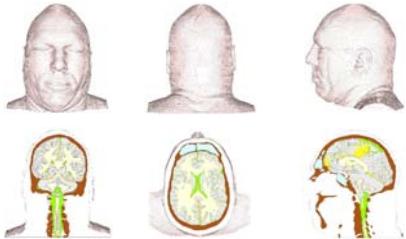


# Computer Simulation of Blast Injury, Behind Armor Blunt Trauma, and their Mitigation

P. Taylor, C. Cooper, R. Terpsma, and D. Dederman

Sandia National Laboratories, MS 1160, P.O. Box 5800, Albuquerque NM 87185, USA


## INTRODUCTION

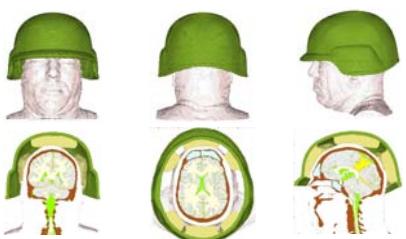
- Warfighter Personal Protective Equipment (PPE) development is based principally on laboratory/field testing of prototype designs
  - Testing usually restricted to protection assessment against ballistic projectiles (bullet, fragments)
  - Very little testing done on blast protection
- We have developed high-fidelity models and simulation tools to study wound injury to head, neck, & torso of warfighter
  - Advantage: Assess protective effectiveness of armor design without use of human cadavers or harm to expensive physical surrogates

## MODELS

### Digital Head-Neck Model

- Anatomically correct distributions of bone, white & gray brain matter, membranes (falk & tentorium), cerebral spinal fluid (CSF), sinus air, & scalp/muscle (1mm resolution)




### Digital Torso Model

- Anatomically correct distribution of bone, cartilage, intervertebral discs, spinal cord/fluid, airways, lungs, heart, vasculature/blood, stomach, liver, kidneys, spleen, muscle, & fat/skin (1mm resolution)



### Digital Helmet Models

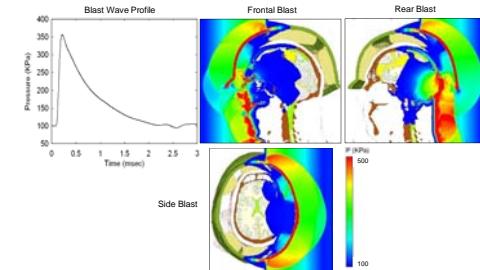
- Head-neck model wearing test helmet comprised of Kevlar shell & polyurethane foam pads (1mm resolution)



## CONSTITUTIVE MODELS

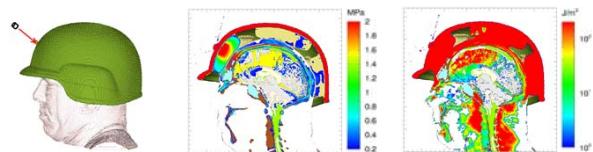
### Biological Materials

- Advanced equation-of-state (EOS) and deviatoric strength models employed to represent bone and soft tissue
  - Life-critical organs represented by finite-deformation, elastic or viscoelastic models
  - Fluid & fluid-saturated tissue represented by Tillotson-Brundage EOS
    - Accurately captures cavitation & associated effects


## COMPUTATIONAL SIMULATION METHODS

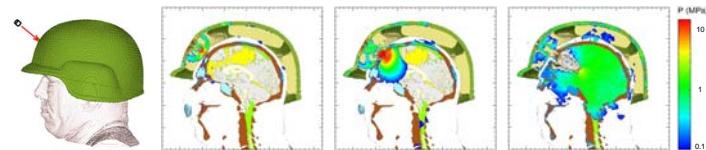
- Eulerian Methods**
  - Blast, Blunt Impact, Penetration using shock physics code CTH
- Lagrangian Methods**
  - Blunt Impact & Model validation with Sierra Mechanics code PRESTO
- Coupled Lagrangian-Eulerian Methods**
  - Blast; using CTH (Eulerian domain) coupled to PRESTO (Lagrangian domain), controlled by ZAPOTEC II

## SIMULATIONS


### Explosive Blast Exposure

- 360 KPa blast (260 KPa overpressure)
  - Leads to mild Traumatic Brain Injury (mTBI)




### Behind Helmet Blunt Trauma (BHBT)

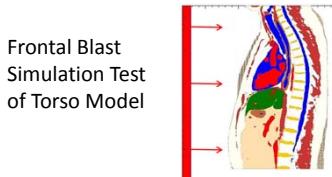
- Caused by ballistic projectile stopped by helmet
  - Intracranial waves transmitted into brain leading to TBI



### Projectile Penetration

- Caused by ballistic projectile perforating helmet
  - Intracranial penetration leading to open-head injury & brain trauma




## SUMMARY

### Demonstrated Capabilities

- Investigate details of wound injury mechanisms leading to TBI
- Identify specific wave physics variables leading to localized brain injury
  - Shear wave energy leading to tissue distortion & membrane tearing
  - Dilatational wave energy causing fluid cavitation & associated tissue damage (e.g., axonal cytoskeletal disruption of neurons)
- Conduct relative merit assessment of protective headwear (helmets)

### New Near-Term Capabilities

- Investigate wound injury mechanisms to life-critical organs in torso
- Torso model completed; currently undergoing testing & validation
- Conduct relative merit assessment of protective headwear

