SAND99-2892
Unlimited Release
Printed December 1999

LFSRs Do Not Provide Compression

Philip L. Campbell
Secure Networks & Information Systems
Lyndon G. Pierson
Advanced Networking Integration
P.O. Box 5800
Sandia National Laboratories
Albuquerque, New Mexico 87175-0449
{plcampb, lgpiers}@sandia.gov

Abstract

We show that for general input sets linear feedback shift registers (LFSRs) do not provide
compression comparable to current, standard algorithms, at least not on the current, standard
input files. Rather, LFSRs provide performance on a par with simple, run-length encoding
schemes. We exercised three different ways of using LFSRs on the Canterbury, Canterbury (large
set), the Calgory Corpora, and on three, large graphics files of our own.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any
agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O.Box 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http://www.ntis.gov/ordering.htin

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: AO3
Microfiche copy: A01

1 Introduction

Massey, in his 1969 paper presenting the Berlekamp-Massey linear feedback shift-register
synthesis algorithm, encouraged the investigation of LFSRs as compressors:

There appears to be a number of interesting applications for the LFSR synthesis algorithm
of Section III. The most obvious is that of finding a simple digital device to generate a pre-
scribed binary sequence with useful properties in some application. Less obviously, the
algorithm might be used as part of a source code, or data compressor, for a binary data
source whose output contains considerable redundancy. For instance, the source digits
could be processed by the algorithm in blocks of 127 digits. Each block could then be rep-
resented for transmission as a 7-bit block gitving the length L of the shortest LFSR that
generates the original sequence, followed by L bits to indicate the values of the tap con-
nections and a further L bits giving the initial contents of the LFSR. Therefore, a total of
2L+7 bits would be transmitted in place of the original 127 bits. Such a data compression
scheme could be expected to perform efficiently only when the underlying constraints
producing the source redundancy were with high probability linear relations among the
binary source digits. (from Massey [1])

This paper follows up on Massey’s suggestion: we test the value of LFSRs for compression.

We describe LFSRs in Section 2, present the Berlekamp-Massey algorithm in Section 3, present
the options for a compression method based on LFSRs in Section 4, and present the parameters

.. and inputs we use in Section 5. We show our results in Section 6, and discuss related work in

Section 7.

2 A Primer on Linear Feedback Shift Registers

An LFSR consists of n “cells,” n 2 0, consists of n “cells,” n > 0, and k “taps,” 0 <k <n. The
value in each cell is initialized to either O or 1. For example, the following

cell numbers — 0 1 2 3 4
cells — 0 1 1 0 0
taps — ® ‘ ®

represents an LFSR of length 5 (i.e., with 5 cells) and two taps. The taps are at cell numbers 2
and 4, where the leftmost cell is cell number 0. This LFSR generates a binary sequence that
begins with 001101110, where the leftmost bit is the first bit generated. (Menezes et al., [2])

The algorithm presumes the Fibonacci configuration. That is, an LFSR generates a bit by
proceeding through the following three steps:

1. The binary values in the cells corresponding to the taps are added up, mod 2, to prodube a
new binary value that we will call, for the nonce, the “shift-in bit.”

2. The LFSR is shifted to the right. The bit shifted out is the generated bit.

2

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

3. The leftmost cell in the LFSR is set to th¢ value of the shift-in bit.

Note that if there are zero taps, then the shift-in bit is always zero. If there is only one tap, then
the shift-in bit is always the value of the cell corresponding to the tap. And if there are at least
two taps, then the shift-in bit is the result of the EXCLUSIVE-OR function.

Given the generating steps above, note that

+ binary sequences of the form 0*, where * denotes zero or more appearances of the preceding
symbol (Kleene closure), can be generated by the degenerate LFSR of length zero;

- binary sequences of the form 17, where * denotes at least one appearance of the preceding
symbol, can be generated by an LFSR of length one, the one cell initialized to 1, with one tap;

» binary sequences of the form 10* can be generated by an LFSR of length one, the one cell ini-
tialized to 1, with zero taps;

- binary sequences of the form 071 require an LFSR that is the same length as the input binary
sequence, with any arrangement of taps (i.e., no compression).

3 The Berlekamp-Massey Shift-Register Synthesis Algorithm

The Berlekamp-Massey linear feedback shift-register synthesis algorithm produces an LFSR that
will generate a given input binary sequence and whose length is such that no shorter LFSR will
generate the same sequence. A description of the algorithm and a proof of its correctness
(Massey [1]), an analysis of its running time (Gustavson [3]), and the implementation in C that
we have used in this research (Campbell [4]) can be found elsewhere, as can general information
on LFSRs (Schneier [5]). The importance of the algorithm for the current work is that it provides
an efficient method of finding an LFSR that generates a given input bit sequence.

