - Arbitrage + Regulation
 - Allocate charge to avoid double counting
- Typically look at maximizing revenue
- Can incorporate cost data (if available)
 - Penalty for charge/discharge
 - Variable O&M costs

Maximizing Revenue - Market Area

- Assume price insensitive to supply (if not -> production cost modeling)
- Typically use 1 hour data
- Energy storage model – arbitrage

$$S_t = \gamma_s S_{t-1} + \gamma_c q_t^R - q_t^D \quad \forall t \in T$$

- Constraints on:
 - Total capacity
 - Maximum hourly charge/discharge quantity

$$0 \leq S_t \leq \bar{S}, \quad \forall t \in T$$

$$0 \leq q_t^R \leq \bar{q}^R, \quad \forall t \in T$$

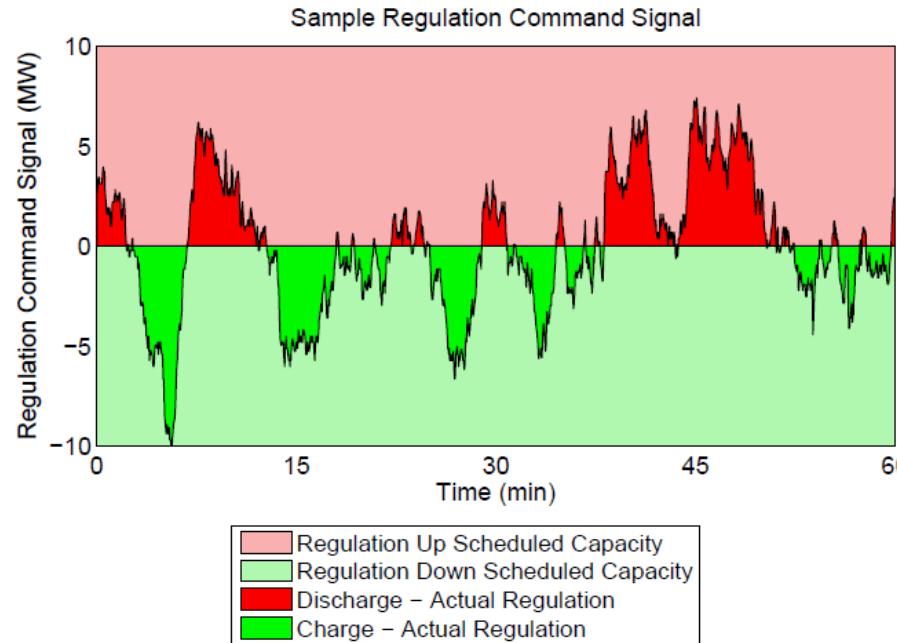
$$0 \leq q_t^D \leq \bar{q}^D, \quad \forall t \in T$$

Maximizing Revenue - Market Area

- Assume price insensitive to supply (if not -> production cost modeling)
- Typically use 1 hour data
- Energy storage model – arbitrage + regulation

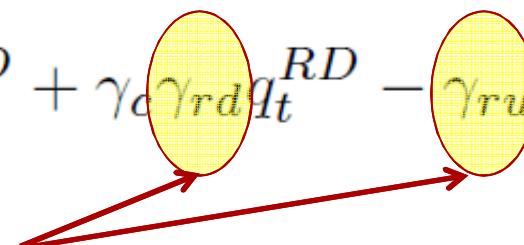
$$S_t = \gamma_s S_{t-1} + \gamma_c q_t^R - q_t^D + \gamma_c \gamma_{rd} q_t^{RD} - \gamma_{ru} q_t^{RU}$$

- Constraints on:
 - Total capacity
 - Maximum hourly charge/discharge quantity


$$0 \leq S_t \leq \bar{S}, \forall t \in T$$

$$0 \leq q_t^R + q_t^{RD} \leq \bar{q}^R, \forall t \in T$$

$$0 \leq q_t^D + q_t^{RU} \leq \bar{q}^D, \forall t \in T$$


Maximizing Revenue - Market Area

- Modeling regulation – need to assume fraction that is assigned

$$S_t = \gamma_s S_{t-1} + \gamma_c q_t^R - q_t^D + \gamma_c \gamma_{rd} q_t^{RD} - \gamma_{ru} q_t^{RU}$$

