
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

An Overview of Sandia
Lightweight Kernel
Operating System R&D

September 2, 2014

Kevin Pedretti
1423 – Scalable System Software

SAND2014-17328PE

Outline

 History of SNL Lightweight Kernel Operating Systems (LWK OS)

 Are LWKs still relevant?

 What we’re working on
 XPRESS project (FY13-FY15, DOE/ASCR X-Stack Program)

 Hobbes project (FY14-FY16, DOE/ASCR OS/Runtime Program)

 Power API and power management (CSSE, FY14 L2 Milestone)

 Task mapping (LDRD + CSSE)

 Conclusion

2

Large-Scale HPC Systems in General
 Distributed-memory MIMD

 Message passing used between nodes (MPI)

 Custom interconnect, leverage commodity technologies as much as possible

 Several node types, system software for each type specialized to task

 Big NNSA systems typically $100M - $200M procurements, some NRE funds

3

Compute Partition

> 10K Nodes

Login Partition

10’s of Nodes

I/O Nodes

100’s of Nodes

Runs Full Linux
Distribution

(SUSE, RedHat)

Runs Slimmed-Down OS,
Nodes Typically Diskless
(LWK, Customized Linux)

Runs Full Linux
Distribution, Optimized

for Storage I/O

Why a Lightweight Kernel?
 Scalable apps don’t ask for much from OS

 Relatively easy to support what they want

 Prevent non-scalable behavior early

 Minimize OS-induced overhead

 Inverted resource management
 Linux: You get what I want

 LWK: What do you want?

 Ability to tune, do HPC specific things
 Memory mgmt. and network stack integration

 Can’t separate OS from node-level architecture

 Reliability, less code fails less often

4

Apps & Libraries

Runtime Systems

OS

Hardware

Compute Node
System Software Stack,

OS Bypass

OS Noise Example
Black bars = OS doing something

Process 0
Process 1
Process 2
Process 3

Time 
Allreduce Allreduce Allreduce

SNL LWK Timeline (1/5)

 1993 – SUNMOS (Sandia + UNM + OS)
 Intel Paragon, 1840 compute nodes

 Replaced OSF/1 distributed OS, was really bad

 Huge success… why wouldn’t you want to double your available
memory and get 5x better network bandwidth?

 See http://pages.swcp.com/~mccurley/humor/sunmos_humor.html

 1997 – Cougar
 Intel ASCI Red / TFLOPS, 4536 compute nodes (2 CPUs ea.)

 SUNMOS was such a great success, let’s do it again

 Intel productized SUNMOS/Puma as Cougar

 SNL virtual node mode, basic OpenMP support

 SNL Portals 2.0 networking, “zero-copy” data movement

 As experiment ported Linux to Red; Cougar was much better

5

http://pages.swcp.com/~mccurley/humor/sunmos_humor.html
http://pages.swcp.com/~mccurley/humor/sunmos_humor.html

SNL LWK Timeline (2/5)

 2001 – Cplant Linux
 Ran on several clusters, largest Ross ~1800 nodes

 Let’s try Linux on the compute nodes

 Cplant idea was to build MPP style system out of commodity HW + SW

 Developed scalable job launch and system control mechanisms

 SNL Portals 3.3 – Linux memory management caused pain

 See Brightwell 2002
“Why Linux is a Bad Idea as a Compute Node OS (for Balanced Systems)”

6

SNL LWK Timeline (3/5)

 2004 – Catamount
 Red Storm, 12960 compute nodes

 We’re doing a LWK, period. It worked on Red.

 Ported Cougar -> Catamount

 SNL did most of work on port, with Cray assistance and productization

 Portals 3.3, Custom SeaStar interconnect, heavy SNL involvement

 Development of Red Storm was difficult

 Several near no-go decisions

 May 2005 press release warning Cray was about to be delisted:

“Cray said manufacturing-related charges and unusually high research costs for
its Sandia Red Storm program hurt results.”

 Turned out to be most successful Cray product line ever

 Cray productized Red Storm as Cray XT3

 Evolved through XT4, XT5, and XT6 generations

 Red Storm turned off in 2012, still running Catamount

7

SNL LWK Timeline (4/5)

 2007 – Cray ships Compute Node Linux Environment (CLE)
 Customers asking for Linux, desire to expand market

 Catamount seen as too difficult to maintain in parallel

 Set within 10% performance target, tested at ORNL

 CLE not full Linux, not what most people think of when you say “Linux”

Testing performed June 16-17, 2007 at ORNL

LWK
31% better

LWK
8% better

8

SNL Timeline (5/5)
 Kitten LWK LDRD (FY-08-10)

 Create “modern” open-source LWK platform

 Linux ABI compatible… compile on Linux, run on Kitten

 Support for multi-threading, POSIX Pthreads

 Explore use of hardware virtualization to support full-OS functionality

 Retain scalability and determinism of Catamount

 Get ready for next machine, find vendor to partner with

CTH Hydrocode running in VM

10

Kitten Architecture

Kitten SLOC
14K Core
13K Arch
14K Includes

SMARTMAP Intra-node Optimization
Eliminates Unnecessary Memory Copies
 Basic Idea: Each process on a node maps the memory of

all other processes on the same node into its virtual
address space

 Enables single copy process to process message passing
(vs. multiple copies in traditional approaches)

P0 P1 P2 P3

P0 P0 P0 P0

P1 P1 P1 P1

P2 P2 P2 P2

P3 P3 P3 P3

P0 P1 P2 P3

MPI Processes P0-P3

V
ir

tu
a

l A
d

d
re

s
s
 S

p
a

c
e

Virt Addr 0

Top of Virt
Addr Space

SMARTMAP Example

Single copy impact

MPI Exchange

SNL 2013 Patent, influenced Cray to use similar technique in their MPI

System Software@Sandia

• Established the functional partition
model for HPC systems

• Tailor system software to function
(compute, I/O, user services, etc.)