4 Experimental Approach

The purpose of this research is to evaluate the use of LFSRs for compression. However, there are
many ways to use LFSRs for this purpose, and there are many ways to re-arrange the input prior
to processing, such as reversing the input or rotating it n times (Davida & Rodriques [6]). And
finally, there are many files from which to choose as input. Following a minimum amount of
analysis, it is apparent that LFSRs can be used in three basic ways for compression. To maintain
tractability, we decided not to re-arrange the input prior to processing, though we experimented
with this slightly (see Section 7), and we chose standard input sets, so-called compression
corpora. We believe that this approach enables us to use our results to make conclusions about
the use of LFSRs, in general, for compression.

To calibrate our experiments we ran the same input through current, standard compression
algorithms, such as Huffman coding and LZW.

Massey describes one way of using LFSRs for compression in the passage cited at the beginning
of this paper: the input is partitioned into 127 bit blocks, then each block is run through the
Berlekamp-Massey algorithm to find a minimal-length LFSR that generates that block; the
algorithm outputs the length of the LFSR, always using exactly 7 bits, followed by the initial
setting for the LFSR and the settings for the tap sequence. We refer below to this way of using
LFSRs for compression as “fixed” mode. We also consider what we call “variable” and
“adaptive” modes.

In this Section we describe the three modes we used and show why we believe these represent
the extent of using LFSRs for compression. Accordingly, we first consider the possible ways of
using LFSRs for compression, then we prune that set to arrive at the three modes we use.

4.1 Approaches and Parameters
There are two basic approaches and two basic paranieters.

The two approaches are adaptive and non-adaptive. Generally speaking, an adaptive approach
changes parameter values during the course of a run based on the current data. A non-adaptive

approach makes no such changes at run time.! The non-adaptive approach we present below
devolves into several sub-approaches; the adaptive approach does not devolve.

The two parameters are input block size and LFSR size. The input block size is the length of the
bit sequence for which we will ask the Berlekamp-Massey algorithm to find a corresponding
LFSR. LFSR size is the length of the LFSR generated by the Berlekamp-Massey algorithm. We
can control LFSR size only by observing the length of the LFSR as we feed the algorithm bits,
then backtracking one bit when the LFSR exceeds the length we desire.

4.2 The Non-Adaptive Approach

In the non-adaptive approach we do not change parameters at run time. The length of the input
bit sequence and the length of the LFSR can be either fixed or variable. This results in four
options:

1. use a fixed size for both the input block and the LFSR;

2. use a fixed-sized input block and a variably-sized LFSR;
3. use a variably-sized block and a fixed-sized LFSR; or

4. use a variable size for both the input block and the LFSR.

1, “Variable” mode, as we describe it below, could be considered adaptive since the size that the approach determines for each input block is
dependent on the nature of the input stream. However, parameter values do not change in variable mode as progression proceeds. Since the mode
we describe as “adaptive” changes parameter values as the progression proceeds. we decided to use the words “variable” and “adaptive” to
describe these two approaches, rather than less descriptive terms, such as “adaptive0” and “adaptivel.” -

4

These four options are shown in Table 1.
Table 1 Non-Adaptive Options

option block-size Ifsr-size method comments

The Ifsr-size must be set to the
1 fixed fixed worst case, which is the length
of the block size.

Unreasonable, since no com-
pression is possible.

Process each input block and Trivially parallelizable. (This is

2 fixed variable generate the corresponding Ifsr. | Massey’s suggested approach.)
. Process input until the Ifsr that
3 variable fixed is built reaches the fixed size. . . .
Is this efficiently parallelizable?
. . Choose the Ifsr based on com-
4 variable variable

pression ratio.

The first option is unreasonable because we would have to set the size of the LFSR to the worst
case, which is the same length as the block size. This would result in expansion by a factor of 2,
since we would require the length of the input bit sequence to describe the initial settings of the
LFSR and another length of the input bit sequence to describe the taps. We can therefore dismiss
this option.

The second option involves breaking the input into fixed-size blocks (padding the last block, as
needed), then finding LFSRs for each block. Since the LFSRs will never be longer than the
blocks, we can use a fixed number of bits to describe the length of the LFSR. This is a
conceptually simple option. It is also trivially parallelizable. This is the approach Massey
describes in the quote at the beginning of this paper.