Account for fraction called

Maximizing Revenue - Market Area

- Cost function – arbitrage

$$\max \sum_{t=1}^T [(P_t - C_d)q_t^D - (P_t + C_r)q_t^R] e^{-rt}$$

- Cost function – arbitrage + regulation

$$\begin{aligned} \max \sum_{t=1}^T & [(P_t - C_d)q_t^D + (P_t^{RU} + \gamma_{ru}(P_t - C_d))q_t^{RU} + \\ & (P_t^{RD} - \gamma_{rd}(P_t + C_r))q_t^{RD} - (P_t + C_r)q_t^R] e^{-rt} \end{aligned}$$

Maximizing Revenue – Market Area

- Studied two regions
 - CAISO [1] (included sensitivity analysis to parameters)
 - ERCOT [2]
- Plant parameters
 - 32MWh
 - 8MW
 - Efficiency 80%
 - Regulation call fraction 50%

[1] R. H. Byrne, and C. A. Silva-Monroy, *Estimating the Maximum Potential Revenue for Grid Connected Electricity Storage: Arbitrage and Regulation*, SAND2012-3863, Sandia National Laboratories, Albuquerque, NM 87185, 2012.

[2] R. H. Byrne, and C. A. Silva-Monroy, “Potential Revenue from Electrical Energy Storage in the Electricity Reliability Council of Texas (ERCOT),” in IEEE Power and Energy Society (PES) General Meeting, Washington, DC, 2014.

Maximizing Revenue – Market Area

- Results for ERCOT (HB_Houston Node)

ARBITRAGE OPTIMIZATION RESULTS USING PERFECT KNOWLEDGE,
2011-2012, ERCOT HB_HOUSTON NODE.

Year	Revenue	% Discharging	% Charging
2011	\$1,054,905.61	18.86%	23.57%
2012	\$375,841.62	17.95%	22.44%

ARBITRAGE AND REGULATION OPTIMIZATION RESULTS USING PERFECT
KNOWLEDGE, 2011-2012, ERCOT HB_HOUSTON NODE.

Year	Revenue	% q^D	% q^R	% q^{RU}	% q^{RD}
2011	\$2,360,994.81	0.14%	0.81%	69.49%	85.84%
2012	\$928,265.14	0.10%	0.79%	63.90%	78.53%

ARBITRAGE STRATEGY BASED ON PREVIOUS DAY PRICES, 2011-2012,
ERCOT HB_HOUSTON NODE.

Year	Revenue	% of Maximum
2011	\$1,010,082.08	95.75%
2012	\$362,244.88	96.38%

ARBITRAGE AND REGULATION STRATEGY BASED ON PREVIOUS DAY
PRICES, 2011-2012, ERCOT HB_HOUSTON NODE.

