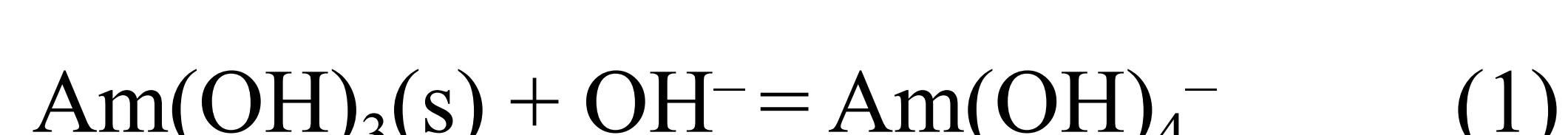


Modeling Actinide Solubilities in Alkaline to Hyperalkaline Solutions: Part One, Solubility of $\text{Am(OH)}_3(\text{s})$ in KOH Solutions

Sandia National Laboratories, Repository Performance Department, 4100 National Parks Highway, Carlsbad, NM 88220, USA

Yongliang Xiong


INTRODUCTION

Accurate knowledge of actinide speciation and solubilities in alkaline solutions is important to nuclear waste management. First, in the tank wastes such as those at Savannah River site and Hanford site, the solutions contain high concentrations of bases [1-2]. Second, the solutions in equilibrium with cements in geological repositories would also be highly alkaline with concentrations of OH^- in the order of hundreds of milli-molars [3]. Obviously, accurate predictions of actinide solubilities in these highly alkaline solutions require a thermodynamic model applicable to high ionic strengths with high base concentrations. The Nuclear Energy Agency (NEA) series on chemical thermodynamics of actinides (NEA-DB)[4] are based on the specific ion interaction theory (SIT) activity coefficient model for evaluation, which is valid to an ionic strength of ~ 3.5 m. The speciation scheme for Am(III) in the NEA series includes Am^{3+} , $\text{Am}(\text{OH})^{2+}$, $\text{Am}(\text{OH})_2^+$ and $\text{Am}(\text{OH})_3(\text{aq})$. This speciation scheme may not extend to the alkaline or hyperalkaline region, as the recent work has detected the possible presence of $\text{Ho}(\text{OH})_4^-$ and $\text{Tm}(\text{OH})_4^-$ around pH 10[5]. Therefore, it is not suitable for modeling actinide solubilities in highly alkaline solutions.

DESCRIPTION OF THE PRESENT WORK

In this work, a Pitzer model is tentatively developed for the $\text{K}^+(\text{Na}^+) - \text{Am}(\text{OH})_4^- - \text{OH}^-$ system based on $\text{Am}(\text{OH})_3(\text{s})$ solubility data in highly alkaline solutions. The database used for the modeling is summarized in [6]. The platform for the modeling is the computer program EQ3/6 Version 8.0a [7-8]. The purpose of this work is to stimulate, and to provide guidance for, the research investigating speciation and solubility of Am(III) in alkaline and hyperalkaline region, which would eventually lead to an improved model for accurate description of Am(III) solubility in this region in the near future.

It is observed that $\text{Am}(\text{OH})_4^-$ is the dominant species in highly alkaline solutions [3]. Under highly alkaline conditions, solubility reaction of $\text{Am}(\text{OH})_3(\text{s})$ is expressed as,

RESULTS AND DISCUSSIONS

In this work, solubilities of $\text{Am}(\text{OH})_3(\text{s})$ expressed as Reaction (1) are modeled as a function of KOH concentrations. In the modeling, the stability constant for $\text{Am}(\text{OH})_4^-$ is evaluated from $\text{Am}(\text{OH})_3(\text{s})$ solubility data in KOH solutions to 10 M, which are taken from [3]. In the model preliminarily developed, the Pitzer interaction parameters related to $\text{Al}(\text{OH})_4^-$ [9-10] are used as analogs for the interaction parameters involving $\text{Am}(\text{OH})_4^-$ to obtain the stability constant for $\text{Am}(\text{OH})_4^-$. The preliminary model developed in this study can reproduce the experimental data with good agreement. Notice that the model is subject to revision when additional data become available.