* The third option involves monitoring the length of the LFSR as it is being created. When the
LFSR reaches a predetermined length (or we have no more input to consume, whichever comes
first), we output the LFSR, then start building a new one with the next unused bit in the input bit
sequence. This option is not as conceptually simple as the second option, and involves more
overhead. It is not easily parallelizable because it is not possible to determine beforechand the
length of the block that a given LFSR will represent. In addition, we see no reason to suppose
that this would give better compression than the second option. For these reasons we anticipate
the third option being uniformly inferior to the second, and have thus not pursued it.

The fourth option involves generating the LFSR based on the compression ratio. As we feed bits
to the LESR-generator, we monitor the compression ratio for each prefix of the entire input
block, remembering the prefix that provided the best ratio. When the entire input block has been
fed in, we choose the prefix that provides the best compression ratio, and we generate the
corresponding LFSR. The beginning of the next input block starts one bit past the last bit
generated by the previous LFSR. This option may require that we process the same bit many
times. It is more complicated than the other options; it involves more overhead; and it is not
parallelizable. However, it may provide sufficiently better compression to compensate for the
additional overhead.

4.3 The Adaptive Approach

The adaptive approach is based on the assumption that the overall compression ratio will
increase if the size of the input blocks steadily increases if the compression ratio is getting better,
and vice versa if the compression ratio is getting worse.

We have constrained this approach to use block sizes that are one less than an integral power of
2. Therefore for this approach, we need three constants: the initial block size, and the minimum
and the maximum block sizes. Given our constraint, it is simplest just to specify the
representative power of 2 for each constant, thus for example, setting initial block size to 7

implies that the initial block size will be 27-1 = 127.

Adaptive mode works as follows: assume that the size of the current block is s;, for i > 0, and that
the compression ratios for the previous block and the current block, are r; ; and r;, respectively,
where compression ratio equals compressed output size divided by uncompressed input size. If
1;.1 2 1;, then the compression is getting better (or at least getting no worse), so we set s;,; to the
next larger block size, namely s;,; = min(2*(s;+1)-1, 2maximum block_size_1y. oiherwise we set

$;+1 to the next smaller block size, namely s;,; = max{((s;+1)/2)-1, pminimum_block size_yy

The appeal of this approach is its promise of an advance over what Bell, Cleary, and Witten refer
to as “ad hoc” compression methods: the adaptive approach applies to all data types, and thus
research can focus on performance, instead of a continual search for new algorithms for new data
types (Bell et al. [7]).

4.4 The Three Modes

The modes that we used in our experiments are Options 2, 4, and adaptive. Each has strengths

and weaknesses, as summarized in Table 2.

Table 2 Modes
mode block-size Ifsr-size method strengths weaknesses
Generate the LFSR
: when the input Simple, fast, and What criteria do we
Fixed . block has been con- | . . .) .
) fixed variable sumed. (Massey’s trivially paralleliz- | use in choosing the
(Option 2) oumed. YS | able. block size?
suggested
approach.)
Slow: each bit may
need to be pro-
Genefate the LFSR cessed many times‘
Variable . . for the p reﬁ?(of the May provide the What criteria do we
. variable variable block that gives the . .
(Option 4) . best compression. use to determine the
best compression
ratio upper bound on the
' input block size?
Not parallelizable.
Choose the size of
the next input block What criteria do we
.)) based on the r.atlo of Can adapt to the use to determine the
Adaptive adaptive variable the. compression data, three constants?
ratio of the current : .
block and the previ- Not parallelizable.
ous block.

S Experiments

This section describes (a) the two parameter settings we used, (b) “bypass expansion,” and (c)
the nine trials that we ran. It also describes the standard control algorithms to provide relative
performance and the set of input files we used.

5.1 Parameter Settings

We used two parameter settings, named 7 and 10. The first is the input block size that Massey

suggests, namely 127 = 27-1 bits. The second represents a larger block size, 1023 = 219.1. The
values for each parameter setting are shown in Table 3. (We did not pursue block sizes smaller
than 127 because experiments suggested that compression performance decreased with smaller

block sizes.) .
Table 3 Parameter Settings.

parameter setting name
internal named 7 10 applicable mode
parameter
block size values

fixed_block_size fixed
variable_block_size 271=127 21001 =1023 variable

initial_block_size

min_block_size 241=15 2-1=127 | adaptive

max_block_size 2101 = 1023 213.1=8191

5.2 Bypass Expansion

We experimented with bypassing expansion. If the size of the compressed output is greater than
the input, then we will get better “compression” if we pass the raw input on as output. This
capability requires an extra bit to indicate whether what follows is raw input or compressed data.