• Pioneered the research, development,
and use of lightweight kernel operating
systems for HPC

• Only DOE lab to deploy OS-level software
on large-scale production machines

• Provided blueprint for IBM BG/L,P,Q CNK

• Set the standard for scalable parallel
runtime systems for HPC

• Fast application launch on tens of
thousands of processors

• Significant impact in the design and of
scalable HPC interconnect APIs

• Only DOE lab to deploy low-level
interconnect API on large-scale
production machines

AWARDS:
• 1998 Sandia Meritorious Achievement Award,

TeraFLOP Computer Installation Team
• 2006 Sandia Meritorious Achievement Award, Red

Storm Design, Development and Deployment Team
• 2006 NOVA Award Red Storm Design and

Development Team
• 2009 R&D 100 Award for Catamount N-Way

Lightweight Kernel
• 2010 Excellence in Technology Transfer Award,

Federal Laboratory Consortium for Technology
Transfer

• 2010 National Nuclear Security Administration
Defense Programs Award of Excellence

12

Outline

 History of SNL Lightweight Kernel Operating Systems (LWK OS)

 Are LWKs still relevant?

 What we’re working on
 XPRESS project (FY13-FY15, DOE/ASCR X-Stack Program)

 Hobbes project (FY14-FY16, DOE/ASCR OS/Runtime Program)

 Power API and power management (CSSE, FY14 L2 Milestone)

 Task mapping (LDRD + CSSE)

 Conclusion

13

 There is still a Top-10 LWK-based system on Top-500 list,
LLNL/Sequoia IBM BlueGene/Q (#3)
 IBM is discontinuing BlueGene line, presumably CNK as well

 Several IBM CNK people now at Intel, pursuing “FusedOS” approach

 Cray heavily invested in Linux, not going to change
 Linux is running on Cielo compute nodes, world did not end

 Linux can be made to work with enough engineering effort

 Intel HPC “Pathfinding” group is doing something LWK-related

 Google is doing some non-Linux OS work, secretive, not HPC

 Unlikely Sandia will dictate a home-grown LWK again
 Paired with LANL through ACES and NERSC on big procurements

 Technical arguments for LWK not enough, 10% not enough

 Runtime system, abstraction layer R&D has higher potential payoff

Today: LWK Environment

14

 Lots of new hardware challenges to tackle
 2-level memory, node-local NVRAM, complex on-chip network

topologies, power management, heterogeneous cores, …

 LWK is a good vehicle for exploring solutions

 Still can’t separate OS from architecture
 BlueGene used embedded cores with weak MMU/TLB -> Linux sucked

 GPUs don’t run an OS, but do have a 20M+ SLOC driver stack + firmware

 D.E. Shaw Anton, Cray MTA/XMT, … so strange they can’t run a
traditional OS, need custom system software development

 Strange hardware capabilities, like non-cache-coherent core groups,
break traditional OS assumptions

 Ability to do HPC-specific things, without huge battle with
Linux “community”
 Examples: mmunotify patches, huge pages, OOM killer

 Cray does a ton of work on Linux kernel, pushes almost nothing back

Today: LWK Drivers Are Still Valid

15

In the Report from the Task Force on HPC
of the Secretary of Energy EAB, Aug. 10 2014

To best of my knowledge, we did not contribute this:
“Effective management of hardware resources requires the development of an
operating system tailored to the specific system architecture. The operating system
schedules selected resources (memory and processors) for the one or more concurrently
running applications. It must manage a hierarchy of memories with different
performance characteristics as well as input/output devices and network connections.
New algorithms to map data onto memories with predictable/known access patterns by
processors are needed. Dynamic remapping may enhance performance. It is likely that
the operating system, and possibly language compilers, will participate in energy
management, as well as managing routinely failing hardware, and possibly software,
elements.”

“Ideally, the operating system will monitor its own health and performance, reporting in
terms that permit administrators to incrementally tune the operation of the system to
attain higher performance and higher reliability. Building such an operating system for a
new architecture will be challenging. It is unlikely that extant operating system
software can be re-purposed to manage the resources of a new and novel architecture.
To extract the potential speed from a novel system, the operating system software
needs to be well matched to the hardware architecture in order to exploit its
capabilities.” 16

Linus Torvalds on Linux

 "I mean, sometimes it's a bit sad that we are definitely not
the streamlined, small, hyper-efficient kernel that I
envisioned 15 years ago...The kernel is huge and bloated, and
our icache footprint is scary. I mean, there is no question
about that. And whenever we add a new feature, it only gets
worse.” – Linus Torvalds in email discussion, September 2009
http://www.theregister.co.uk/2009/09/22/linus_torvalds_linux_bloated_huge/

 Don’t get me wrong, I love Linux.
Depend on it every day.

17

http://www.theregister.co.uk/2009/09/22/linus_torvalds_linux_bloated_huge/
http://www.theregister.co.uk/2009/09/22/linus_torvalds_linux_bloated_huge/
http://www.theregister.co.uk/2009/09/22/linus_torvalds_linux_bloated_huge/
http://www.theregister.co.uk/2009/09/22/linus_torvalds_linux_bloated_huge/
http://www.theregister.co.uk/2009/09/22/linus_torvalds_linux_bloated_huge/

Outline

 History of SNL Lightweight Kernel Operating Systems (LWK OS)

 Are LWKs still relevant?

 What we’re working on
 XPRESS project (FY13-FY15, DOE/ASCR X-Stack Program)

 Hobbes project (FY14-FY16, DOE/ASCR OS/Runtime Program)

 Power API and power management (CSSE, FY14 L2 Milestone)

 Task mapping (LDRD + CSSE)

 Conclusion

18

XPRESS and Hobbes Projects

 XPRESS
 SNL Role: Determine OS functionality needed to support emerging

runtime systems like HPX, Qthreads, OCR, …
Create and prototype “Runtime Interface to the Operating System
(RIOS) interface.