Table 1. Preliminary equilibrium constants at infinite dilution at 25°C and 1 bar for the $\text{K}^+ - \text{Am}(\text{OH})_4^- - \text{Cl}^- - \text{OH}^-$ system

Reaction	$\log K^\circ$	Reference and Remarks
$\text{Am}(\text{OH})_4^- + 4\text{H}^+ = \text{Am}^{3+} + 4\text{H}_2\text{O}(\text{l})$	39.83 ± 0.15 (2 σ)	This study, based on solubility of $\text{Am}(\text{OH})_3(\text{cr})$ in KOH solutions from [3]

Table 2. Preliminary Pitzer interaction parameters at 25°C and 1 bar for the $\text{K}^+ - \text{Am}(\text{OH})_4^- - \text{Cl}^- - \text{OH}^-$ system

Pitzer Binary Interaction Parameters					
Species <i>i</i>	Species <i>j</i>	$\beta^{(0)}$	$\beta^{(1)}$	C^ϕ	Reference
K^+	$\text{Am}(\text{OH})_4^-$	0.051	0.25	-0.00090	This study, using the parameters for $\text{Na}^+/\text{Al}(\text{OH})_4^-$ from [9] as analogs
Pitzer Mixing Interaction Parameters (theta and psi parameters)					
Species <i>i</i>	Species <i>j</i>	Species <i>k</i>	θ_{ij}	Ψ_{ijk}	Reference
OH^-	$\text{Am}(\text{OH})_4^-$	K^+	0.014	-0.0048	This study, using the parameters for $\text{OH}^-/\text{Al}(\text{OH})_4^-$ and $\text{OH}^-/\text{Al}(\text{OH})_4^-/\text{Na}^+$ from [9] as analogs
Cl^-	$\text{Am}(\text{OH})_4^-$	K^+		-0.004857	This study, using the parameter for $\text{Cl}^-/\text{Al}(\text{OH})_4^-/\text{Na}^+$ from [10] as an analog