5.3 Trials

We ran each of the two parameter settings on each of the three LFSR modes. We also ran
parameter setting 7 with bypass expansion on each of the three LFSR modes, using parameter
setting 7. This makes for nine trials in all, as shown in Table 4. '

Table 4 Trial Configurations.

trial number mode parameter bypass
setting expansion?
1 fixed
2 variable : no
3 adaptive 7
4 fixed
5 variable yes
6 adaptive
7 fixed
8 variable 10 no
9 adaptive
5.4 Control Algorithms | .

To calibrate our experiments, we ran all of the input we used through current standard
compression algorithms. We used the implementations provided in Nelson & Gailly’s reference

8

on compression algorithms for Huffman, adaptive Huffman, four variations of arithmetic coding,
two variations of LZW, and LZSS (Nelson & Gailly [8]). (The results of the Nelson & Gailly
codes are shown in Appendix A.) We also created our own implementation of a simple, run-
length encoding scheme, MNP5 (Salomon [9]).

5.5 Input Files

We chose standard input sets, so-called compression corpora, as input. We used the Canterbury
Corpus, the Canterbury Corpus large set, and the older Calgary Corpus, all available on-line
([10]). The advantage of using these files is that they represent a standard.

We also used three graphics files named comet, grid, and wallball, each approximately 5 MB
long, that are of particular interest to projects at our laboratories.

Information about the files in the compression sets we used is shown in Table 5. The numbers in
the first column of the table correspond to the numbers used in the plots shown in Section 6; in
order to open a gap between corpora in the plots, there are no items numbered 12, 16, or 35 in
Table 5. : '

TableS = Compression Corpora.

mixtlf:ll:er Corpus item name size (bytes) “description 3
1 alice29.txt 152089 text (English text)
2 asyoulik.txt 125179 play (Shakespeare)
3 . cp-html 1 24603 HTML
4 fields.c 11150 Csrc (C source)
5 grammar.lsp: 3721 list (LISP source)
6 Canterbury kennedy.xls 1029744 Excl (Excel Spreadsheet)
7 leet10.txt 426754 tech (Technical writing)
8 plrabn12.txt 481861 poem (Poetry)
9 pits 513216 fax (CCITT test set)
10 sum 38240 SPRC (SPARC Executable)
11 xargs.1 4227 man (gnu manual page)
" 13 E.coli 4638690 - Complete genome of the E. Coli bacterium
14 Canterbury bible.txt 4047392 The King James Version of the Bible
(large set)
world192.xt 2473400 The CIA world fact book

Table 5 Compression Corpora.
mintfllll)ler Corpus item name size (bytes) description
17 bib 111261 Bibliography (refer format)
18 book1 768771 Fiction book
19 book2 610856 Non-fiction book (troff format)
20 geo 102400 Geophysical data
21 news 377109 USENET batch file
22 objl 21504 Object code for VAX
23 obj2 246814 Object code for Apple MAC
24 paperl 53161 Technical paper
25 paper2 82199 Technical paper
Calgary -
26 paper3 46526 Technical paper
27 paper4 13286 Technical paper
28 paper5 11954 Technical paper
29 paper6 38105 Technical paper
30 pic 513216 Black and white fax picture
31 proge 39611 Source code in “C”
32 progl 71646 Source code in LISP
33 progp 49379 Source code in PASCAL
34 trans 93695 Transcript of terminal session
36 comet an object striking a plane
37 ;Zghics dee | & 5050491 a background grid
38 wallball a ball splashing into a soft wall

5.6 Calculating Output Size

In this section we describe how we calculated the size of each output block.

We require one bit to flag a block that is bypassed due to bypass expansion; when this option is
turned off, this extra bit is not needed and is not included in the output. Since we do not truncate
or pad input files, we flag the last block in every file and must include its size. The particulars are

10

shown in-Table 6.
Table 6 Flag and Field Lengths.

: mode
flag/field name
fixed variable adaptive
bypass_expansion_flag 12
last_block 1 2b
input_length 0; for last block, B¢ B 0; for last block, B
Ifsr_length B
d Ifsr_length
taps

a. This one bit is needed only if bypass expansion is turned on.

b. This field combines two fields: a last_block flag and a size_of_next_block field. These 2 bits indi-
cate whether the next block is (a) the last block in the file, in which case the length will be specified via
the input_length field, or else the next block is (b) bigger than the previous block, (¢) smaller than the
previous block, or (d) the same size as the previous block. In the latter three cases, there is no need for
the input_length field.

c. The notation “B” represents the number-of bits required to represent the maximum, current input
block length. For example, if the input block length is 127, then B = 7. B must represent the maximum
length so that the decoder knows the number of bits to interpret for this field. B must also represent the
current length because under adaptive mode the length changes.