 DOE/ASCR Funding, FY13-15 (possible FY16 extension)

 SNL lead institution, PI: Brightwell, Pedretti LXK+RIOS lead

 $2.2 M budget/year, 3 Labs (SNL, ORNL, LBL), 5 Universities

 Hobbes
 SNL Role: Develop necessary OS/R interfaces and system services to

support complex simulation and analysis workflows. Leverage
virtualization to support multiple co-located OS/R stacks.

 DOE/ASCR Funding, FY14-16

 SNL lead institution, PI: Brightwell, Pedretti NVL thrust lead

 $2.2 M budget/year, 4 Labs (SNL, LANL, ORNL, LBL), 8 universities

19

Collaborators and SNL Staff

 SNL Staff
 XPRESS

 Ron Brightwell (overall PI)

 David DeBonis

 Kurt Ferreira

 Stephen Olivier

 Kevin Pedretti

 Dylan Stark

 Hobbes

 Ron Brightwell (overall PI)

 Mike Levenhagen

 Jay Lofstead

 Kevin Pedretti

 Brian Gaines

 Collaborators
 XPRESS

 Labs (3)

– Sandia, LBL, ORNL

 Universities (5)

– Indiana, Louisiana State, Houston,
North Carolina, Oregon

 Hobbes

 Labs (4)

– Sandia, LBL, LANL, ORNL

 Universities (8)

– Georgia Tech, Indiana,
North Carolina State, Northwestern,
Arizona, Berkeley, New Mexico,
Pittsburgh

20

XPRESS: LXK/RIOS Research Goals

 XPRESS aims to increase synergy of compute node OS kernel
and user-level runtime systems
 Today: Runtime must work around host OS, assume worst case

 Vision: Runtime cooperates with host OS, delegated more control

 Key RIOS drivers (Runtime Interface to the OS)
 Runtime needs guarantees about resource ownership and behavior

 OS needs way to shift resources between multiple runtimes

 Two-way interfaces needed for key resources

 Runtime tells OS what it needs, OS tells runtime what it gets

 OS remembers original request, notifies runtime if more resources
become available. Notifies runtime of resources need to be reclaimed.

 Event-based protocol to notify of dynamic events (e.g., power state
change, transient error)

 LXK = Kitten + RIOS

21

OpenUH Compiler PXC

XPRESS Programming Environment Vision

DSLs

HPX-5

Linux LXK / Kitten

HPX-3

HPX

Hardware

APEX

OpenUH Runtime Open MPI Runtime

Legacy
OpenMP

Legacy
MPI

C, C++ Compiler

XPI

RIOS

RCR

22

 Legacy support services

 Job management

 Memory management

 Thread management

 Network interface

 System topology and locality

 Introspection

 File I/O

 Power management

23

XPRESS: Areas Covered by RIOS

Two-level Thread Scheduling

 OS threads track hardware
contexts of execution
(e.g., physical cores)

 Runtime requests OS
threads from OS, runtime
schedules its task queues
onto OS threads

 RIOS defines protocol
runtime uses to ask for OS
threads, protocol OS uses
to tell runtime what it gets

LXK OS Kernel

HPX Process A HPX Process B

OS Thread
0

OS Thread
1

OS Thread
2

OS Thread
3

Give me
all OS

threads

You
get 2

Give me
all OS

threads

You
get 2

OS Thread
0

OS Thread
1

OS Thread
2

OS Thread
3

24

Two-level Thread Scheduling (2)

 OS remembers original request.
In this case, each HPX process
could use all available OS
threads but each initially
allocated only two

 HPX process A gives up an OS
thread, LXK decides to reallocate
it to HPX process B

 HPX process B initializes a new
task queue and starts scheduling
tasks on the new OS thread it
was allocated

LXK OS Kernel

HPX Process A

HPX Process B

OS Thread
0

OS Thread
1

OS Thread
2

OS Thread
3

I’m done
with OS
thread 0

OK,
thanks

Here’s
another

OS thread


Thanks!

OS Thread
1

OS Thread
2

OS Thread
3

OS Thread
0

25

Two-level Thread Scheduling (3)

 OS can ask a runtime for OS
threads back at any time
 Runtime must cooperate or

be killed by OS

 OS gives runtime some time
to react, move tasks off of
the OS threads being
returned

 In this example HPX
Process B arrives at some
time after HPX Process A;
OS allocates B two OS
threads that it reclaims
from A

LXK OS Kernel

HPX Process A

HPX Process B

OS Thread
0

OS Thread
1

OS Thread
2

OS Thread
3

I need 2
OS threads

back

OK, here’s
OS threads

2 and 3

Give me
all OS

threads

You
get 2

OS Thread
0

OS Thread
1

OS Thread
2

OS Thread
3

OS Thread
2

OS Thread
3

26

Outline

 History of SNL Lightweight Kernel Operating Systems (LWK OS)

 Are LWKs still relevant?