Supporting Data

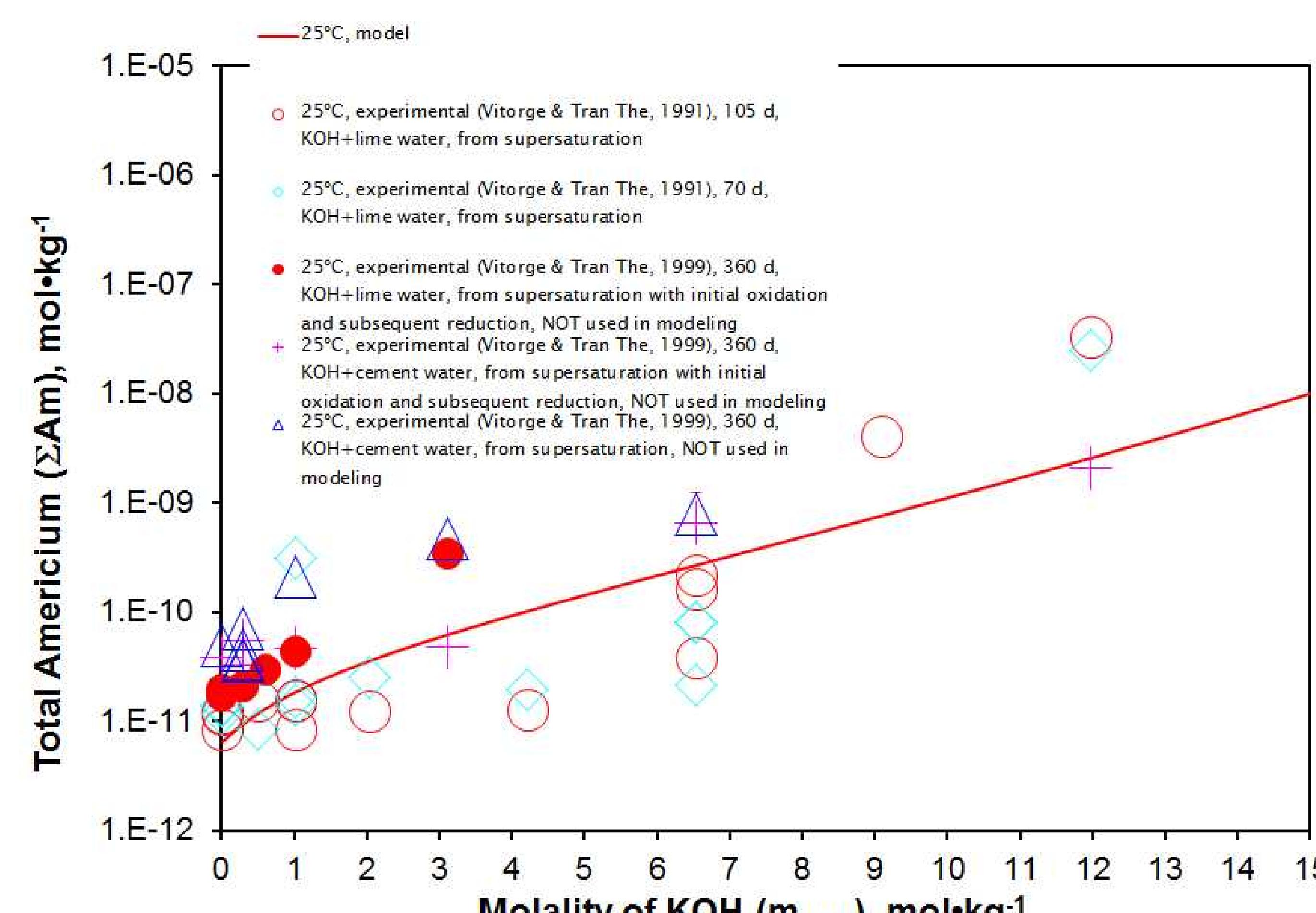


Figure 1. A plot showing solubilities of $\text{Am}(\text{OH})_3(\text{s})$ as a function of ionic strength in KOH solutions.

References

1. C. H. DELEGARD, "Solubility of $\text{PuO}_2 \cdot \text{xH}_2\text{O}$ in Alkaline Hanford High-Level Waste Solution," *Radiochimica Acta*, **41**, 11 (1987).
2. D. G. KARRAKER, "Plutonium VI Solubility Studies in Savannah River Site High Level Waste," WSRC-TR-95-0244, Westinghouse Company (1995).
3. P. VITORGE, P. T. THE, "Solubility Limits of Radionuclides in Interstitial Water: Americium in Cement," A Series of Final Reports (1985-1989), No. 34, Commission of the European Communities (1991).
4. See www.oecd-nea.org/dbtdb.
5. S.A. STEPANCHIKOVA, AND R. P. BITEKINA, "Spectrophotometric Study of Rare Earth Element Complexation in Alkaline and NearNeutral Solutions," *Russian Journal of Coordination Chemistry*, **37**, 64 (2011).
6. Y.-L. XIONG, J. NOWAK, L.H. BRUSH, A.E. ISMAIL, J.J. LONG, "Establishment of Uncertainty Ranges and Probability Distributions of Actinide Solubilities for Performance Assessment in the Waste Isolation Pilot Plant," *Materials Res. Soc. Symp. Proc.* 1265, 15–20, Materials Research Society (2010).
7. T.W. WOLERY, Y.-L. XIONG, J.J. LONG, "Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Document Version 8.10," ERMS 550239, Carlsbad, New Mexico, Sandia National Laboratories (2010).
8. Y.-L. XIONG, "Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1, Document Version 8.20. Supersedes ERMS 550239," ERMS 555358, Carlsbad, New Mexico, Sandia National Laboratories (2011).
9. D.J. WESOLOWSKI, "Aluminum speciation and equilibrium in aqueous solution: I. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)₄ from 0°C to 100°C," *Geochim. Cosmochim. Acta*, **56**, 1065 (1992).
10. Y.-L. XIONG, "A Pitzer Model for the Na-Al(OH)₄-Cl-OH System and Solubility of Boehmite (AlOOH) to High Ionic Strength and to 250°C," *Chem. Geol.*, **373**, 37 (2014).

Acknowledgements

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.