As an example, the field sizes and resulting compression ratio for fixed, variable, and adaptive
modes for a sample input block of size 127, with bypass expansion turned off, are shown in
Table 7. The Table shows that for these parameters and this input block, the best compression is
provided by variable mode; fixed mode provides the slightest edge in better performance over
adaptive, but both expand the input block. However, note that variable mode only compressed
the first 66 bits; the remaining 61 bits of the block would be part of the next block that variable
mode would consider.

Table7 Example Output Block.?

mode
name
fixed variable adaptive
bypass_expansion_flag 0
last_block 1
input length 0 { B(127) =7 0
Ifsr_length s B(127)=7

Ifsr 60 16 60

. taps 60 16 60
TOTAL 128 _ 47 129

Compression ratio 128 /127 =1.00787 47/66=10.712121 129/127=1.01575

a. The values in this Table are for the first block for Trial 1 (see Table 4), which uses parameter setting 7
(see Table 3), on the first item in our input set, file “alice29.txt” (see Table 5).

6 Results

The results of the trials are shown in this section in a series of plots that indicate LFSRs are not
in the same league as current standard algorithms. In fact, they are barely in the same league as a
simple, run-length encoding algorithm.

The first plot shows the results for Trial 1—fixed mode, using parameter setting 7. For ease of
reference in this plot and subsequent ones we have drawn a dashed line at y=1: points below this
line represent compression; points above this line represent expansion. We have also connected
the values with lines; these lines do not imply that the values represent points of a continuous
function; rather, the lines will help identify different sets of values when they are graphed on the
same plot, as we will show in subsequent plots. The input files are numbered according to

Table 5, and we have included a gap between corpora, all for ease of reference.

This first plot shows that Trial 1 results in expansion for all of the files in our input set except for
files numbered 9, 30, 36, 37, and 38—ignoring file 22 since it is so close to 1. These files are ptt5
(fax (CCITT test set), pic (another fax), and all three of our graphics files, respectively. The same
general pattern in the results for Trial 1 is apparent in the results for the other trials. We conclude
that LFSRs provide better compression for graphics files than they do on text files, but even at its
best, LFSRs produce only moderate performance. For example, the compressed output for file 9,

12

the best for Trial 1, is no better than 0.4 the size of the input.

Figure 1. Trial 1: fixed mode, parameter setting 7, no bypass expansion.

1.4 T T T T T T T
trial_1 (fixed, 7, no bypass) -o—

08 .

compression ratio
()
o
T
1

04 | -

02 | 2

o i 1 1 i3 L 1 1
0 5 10 15 20 25 30 35 40
corpus items

The second plot shows the results for Trials 1, 2, and 3—for the trials using parameter setting 7
without bypass expansion. When the files compress, variable mode provides the best
performance, followed by fixed mode, followed by adaptive mode. However, when the files do
not compress, the roles reverse: adaptive provides the best performance, followed by fixed,
followed by variable. Fixed mode could be said to provide the best all-around performance.

Recall that fixed mode has lower overhead than either of the other two modes.

Figure 2. Trials 1, 2, and 3: parameter setting 7, no bypass expansion.

T T T T T T T .

_ trial_1 (fixed, 7, no bypass) -o—
14 {rial_2 {variable, 7, no bypass} -+ 7
trial_3 (adaptive, 7, no bypass) -&--

1.2 .

3 4Pt b B G . .
. g/a R ER) B-E-EB%\‘ ;’g-aﬂ-a-l—:»a»é aﬁiaé

f W

compression ratio

02 _ .

0 1 1 1 1 1 1 1

0 : 5 10 15 20 25 30 35 40
corpus items

The third plot shows the results for Trials 4, 5, and 6—for the trials using parameter setting 7 and
bypass expansion. We note that the performance is better here than it was for Trials 1-3 but the

14

relationship of performance is the same as it was for Trials 1-3.