 What we’re working on
 XPRESS project (FY13-FY15, DOE/ASCR X-Stack Program)

 Hobbes project (FY14-FY16, DOE/ASCR OS/Runtime Program)

 Power API and power management (CSSE, FY14 L2 Milestone)

 Task mapping (LDRD + CSSE)

 Conclusion

27

Hobbes: Focusing on Application
Composition as Fundamental Driver
 More complex workflows are driving need for advanced OS services and capability

 Exascale applications will continue to evolve beyond a space-shared batch scheduled approach

 HPC application developers are employing ad-hoc solutions
 Interfaces and tools like mmap, ptrace, python for coupling codes and sharing data

 Tools stress OS functionality because of these legacy APIs and services

 More attention needed on how multiple applications are composed

 Several use cases

 Ensemble calculations for uncertainty quantification

 Multi-{material, physics, scale} simulations

 In-situ analysis

 Graph analytics

 Performance and correctness tools

 Requirements are driven by applications

 Not necessarily by parallel programming model

 Somewhat insulated from hardware advancements

28

Hobbes Has Seven Components

 Node Virtualization Layer

 Enclave OS

 Scheduling

 Programming Models

 Global Information Bus

 Resilience

 Power/Energy

29

Hobbes Team (NVL group in bold)

Institution Person Role

Georgia Institute of Technology Karsten Schwan PI

Indiana University Thomas Sterling PI

Los Alamos National Lab Mike Lang PI

Lawrence Berkeley National Lab Costin Iancu PI

North Carolina State University Frank Mueller PI

Northwestern University Peter Dinda PI

Oak Ridge National Laboratory David Bernholdt PI

Oak Ridge National Laboratory Arthur B. Maccabe Chief Scientist

Sandia National Laboratories Ron Brightwell Coordinating PI

University of Arizona David Lowenthal PI

University of California – Berkeley Eric Brewer PI

University of New Mexico Patrick Bridges PI

University of Pittsburgh Jack Lange PI

30

Hobbes: Composition Examples

App 1 App 1

shared shared

Filter Filter

VisualizationVisualization

Portals

UPC

MPI

Enclave 2
 Linux

Enclave 1
Kitten

Enclave 3
 Linux

Physical Node OS/R Instance Enclave

Legend

Net-
work

Com-
posi-
tion

Com-
posit-
ion Com-
posit-
ion Com-
posit-

ion Com-
posit-

ion Com-
posit-
ion

Com-
posit-

ion

Physical Nodes

Node Virtualization
Layers

Node OS/Rs

Enclave OS/Rs

Intra-node Composition Inter-node Composition

31

Example Use Cases:
• Coupling CTH + Paraview/Catalyst on same node

• CTH has few OS/R requirements
• Paraview/Catalyst has some “full-OS” dependencies
• Like previous in-transit case, but co-located like in-situ

• Coupling high fidelity simulation and low fidelity model
• Useful for combustion and fusion examples
• Tight coupling or loose coupling, elastic enclaves

• CASL multiphysics coupling, massive collisions
• LAMMPS and SmartPointer Analysis Pipeline
• Goldrush-style cycle stealing for analysis

Why Node Virtualization Layer?

 Flexibility, support multiple OS/R stacks simultaneously
 There is likely to be no one-size-fits-all OS/R stack, lots of exploration

 Co-location of VMs, efficient sharing of resources between enclaves

 Native environment freed from legacy constraints

 Low overhead
 Our past work has shown CPU and memory overheads negligible

 Network I/O is still an issue, but tractable

 Industry momentum
 Virtualization has been commoditized, is everywhere

 Academic and student mindshare, where the jobs are

 Mostly orthogonal to “FusedOS” approach others are taking
 FusedOS could run in NVL VM or natively, in the same machine

 NVL could be co-designed with FusedOS

32

Hobbes NVL Has Multiple Levels of Virtualization

Virtual Linux
Runtime

Native LWK
Environment

Guest OS/R
Stack

Optimized for
NVL

Guest OS/R
Stack

No NVL
Optimizations

Guest OS/R
Stack

NVL HW
Emulation

“Native”
Guest OS/R

Guest OS
modified to
cooperate
with NVL,
Runs on

Bare Metal
Hobbes NVL

(Node Virtualization Layer)

 Existing Hypervisors typically support one level, strict isolation

 NVL couples LWK “native” runtime with guest OS/R stacks

Application Application Application Application Application

33

Hobbes NVL Provides Composition Mechanisms

Virtual Linux
Runtime

Native LWK
Environment

Guest OS/R
Stack

Optimized for
NVL

Guest OS/R
Stack

No NVL
Optimizations

Guest OS/R
Stack

NVL HW
Emulation

“Native”
Guest OS/R

Guest OS
modified to
cooperate
with NVL,
Runs on

Bare Metal
Hobbes NVL

(Node Virtualization Layer)

Inter-OS/R Stack
Memory Mapping / Sharing

(e.g., XPMEM)

Efficient Inter-OS/R
Stack Networking

(e.g., Portals4, Nessie)

Analysis
App

Simulation
App

Memory
Snapshots

(e.g., Multi-buffer)

Burst Buffer
Proxy

Simulation
App

I/O-based
Composition
(e.g., ADIOS

Key/Value
Store

34

Hobbes: NVL Current Status

 NVL is booting on Cray XK6 Curie testbed at Sandia
 Able to start multiple enclaves on a single node

 Able to map memory between enclaves with XPMEM and TACSM

 Networking is now critical item, working to expose Cray uGNI
networking APIs to enclaves

 Getting ready for testing on ORNL/Titan Cray XK6
 30M hours through ALCC, ability to reboot system into NVL

 Lining up test cases, mini-workflow examples

 First tests planned in October timeframe, before SC

 Interested in comparing three scenarios

 Boot NVL native, run Cray Linux in NVL enclave (recreate VEE’11 tests)