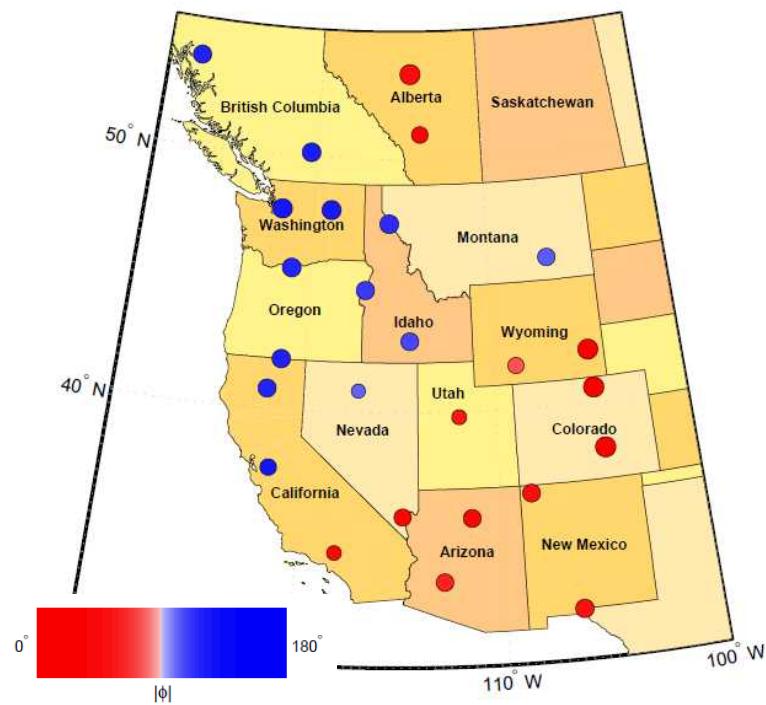
Year	Revenue	% of Maximum
2011	\$2,023,828.56	85.72%
2012	\$830,319.64	89.45%

Estimating Value – Vertically Integrated Utility

- Production cost modeling used to evaluate different scenarios
- “Value” of energy storage is the cost savings resulting from the operation of the energy storage system
- PLEXOS© (Energy Exemplar) production cost modeling software
- Sandia is also developing a stochastic unit commitment program based on COOPR (Python optimization software developed by Sandia)

<https://software.sandia.gov/trac/coopr>

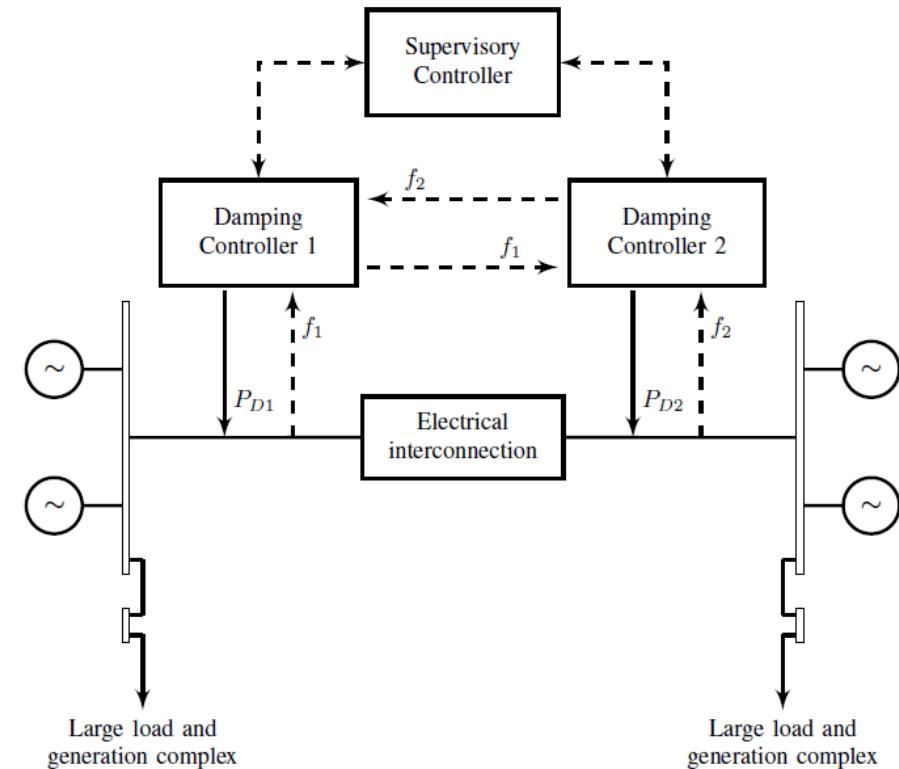
Estimating Value – Vertically Integrated Utility