Figure 3. Trials 4, 5, and 6: parameter setting 7, bypass expansion.
T T T T T) T
_ trial_4 (fixed, 7, bypass) <—
1.4+ trial_5 (variable, 7, bypass) —+- |

- trial_b (adaptive, 7, bypass) -B--

compression ratio

02 _

0 : L] - 1 L L

0 5 . 10 15 20 25 30 35 40
corpus items

The fourth plot shows the results for Trials 7, 8, and 9—for the trials using parameter setting 10
without bypass expansion. Performance appears to be even better than with the previous six
trials. However, unlike the other trials in which fixed mode provides the best compression,
variable mode provides the best compression here. The difference is due primarily to the larger

block size, which decreases the relative size of the overhead required for variable mode.

Figure 4. Trials 7, 8, and 9: parameter setting 10.
] L T T 1 T 1
trial_7 (fixed, 10) -e—
14 trial_8 {variable, 10) -+~ J
trial_9 (adaptive, 10) -2--
12+ |
1 L trrtetrttrd ot boted . Srttre gttt i
\/ v
I YA
s 08f :H T
a Lo
[[
1 L
£ Vo
8 06 - Vi E
04 :‘u." ~
3
02 _
0 _ i 1 —t. 1 i 1 N
0 5 10 15 20 25 30 35 40
corpus items

The fifth plot shows the best trials of the previous three plots—Trials 1, 4, and 8. The plot shows
that variable mode using parameter setting 10 provides the best performance, although not by a
significant amount in most cases. Bypassing expansion in fixed mode provides almost the same
performance that increasing the block size and changing to variable mode provides, except for

input items 36-38.

Figure 5. Best of Trials <1,2,3>, <4,5,6>, and <7,8,9>: Trials 1, 4, 8.

T T T T H T 1

trial_1 (fixed, 7, no bypass) o—
14 trial_4 (fixed, 7, bypass) -+-
trial _8 (variable, 10} -a--

compression ratio

02+ P,

0 b 1 1 1 i 1 1
0 5 10 15 20 25 30 35 40
corpus items

The sixth plot compares the results of Trial 8, the best of the nine trials, and the worst and best of
the algorithms provided by Nelson & Gailly. Trial 8 is never better than the best of the Nelson &
Gailly algorithms. Only on input items 23 and 36-38 is Trial 8 better than the worst of the
Nelson & Gailly algorithms. This plot shows that LFSRs cannot provide the same performance

17

as current, standard algorithms, at least not on the current, standard input files.

Figure 6. Best of LFSR (Trial 8: variable, 10); Worst and Best of Gailly & Nelson.

T] L T 1 T T

] trial_8 (variable, 10) —o—
14 F Gailly & Nelson {worst) -+- 7
Gailly & Neison (best) -2--

12 F ‘}; -
i
i
HE!
i
06 e oo o oo oo i
i
B \/ "»
© i i
= A i
] AN A
8 A
S [i
£ 5 fat *
38 / et St 7
£
! Bg
II :‘
II S\
/ 4
/ |
+ E_E
el - g7 ?
E T
oo V1
& Ev Q -
0 S 1 1 ' .l i 1 3
0 5 10 15 20 25 30 35 40
L corpus items

The seventh plot compares the results of Trial 8 and MNPS. The plot shows that the two
algorithms are comparable, except for the input files 36-38, for which LFSR is qualitatively

18

Trial 8, and MNP5.

1 T H 1 T 1 T
trial_8 (variable, 10) -o—
141 mnp5 -
*‘\
12 | AV

compression ratio

o 1 . L A 1 1 3
0 5 10 15 20 25 30 35 40
corpus items

The eighth and final plot shows the percentage of blocks that were bypassed in Trials 4, 5, and 6.
Bypassed blocks are those for which the compressed output is no smaller than the input. For
these blocks the raw input is presented as the “compressed” output. Note that for most of the
files, the bypass percentage is almost 100%, indicating that few of the input blocks could be
compressed and providing an explanation for the poor compression in general available via

LFSRs.

Figure 8. Bypass Percentage for Trials 4, 5, and 6.

120 T T L | T T 1 H
{rial_4 (fixed, 7, bypass) -—
trial_b (variable, 7, bypass) —+-
trial_6 (adaptive, 7, bypass) -8--
100 |- gelugegro <8 T

80

60

bypass percentage

40

20

. 0 1 1 1] i
0 5 10 15 - 20 25
corpus items

. 40

7 Related Work

The only work of which we are aware that has pursued this topic is Davida & Rodriques’ [6].
Their results show that LFSRs provide compression that is “comparable to the other compression
algorithms such as Adaptive Huffman, Lempel-Ziv-Welch, etc.” Davida & Rodriques use many
heuristics, none of which we use. However, for purposes of comparison we did experiment briefly
with just two of the techniques that they used—sreverse and rotate. For reverse, we found the
shortest LFSR for both the original input string and for its reverse, then we used the best resulit.
This approach requires an extra bit in the output to indicate whether the LFSR generates the
original input string or its reverse. For rotate, we found the LFSR for the original input string and
for each rotated string. The number of rotated strings is one less than the length of the string, so
this approach requires log,(string_length) extra bits in the output. We ran reverse and rotate on
the Canterbury Corpus, using Trial 1 settings; the results indicate that on average rotate boosts

compression by less than 1%, and reverse degrades compression (for' 126 times the effort), as
shown in Table 8. '

Table 8 Percent Improvement in Compression Ratios for Reverse and Rotate on the
Canterbury Corpus (Trial 1 settings).