 Boot CNL native, uses Pisces to boot multiple NVL-managed enclaves

 Boot NVL native, test native LWK environment at scale

35

Cores

Socket 1

Memory

1 2

3 4

Cores

Socket 2

5 6

7 8

Memory

Linux Offline Kitten

NIC Infiniband SATA

PCI

36

Cores

Socket 1

Memory

1 2

3 4

Cores

Socket 2

5 6

7 8

Memory

Linux Offline Kitten

NIC Infiniband SATA

PCI

37

Cores

Socket 1

Memory

1 2

3 4

Cores

Socket 2

5 6

7 8

Memory

Linux Offline Kitten

NIC Infiniband SATA

PCI

38

Cores

Socket 1

Memory

1 2

3 4

Cores

Socket 2

5 6

7 8

Memory

Linux Offline Kitten

NIC Infiniband SATA

PCI

39

Cores

Socket 1

Memory

1 2

3 4

Cores

Socket 2

5 6

7 8

Memory

Linux Offline Kitten

NIC Infiniband SATA

PCI

40

Cores

Socket 1

Memory

1 2

3 4

Cores

Socket 2

5 6

7 8

Memory

Linux Offline Kitten

NIC Infiniband SATA

PCI

41

Cores

Socket 1

Memory

1 2

3 4

Cores

Socket 2

5 6

7 8

Memory

Linux Offline Kitten

NIC Infiniband SATA

PCI

42

 Problem

 Mixing cloud and HPC workloads on the same system leads
to sub-optimal performance for all

 Linux has high run-to-run performance variability

 Job interference when resources are oversubscribed

 Solution

 Use Pisces framework to partition a node’s resources, run
different OS kernel in each partition

 Commodity workloads run in Linux OS partition,
HPC workloads run in lightweight kernel (LWK) Kitten OS
partition

 Linux and Kitten OS kernels run as co-kernels, modified to
use Pisces framework for cooperation

 Recent Results

 Pisces shown to improve performance, reduce variability

 Ran HPCCG and CloverLeaf mini-apps, compared to native
runs in Linux and guest runs in KVM and Xen hypervisors

 Runtime CDFs shown in right plots (Co-Kernel = Pisces)

 Impact

 Can deploy lightweight OS environments on commodity
cloud platforms, achieve LWK performance and consistency

Pisces: A Framework for Composing
Operating Systems

Results from Jack Lange and Brian Kocoloski

Outline

 History of SNL Lightweight Kernel Operating Systems (LWK OS)

 Are LWKs still relevant?

 What we’re working on
 XPRESS project (FY13-FY15, DOE/ASCR X-Stack Program)

 Hobbes project (FY14-FY16, DOE/ASCR OS/Runtime Program)

 Power API and power management (CSSE, FY14 L2 Milestone)

 Task mapping (LDRD + CSSE)

 Conclusion

44

 DOE is shooting for 20 Megawatts (MW) for an ExaFLOPS

 At $0.10 per KWh, each MW costs $876K per year
 Rule of thumb => $1M per MW-year

 1 EFLOPS system @ 20 MW = 50 GFLOPS/W
 HPL on state-of-the-art 12-core Intel Ivy Bridge => 1.4 GFLOPS/W

 HPCG on same system => 0.045 GFLOPS/W

 HPCG off by a factor of > 1000x, HPL off by a factor of ~36x

 Hardware trends
 Dynamic voltage and frequency scaling (DVFS)

 Finer-grained power control (e.g., integrated VRM on Haswell)

 Power capping – do not exceed wattage for some time window

 Power measurement capabilities – power and energy counters

 Active power management – on-die power processor + firmware

 Dark silicon – what hardware should I turn on? Who decides?

45

PC * F *V 2

OS + Runtime (+App?) Will Have To Manage Power Budgets

Power Will Limit Performance

46

IBM BlueGene/P +
IBM Roadrunner Era

IBM BlueGene/Q

ATI Radeon

Intel Phi

Nvidia
K20x

Power Efficiency Trends (Green500)

PowerAPI Fills an Important Gap

47

 Need a portable API for measuring and controlling power
 Today there are several power interfaces, every system is different

 This makes it hard to write tools, add power measurement to apps, …

 SNL developed a Power API specification to fill this gap, with
input from vendor community (FY14 L2 milestone)
 Covers broad spectrum of

use cases, from platform-
level, to resource manager,
to runtime system, to OS,
to applications

 Will be implemented for
upcoming Trinity system

 Expect to remain available
on future DOE/NNSA
ATS systems

 Will evolve over time

Power API Has Vendor Input

48

 Held initial review meeting with vendors July 2014 at CSRI

 Wider-audience meeting in Denver for public comment September 2014

49

 Multiple actors can interact
with the system at different
levels

 Each interaction represents
an interface that is defined
in the PowerAPI

Power API Covers Many Use Cases

50

 Hierarchy of objects,
discovered at runtime
 Base system description

 Vendors extended description,
vendors can add their own
objects

 Set/Get attributes on objects:
 P-state, C-state, S-state,

Power, Current, Voltage,
Max_Power, Min_Power,
Frequency, Energy, Temp

 Metadata interface to
provide detail on what an
attribute means (e.g., the
accuracy of measurement)

Power API Provides an Object Model

HPCG on Volta Cray XC30, GFLOPS

51

1 MPI Process Per Core, Weak Scaling, 104x104x104, 600 second run
1 Volta Compute Node = Intel 12-core Ivy Bridge 2.4 GHz (E5-2695 v2) x 2 sockets
Peak: 460.8 GFLOPS, ~ 80 GB/s memory bandwidth

HPCG on Volta Cray XC30, Power

52

Average Power increases with P-state frequency
Turbo-boost is an outlier, maximum Turbo-boost frequency is 3.2 GHz

HPCG on Volta Cray XC30, GFLOPS/W

53

Curve rolls over, optimal point at 16 cores, 1.8 GHz
HPCG stresses memory system, shows memory system fails to feed all cores

HPCG on Volta Cray XC30, Power Cap

54

Plot shows maximum performance obtainable for a given power budget.
For example if 135 W cap, should run @ 1.4 GHz with 8 cores (Turbo would be silly)
This plot will vary part to part due to manufacturing variability, TBD how much