- Sandia has performed studies for the following
 - Nevada Energy [1]
 - Southern Company [2]
 - Maui Electric Company [3]
- A study is currently under way for the Hawaiian Electric Company
- Typical cost savings come from being able to turn off expensive “must run” units (spinning reserve, regulation) and replace with energy storage

- [1] J. F. Ellison, D. Bhatnagar, N. Saaman *et al.*, *NV Energy Electricity Storage Valuation*, SAND2013-4902, Sandia National Laboratories, Albuquerque, NM 87185, 2013.
- [2] J. Ellison, D. Bhatnagar, C. Black *et al.*, *Southern Company Energy Storage Study: A Study for the DOE Energy Storage Systems Program*, SAND2013-2251, Sandia National Laboratories, Albuquerque, NM 87185, 2013.
- [3] J. Ellison, D. Bhatnagar, and B. Karlson, *Maui Energy Storage Study*, SAND2012-10314, Albuquerque, NM 87185, 2012.

Control Strategies for Energy Storage

- Inter-area oscillations are present in all large power systems
- Electro-mechanical oscillations
 - 0.2-0.8Hz
 - Can be lightly damped
 - 1996 west coast blackout partially attributed to undamped inter-area oscillations


0.37-Hz, North-South B Mode

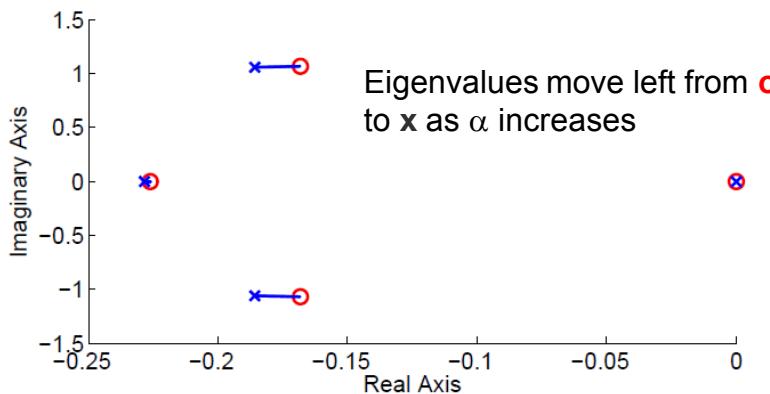
Bus	Amp.	Shape(Deg.)	Bus	Amp.	Shape(Deg.)
Ault	1.00	0.0	Monroe	0.80	126.3
Comanche	0.99	-2.1	Coulee	0.78	124.9
Laramie	0.95	2.1	Big Eddy	0.71	118.1
Genesee	0.92	-43.1	Nicola	0.71	122.4
Newman	0.66	-47.5	Taft	0.71	114.6
Moenkopi	0.58	-34.4	Malin	0.67	120.1
Four Corners	0.58	-45.6	Brownlee	0.65	110.3
Hassyampa	0.56	-60.6	Kemano	0.63	119.4
Mead	0.52	-32.7	Round Mt.	0.61	118.7
Langdon	0.45	-30.7	Midpoint	0.58	106.6
Brider	0.42	75.9	Colstrip	0.56	102.5
Mona	0.29	52.6	Tesla	0.45	128.2
Vincent	0.27	-26.8	Valmy	0.22	101.2

Control Strategies for Energy Storage

- Sandia is collaborating with the Bonneville Power Administration (BPA) to develop wide-area damping control algorithms (BPA Technology Innovation Program)
 - PDCI modulation
 - Distributed energy storage
- Straightforward control law
- Most effort is focused on the “supervisory control system”