Canterbﬁry Corpus
approach (percent change in compression ratio)
best worst average
reverse -8%°? 0.6% -0.4%
rotate -12% 4% 0.03%

a. That is, when we run the reverse option on the Canterbury
Corpus using Trial 1 settings, the best improvement we get for
compression ratio is 8% better than without that option.

The previous Table shows aggregate performance. This next Table looks at what we believe is a
representative sample, the first five entries in the Canterbury Corpus. Only the first entry shows
improvement, and then only when we use reverse, as shown in Table 9.
Table 9 Percent Improvement in Compression Ratios for Reverse and Rotate on
initial entries in the Canterbury Corpus (Trial 1 settings).

Canterbury Corpus item name (percent change in compression ratio)
approach
alice29.txt asyoulik.txt cp.html fields.c grammar.lsp
reverse -0.03%? 0.26% 0.31% 0.16% 0.53%
rotate 0.55% 0.83% 0.88% - 0.67% 0.87%

" a. That is, when we run the reverse option for alice29.txt under fixed mode using parameter setting 7,
we get a compression ratio that is 0.03% better than without that option. Note that this is the only
entry in the table that shows improvement; all the rest show a degradation of performance.

Acknowledgments
We would like to thank Anne Van Arsdall for her review of this paper.

References

- [1] J. L. Massey, “Shift-Register Synthesis and BCH Decoding.” IEEE Tran. Information Theory
IT-15, 122 (1969).

[2] A.J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptography, CRC
Press, Boca Raton, Florida, 1997.

[3] F. G. Gustavson, “Analysis of the Berlekamp-Massey Linear Feedback Shift-Register Synthe-
sis Algorithm,” IBM Journal of Research and Development, 20:204-12, May 1976.

[4] P. L. Campbell, “An Implementation of the Berlekamp-Massey Algorithm in C,” SAND 99-
2033. August 1999. Sandia National Laboratories, Albuquerque, NM.

[51 B. Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons, New York, 1996.

[6] G.I. Davida, L. Rodriques, “Data Compression Using Linear Feedback Shift Registers,” Data
Compression Conference, Snowbird, Utah. March 29-31, 1994.

[7] T. C. Bell, J. G. Cleary, 1. H. Witten, Text Compression, Prentice-Hall, Englewood Cliffs, New
Jersey, 1990.

[8] M. Nelson, J.-L. Gailly, The Data Compression Book, 2nd Edition. M&T Books, New York,
New York. 1996.

[9] D. Salomon, Data Compression: The Complete Reference. Springer-Verlag New York, Inc.,
New York. 1998.

[10] The Canterbury Corpus and large set: http://corpus.canterbury.ac.nz/fileset.html.

22

Appendix A Nelson & Gailly Results

This Appendix shows the compression ratio (output size / input size, expressed as a percentage)
for each of the implementations presented in Nelson & Gailly on each of the input files that we
used. For details on (and source for) each of the algorithms, see Nelson & Gailly’s text. [8]

Table 10 Compression Ratio for Nelson & Gailly Codes on the Canterbury Corpus.

Nelson & Gailly Code

Corpus item
huff ahuff arith arithl | arithle | arithn Izwl12 | Izwl5v lzss

alice29.txt 0.57 0.57 0.57 0.46 0.43 0.28 0.47 0.41 0.49
asyoulik.txt 060 |. 0.60 0.60 0.47 0.43 0.31 0.50 0.43 0.53
cp.html 0.66 0.66 0.65 0.57 0.49 0.30 0.49 0.46 0.45
fields.c 0.64 0.64 0.63 0.58 0.44 0.27 0.47 0.44 0.35
grammar.Isp 0.61 0.60 0.60 0.65 047 0.32 0.56 0.48 0.42
kennedy.xls 0.48 0.43 0.46 0.34 032 0.22 0.40 0.28 0.33
leet10.ixt 0.58 0.58 0.58 0.45 0.44 0.27 0.52 0.41 0.47
plrabnl2.txt 0.57 0.57 0.56 0.43 0.42 0.30 0.48 0.44 0.56

pttS 0.23 0.20 021 [0.11 0.10 0.10 0.13 0.12 0.21
sum 0.69 0.67 0.68 0.56 0.50 0.38 0.80 0.52 0.47
xargs.] 0.64 0.63 0.63 0.70 0.53 0.39 0.63 0.55 0.50