HPL on Volta Cray XC30

55

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 6 8 10 12 14 16 18 20 22 24

G
F

L
O

P
S

Number of Processor Cores

Cores vs. GFLOPS for Various P-states

(Turbo) 2.4 GHz
(No Turbo) 2.4 GHz

2.2 GHz
2.0 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2 4 6 8 10 12 14 16 18 20 22 24

G
F

L
O

P
S

p
e
r

W
a

tt

Number of Processor Cores

Cores vs. GFLOPS per Watt for Various P-states

(Turbo) 2.4 GHz
(No Turbo) 2.4 GHz

2.2 GHz
2.0 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 75 100 125 150 175 200 225 250 275 300 325

G
F

L
O

P
S

Power Cap (Watts)

Power Cap vs. GFLOPS for Various P-states

(Turbo) 2.4 GHz
(No Turbo) 2.4 GHz

2.2 GHz
2.0 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
g
e

P
o

w
e

r
(W

a
tt

s)

Number of Processor Cores

Cores vs. Average Power for Various P-states

(Turbo) 2.4 GHz
(No Turbo) 2.4 GHz

2.2 GHz
2.0 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

 PowerAPI provides portable power measurement and control
interfaces, covers full spectrum of platform to application

 Working to understand power usage of our applications

 Working to understand software-implications of power mgmt.
 MPI model fairly static, time consuming to find optimal operating point

 Task-based runtime systems have more elasticity; can dynamically apply
DVFS, reallocate power budgets, and/or shut things off based on
observed behavior and system-level power cap reconfigurations

 OS must provide suitable mechanisms to runtime system(s), possibly
coordinate between multiple runtime systems

 Goal is to achieve maximum performance subject to a given
power constraint; expect to be power limited in near future
 Upcoming Trinity system will not be power-limited

 Trinity contract includes NRE $ to get ready for power-limited,
collaboration of Cray, SNL, and LANL (SNL PI: Laros)

56

Power Takeaways

Outline

 History of SNL Lightweight Kernel Operating Systems (LWK OS)

 Are LWKs still relevant?

 What we’re working on
 XPRESS project (FY13-FY15, DOE/ASCR X-Stack Program)

 Hobbes project (FY14-FY16, DOE/ASCR OS/Runtime Program)

 Power API and power management (CSSE, FY14 L2 Milestone)

 Task mapping (LDRD + CSSE)

 Conclusion

57

Scalable Networks Are Sparse

1997 – 2006
SNL ASCI Red

Intel
Custom Network

3-D Mesh

38 x 32 x 2

4510 Nodes

3.15 TFLOPS/s

2004 - 2012
SNL Red Storm

Cray XT3
SeaStar

3-D Mesh

27 x 20 x 24

12960 Nodes

284 TFLOP/s

2011 –
ACES Cielo

2013 –
NERSC Edison

Cray XE6
Gemini

3-D Torus

16 x 12 x 24

8944 Nodes

1374 TFLOP/s

Cray XC30
Aries

Dragonfly

3-Levels: 16, 6, 14

5192 Nodes

2390 TFLOP/s

58

BW / Injection Ratios Getting Worse

1997 – 2006
SNL ASCI Red

Intel

Total Node Injection:
1443 GB/s

Total Network (all links):
4752 GB/s

Ratio: 3.3

2004 - 2012
SNL Red Storm

SeaStar / 3D Mesh

22 TB/s

357 TB/s

16.2

2011 –
ACES Cielo

2013 –
NERSC Edison

Gemini / 3D Torus

55 TB/s

281 TB/s

5.1

Aries / Dragonfly

48 TB/s

156 – 204 TB/s

3.3 – 4.25

59

 MiniGhost is a proxy
application, represents CTH
full application

 Explicit time-stepping,
synchronous communication,
27-point stencil across 3-D
grid

 Dark Red Curve:
Original configuration
scaled poorly after 16K cores
(1024 nodes, 512 Geminis)

 Light Red Curve:
Reorder MPI rank to node
mapping to reduce off-node
communication

Original: 1x1x16 ranks/node

Reorder: 2x2x4 ranks/node

Interconnect is a 3-D torus.
Application talks to nearest 3-D neighbors.

Should be match made in heaven,
So what’s going on?

60

Example Case of “Bad” Task Mapping

Data from Courtenay Vaughan and Richard Barrett

Task
Mapping
Algorithm

P0

P2

P1

P3

N0 N1 N2 N3

N0 N1 N2 N3

P0 P1 P3 P2

Application Provides
or OS/Runtime Constructs

Communication Graph

System Topology Model

Algorithm Outputs New
Mapping of Tasks to

System Topology
(OS can transparently migrate

tasks between cores within node)

61

Task Mapping Example

MiniGhost Scalability is Improved by
Task Mapping

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

8K 16K 32K 64K

C
o

m
m

un
ic

at
io

n
T

im
e

(s
)

Number of Processors

None
Group
Geom
LT_Recursive
LT_Greedy
LT_Greedy_Route

 MiniGhost configuration

 Bulk synchronous mode

 27-point stencil 3-D grid

 Weak scaling mode

 Runs on Cielo, MPI ppn=16

 Avg. of 5 production runs,
error bars are standard
deviation

 Observations

 Reordering for multicore important,
still upticking (“Group”)

 Minimize surface area by putting 2x2x4 subprob per node vs. 1x1x16

 Leveraging geometric information pays off in this case

 But, not all applications will have geometric information

 Libtopomap’s recursive bisection strategy is its best in this case, similar to
reordering for multicore (LT uses Parmetis internally to do multicore ordering)

MiniGhost Communication Time

62

From IPDPS’14 Paper, M. Deveci, et al.
FY12-14 LDRD (PI: Karen Devine)