Optimal Placement for Damping Control

- Two-area system model

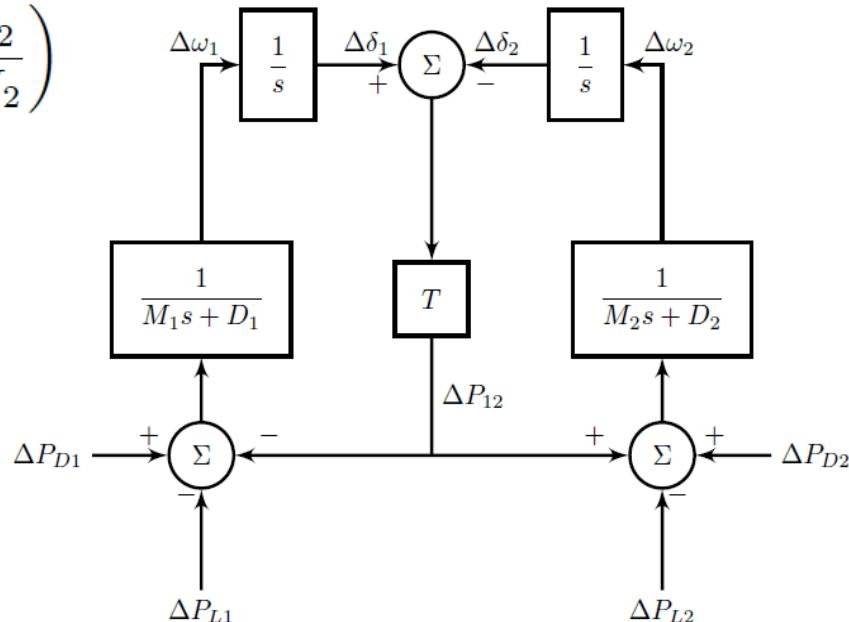

$$\Delta P_{D1} = -K\alpha(f_1(t) - f_2(t - \tau))$$

$$\Delta P_{D2} = -K(1 - \alpha)(f_2(t) - f_1(t - \tau))$$

- Solve for damping ratio

$$\zeta \omega_n \approx \frac{1}{2} \left(\frac{D_2}{M_2} + \frac{D_1}{M_1} + \frac{K(1 - \alpha)}{M_2} + \frac{K\alpha}{M_1} - \frac{D_1 + D_2}{M_1 + M_2} \right)$$

- Place storage in the area with the lower inertia [1]



[1]

R. H. Byrne, D. J. Trudnowski, J. C. Neely *et al.*, "Optimal Locations for Energy Storage Damping Systems in the Western North American Interconnect," in IEEE PES General Meeting, Washington, DC, 2014.

TWO-AREA SYSTEM MODEL QUANTITIES

Quantity	Description
M_i	Area i inertia
D_i	Area i damping
T	Synchronizing torque coefficient
ΔP_{Li}	Area i load variation
ΔP_{Di}	Area i damping torque
$\Delta \omega_i$	Area i change in speed
$\Delta \delta_i$	Area i change in angle

Project Evaluation

- Member of the data analysis team (DAT) for ARRA energy storage demonstration projects
 - Review project reports
 - Site visits
- Guidelines for testing energy storage systems [1]
 - Performance requirements for different applications
 - Recommend testing strategies
 - Analysis focuses on identifying system components from a control systems perspective
- Synergistic with commissioning activities (Dan Borneo)

[1] R. H. Byrne, M. K. Donnelly, V. W. Loose *et al.*, *Methodology to Determine the Technical Performance and Value Proposition for Grid-Scale Energy Storage Systems*, Sandia National Laboratories, Albuquerque, NM 87185, 2012.

Standards Development

- Working with PNNL to develop performance protocols for the energy storage industry
 - Micro-grids (completed)
 - Frequency regulation (completed)
 - Peak shaving (completed)
 - PV smoothing (in progress)
- Working to generate a U.S. standard based on the protocols
 - ANSI
 - NEMA
 - IEC
- Industry user group is test driving the protocols

Related Efforts

- Small signal stability analysis for high penetrations of renewables
- Coordination with wind/solar groups at Sandia

Summary- Energy Storage Analytics

- Identifying the “value” of energy storage systems
 - Market area
 - Vertically integrated utility
- Assessment of technical performance
- Control algorithms that increase value
 - Arbitrage
 - Arbitrage + regulation
 - Wide area damping control