Table 11 Compression Ratio for Nelson & Gailly Codes on the Canterbury Corpus

(large set).
_ Nelson & Gailly Code
- Corpus item
huff ahuff arith arithl | arithle | arithn | lzwl2 | Izwl5v lzss
E.coli 0.28 0.27 0.25 0.25 0.24 0.24 0.27 0.27 0.34
bible.txt 0.54 0.54 0.54 0.41 0.40 0.24 0.45 0.36 0.41
world192.txt 0.63 0.62 0.62 0.46 0.45 - 0.26 0.63 0.44 0.54

Table 12 Compression Ratio for Nelson & Gailly Codes on the Calgary Corpus.

i Corpus Nelson & Gailly Code
item huff ahuff arith arithl | arithle | arithn Izw12 lzwl5v lzss
bib 0.65 0.65 0.65 0.48 043 0.26 0.48 0.41 0.48
. bookl 0.58 0.56 0.56 0.46 0.45 0.30 0.50 0.45 0.56
book2 0.60 0.59 0.60 - 0.46 047 0.28 0.56 0.43 0.48
geo 0.71 0.71 0.71 0.63 0.65 0.63 0.76 0.76 0.83
news 0.65 0.65 0.64 0.54 0.52 0.63 0.61 0.51 0.53

23

Table 12 Compression Ratio for Nelson & Gailly Codes on the Calgary Corpus.
Corpus Nelson & Gailly Code
item huff | ahuff | arith | arithl | arithle | arithn | lzwl2 | lzwl5v | lzss
objl 0.76 0.76 0.76 0.65 0.63 0.50 0.78 0.63 0.57
obj2 0.79 0.77 0.78 0.55 0.53 0.34 1.22 0.53 0.42
paperl | 0.62 0.62 0.62 0.54 0.48 031 | 0.8 0.47 0.47
paper2 0.58 0.57 0.57 0.50 0.45 0.30 0.50 0.44 0.49
paper3 0.58 0.58 0.58 -0.53 0.47 0.34 0.51 0.47 0.51
paperd 0.69 0.59 0.59 0.60 0.50 0.38 0.56 0.52 0.52
papers 0.63 0.63 0.62. 0.63 0.52 0.39 0.58 0.55 0.52
paper6 0.63 0.63 0.62 0.56 0.49 0.32 0.61 0.49 0.47
pic 0.23 020 0.21 0.11 0.10 0.10 0.13 0.22 0.21
progce 0.65 0.65 0.65 0.57 0.49 0.32 0.61 0.48 0.45
progl 0.60 0.59 0.59 0.47 041 0.24 0.48 | 0.37 0.32
progp 0.61 0.61 0.61 0.49 0.48 0.23 0.47 0.38 0.32
trans 0.69 0.69 0.69 0.49 0.44 0.22 0.53 0.40 0.36
Table 13 Compression Ratio for Nelson & Gailly Codes on the XWD Files.
Nelson & Gailly Code
Corpus item
huff ahuff arith arithl | arithle | arithn | lzwl2 | lzwlSv 1zss
comet’ 0.57 0.49 0.57 0.27 0.27 0.10 0.98 0.18 0.29
grid 0.23 0.17 0.24 0.09 0.08 ~0.0 0.76 0.01 0.12
wallball 0.38 035 | 038 0.18 0.18 0.07 0.84 0.12 0.25 -

24

Distribution List

2 MS 0449 P. L. Campbell

1 0449 R. L. Hutchinson

1 0451 R. E. Trellue

1 0612 Review & Approval Desk 4912
For DOE/OSTI

1 0741 S. G. Varnado 6200

1 0806 L. B. Dean 4616

1 0806 L. G. Pierson 4616

1 0806 T. D. Tarman 4616

1 0806 M. O. Vahle 4616

1 0806 E. L. Witzke 4616

1 0874 P. J. Robertson 1716

1 0874 K. L. Gass 6421

2 0899 Technical Library 4916

1 8903 P. W. Dean 9011

I 9018 Central Technical Files 8940-2

25