Task Mapping Impacts Communication

 Changing the mapping of
MPI processes to nodes
affects off-node
communication

 Used Gemini tile counters
to measure traffic injected
on the host links

 The reordered “Remap”
scheme (2x2x4) reduces
off-node communication
by more than a factor of
2x compared to the
original “No-Remap”
scheme (1x1x16)

Per-Gemini Bytes Injected into Network

63

Another Bad Task Mapping Example
Default on Volta (all Cray XC30’s?) is to fill up a NUMA node before moving onto the
next. Tasks that spill over to the second NUMA node complete quickly, then wait for
the overloaded NUMA node to complete => bad load balance due to bad task
mapping

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16 18 20 22 24

G
F

L
O

P
S

Number of Processor Cores

Cores vs. GFLOPS for Various P-states

(Turbo) 2.4 GHz
(No Turbo) 2.4 GHz

2.2 GHz
2.0 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

64

Good Intra-Node Task Mapping Bad Intra-Node Task Mapping

Overtime: A Benchmark for Analyzing
Performance Variation due to Network
Interference

65

 Run-to-run network
performance variation is
a concern
 Cray Gemini significant

 Cray Aries likely some

 In some cases, can
minimize by observing
interference and
dynamically adapting,
calculate new task
mapping

 Plot shows series of 14
Overtime benchmark
runs on Blue Waters,
spread apart at 1 hour
intervals

Latency Over Time
Runs are spaced at 1 hour intervals

Work with Ryan Grant and Ann Gentile

Task Mapping Takeaways

 Task mapping has a significant impact on data movement

 Contention for shared resources can lead to performance
variability

 Have been looking at task mapping in the context of inter-
node performance optimization, getting experience and
understanding

 In future, on-chip networks will have similar characteristics.
OS and Runtime task mapping will likely be important
 Today’s operating systems (Linux) are not aware of the application

communication graph, do basic load balancing of tasks across CPUs

 Intra-node task mapping is easier than inter-node task mapping, likely
a lot lower overhead

66

Outline

 History of SNL Lightweight Kernel Operating Systems (LWK OS)

 Are LWKs still relevant?

 What we’re working on
 XPRESS project (FY13-FY15, DOE/ASCR X-Stack Program)

 Hobbes project (FY14-FY16, DOE/ASCR OS/Runtime Program)

 Power API and power management (CSSE, FY14 L2 Milestone)

 Task mapping (LDRD + CSSE)

 Conclusion

67

Conclusion

 Hobbes and XPRESS projects continuing SNL LWK R&D
 XPRESS: Increase synergy of compute node OS and runtime systems

 Hobbes: OS/R functionality needed to support application composition

 Path of least resistance to impact, demonstrate benefit via large-scale
testing, roll ideas into vendor’s existing system software stack

 Power API provides portable interfaces for power management

 Operating systems and runtime systems becoming more
dynamic and adaptive, must provide support for more diverse
applications and workflows

68

Acknowledgements

 Ron Brightwell

 Jack Lange

 Jim Laros

 Ryan Grant

 XPRESS, Hobbes, PowerAPI, and RAAMP teams

69

Backup

What is a Lightweight Kernel? (LWK)
 LWK is one component in the

overall machine operating system
 Relies on full-service OS/Linux

functionality elsewhere in system

 Minimizes OS and runtime
overhead, exposes full HW
capability

 Sometimes called a “Compute Node OS”
 A bit of a misnomer, more like an application runtime

 Derives from partition model: specialize HW/SW for compute nodes,
service nodes, login nodes, I/O nodes, etc.

 To a first order, goal is to deliver maximum hardware
performance to scalable HPC applications
 Trade functionality for performance

 Extends beyond MPI (threads, OpenMP, SHMEM, UPC, …)

71

Compute Nodes
running LWK

Service
Nodes
running
Full OS
(Linux)

Distributed Memory MIMD
Message Passing Programming Model

Node Memory Hierarchy is Evolving

Cielo
2010

AMD “MagnyCours”

M
E

M
 8

 G
B

L
3

$
 6

 M
B L2

L2

L2

L2

L1

L1

L1

L1

CPU

CPU

CPU

CPU

M
E

M
 8

 G
B

L
3

$
 6

 M
B

L2

L2

L2

L2

L1

L1

L1

L1

CPU

CPU

CPU

CPU

M
E

M
 8

 G
B

L
3

$
 6

 M
B

L2

L2

L2

L2

L1

L1

L1

L1

CPU

CPU

CPU

CPU

M
E

M
 8

 G
B

L
3

$
 6

 M
B L2

L2

L2

L2

L1

L1

L1

L1

CPU

CPU

CPU

CPU

Bytes/FLOPs:
0.21 .02 (?)

NUMA
(even within socket)

Exascale (?)
2022 (?)

CPU / GPU / APU (?)

Registers

L1/Scratchpad

L2

L3

L4 / Fast Memory

Non-volatile Memory
(secondary storage, in address space, ?)

Main Memory

Node-level Programming is Getting (a lot) Harder

73

ASCI Red / TFLOPS (1997)

Red Storm Quad Core (2008)

Cielo (2011)

Trinity KNL/Phi (2016)
50+cores, 4 hw_threads/core
16 FLOPS/clock/core
2-level HMC+DRAM memory

Single core (2 sockets)
1 FLOP/clock/core
Uniform memory access

16-cores, 4 FLOPS/clock/core, NUMA

4-cores
4 FLOPS/clock/core
Uniform memory access

DDOT
WAXPY

SpMV 3DStencil MMUL3DFFT

Must deal with Task-level Parallelism (TLP), Single-Instruction-Multiple-Data (SIMD | SIMT),
Core-level Parallelism (CLP), Architecture-level Parallelism (ALP), Network-level Parallelism (NLP),
Memory-level Parallelism (MLP), Cache topology, Non-uniform memory access (NUMA), N-level memory, …

LWK Timeline Summary
 1991 – Linux 0.02

 1993 – SUNMOS LWK for Paragon (Sandia + UNM + OS)
 Replaced Intel’s really bad OSF/1 (used all node’s mem, 17% net perf)

 SUNMOS 250 KB/node memory, 85% of network’s peak performance

 1994 – Linux 1.0

 1997 – ASCI Red, Puma/Cougar LWK, Portals 2.0

 1999 – Cplant, Linux-based OS, Portals 3.0

 2004 – Red Storm, Catamount LWK, Portals 3.3

 2004 – IBM develops CNK LWK, modeled on Catamount

 2007 – Cray ships Compute Node Linux (CNL / CLE)

 2008 – Kitten LWK, explore virtualization, LDRD FY08-10

 2013 – Hobbes Node Virtualization Layer (NVL)
 NVL derived from Kitten LWK and Palacios Hypervisor

74

Four+ Decades of UNIX
23 Years of Linux

75

Operating System = Collection of software and APIs
Users care about environment, not implementation details

LWK is about getting details right for scalability

Kitten LWK Implementation

 Monolithic, C code, GNU toolchain, Kbuild configuration
 Core Kernel 12K SLOC, x86_arch 12K SLOC, include 22K SLOC

 Supports x86-64 architecture, porting to ARM
 Boots on standard PC architecture, Cray XE, and in virtual machines

 Boots identically to Linux (Kitten bzImage and init_task)

 Repurposes basic functionality from Linux
 Hardware bootstrap

 Basic OS kernel primitives (lists, locks, wait queues, etc.)

 Directory layout similar to Linux, arch dependent/independent dirs

 Custom address space management and task management
interfaces
 User-level API for managing physical memory, building virtual address

spaces

 User-level API for creating tasks, which run in virtual address spaces
76

Memory Management

 Simple, static virtual to physical mapping
 Eliminates non-determinism

 Enables straightforward use of large page sizes

 Enables optimization in network stack

 Physical memory managed by user-level process

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

General-Purpose OS, Demand Paging Kitten (+ other LWKs)

Multiphysics Example

Multiphysics Example (cont’d)

Multiphysics Example (concl’d)

OS Influences

 Lightweight OS

 Small collection of apps

 Single programming model

 Single architecture

 Single usage model

 Small set of shared services

 No history

 Puma/Cougar/Catamount

 MPI

 Distributed memory

 Space-shared

 Parallel file system

 Batch scheduler

81

Hobbes Exploring Spectrum of Virtualization

 Virtualization doesn’t have to be “big and heavy”

 Don’t have to trap everything

 VMM can setup paths to hardware, then get out of way

 There are multiple virtualization architectures, not just one

 Hobbes NVL team working across spectrum (Blue items, research in Light Blue)

LWK
Virtual Linux
Evironment

(Kitten, CNK)

LWK
Custom

(Catamount,
HybridVM)

Lightest
Weight

Heaviest
Weight

Fused OS
Multiple-native

OSes
(Pisces, Argo)

Para-virtual
Implicit,

VMM Changes
Guest OS

(Gears, Guarded
Modules)

Para-virtual
Explicit,

Guest OS Modified
or Augmented

(Orig. Xen,
Device Drivers)

Full HW VM
Runs Unmodified

Guest OSes, Passthru
(Palacios, KVM, …)

Software Virt
Emulate HW, Binary

Translation, …
(Qemu, Vmware,

Emulate HW Trans
Memory pre-product)

82

LWK Timeline – SUNMOS (1993)
 SUNMOS on Intel Paragon (Sandia + UNM + OS)

 Intel supplied OSF/1, distributed OS, really bad
 Used over 50% of compute node’s memory (8-12 MB of 16 MB)

 Limited network bandwidth to 35 MB/s, peak was ~200 MB/s

 => SUNMOS created out of necessity, huge success
 250 KB memory footprint

 170 MB/s network bandwidth

 “Field guide to SUNMOS”
http://pages.swcp.com/~mccurley/humor/sunmos_humor.html

83

Intel Paragon (1993)
Peak: 140 GFLOPS
Compute Nodes: 1840 (3680 Intel i860 CPUs)
Total Memory: 40 GB
Network Link: 200 MB/s
Power: Unknown
System SW: SUNMOS LWK / Portals

http://pages.swcp.com/~mccurley/humor/sunmos_humor.html
http://pages.swcp.com/~mccurley/humor/sunmos_humor.html
http://pages.swcp.com/~mccurley/humor/sunmos_humor.html

LWK Timeline – Cougar (1997)

84

Intel ASCI Red / TFLOPS (1997)
Peak: 1800 GFLOPS (1999 -> 3150 GFLOPS)
Compute Nodes: 4536 (9072 Intel Pentium Pro CPUs)
Total Memory: 1212 GB
Network Link: 400 MB/s, 15 us Latency
Power: 800 KW
System SW: Cougar LWK, Portals 2.0

LWK Timeline – Cplant Linux (2001)

85

Cplant / Ross (2001)
Peak: 1782 GFLOPS (Linpack 996 GFLOPS)
Compute Nodes: 1800 (DEC Alpha 21264 EV6)
Total Memory: 448 GB
Network Link: 100 MB/s, 60 us
Power: Unknown
Compute OS: Linux Kernel, Portals 3.0

LWK Timeline – Catamount (2004)

86

Red Storm (2004 - 2012)
Peak: 42 TFLOPS (127 TFLOPS final)
Compute Nodes: 10368 (12960 final)
Total Memory: 31 TB (77 TB final)
Network Link: 2 GB/s, 5 us
Power: 1.7 MW (2.5 MW final)
Compute OS: Catamount LWK, Portals 3.3

