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Cornell’s Lab of Plasma Studies 
is collecting XRTS data!

The Cornell Beam Research 
Accelerator – COBRA – 1 MA, 

~ 100 ns 

J. B. Greenly, et al. Rev. Sci. Instrum. 79, 073501 (2008).




X-Ray Thomson Scattering 
(XRTS)!

-  The differential scattering cross-section is given by:!

 1.) a piece due to scattering from electrons comoving with the ions!

!

 2.) a piece due to scattering from “free” electrons!

 3.) a piece due to scattering from bound electrons!

- This work is focused on the scattering from “free” electrons.!
!

!

!

!

!

  !

-The structure factor can be split 
into three pieces:!



Current Methods to Compute See(k,ω)   

•  Plane Wave Form Factor Approximation - widely 
used in the WDM XRTS community, but has a fundamental 
inaccuracy in that it uses plane waves continuum states.  !

•   Impulse Approximation - assumes large energy transfer 
relative to the initial state binding energy. It is a  reasonable 
approach at finite temperatures, but requires knowing binding 
energies independently and breaks down for low energy 
transfer. !

•  Average-Atom Approach –Uses Average-atom wave 
functions for bound states and plane waves for “free” states.!

Johnson, W. R. Thomson scattering in the average-atom approximation (2012). !



Statistical Approach to Computing Scattering   

Method: Solve energy and momentum equations for 
an arbitrary electron velocity and weight each velocity 

by its likelihood of occurrence based on its momentum-
space wave function or its density of states.!

Use conservation of 
energy and momentum!Here are the equations I am solving :

Eg + Ei = Eg’ + Ef
pg + pi = pg’ + pf

where Eg  and pg  are the energy and momentum of the incoming photon, E1 and p1 are the
energy and momentum of the initial photon,  Eg’ and pg’ are the for the outgoing photon, and
E2 and p2 are for the outgoing electron.

The energy of the final electron is related to its momentum by Ef = 1
2m pf2. The energy of the

photons are given by Eg = pg c and Eg’ = pg’ c. 
For bound electrons, Ei=Eb, where Eb is the binding energy. 

Since  the  outgoing  electrons  have  complicated  distributions,  I  want  to  use  the  conservation
equations to eliminate pf. 
To do this, I solve for pf and then dot it into itself:  

pg + pi - pg’ =  pf  
 1   pf2 = (pg - pg’) 2 + pi2+ 2 pi . (pg - pg’)  

 1   pf2 = pg2 + pg '2- 2 pg pg’ cosg + pi2 + 2 pi pg2 + pg '2 - 2 pg pg ' cosg  cosf
 
 where g is the angle between pg and pg’ and f is the angle between pi  and  (pg - pg’).
 
 
 Now, plug in Eg’ = pg’ c and Eg = pg c:

  pf2 = I Egc M2 + I Eg'c M2- 2 Eg
c  Eg'

c  cosg + pi2 + 2 pi I Egc M2 + I Eg'c M2 - 2 Eg
c

Eg'
c cosg  cosf

  and multiply by c2 to simplify things:
  

    Hpf cL2 = HEgL2 + HEg 'L2- 2 Eg Eg ' cosg + Hpi cL2+ 2 pi c HEgL2 + HEg 'L2 - 2 Eg Eg ' cosg
cosf
    
    
    Back to the energy equation:
    Eg + Ei - Eg’ = Ef
    1   Eg + Eb - Eg’ =  1

2m pf2

    1  pf2 = 2m( Eg + Eb - Eg’ )
    1  (pf cL2 = 2 mc2( Eg + Eb - Eg’ )
    
   
   
    Finally, we can set the two equations for (pf cL2 equal to each other:
    
    2 mc2(  Eg  + Eb  -  Eg’  )  =  HEgL2 + HEg 'L2+ Hpi cL2-  2  Eg  Eg '  cosg  +  2  pi  c

HEgL2 + HEg 'L2 - 2 Eg Eg ' cosg  cosf
    
    We assume  Eg’ and the angle g are given (for Mattern paper, it is 9891.7 eV and 171 o), and
Eb is given by 13.6 Z2

n2 eV. We also know the distribution of pi by taking the Fourier transform of

the wave function. The wave function is given by 1
a3ê2 p1ê2 e-rêa.  The Fourier transform of this

wave function is: 1
p
I 2 a

hbar M3ê2 1
I1+Ha piêhbarL2M2 . The square of this is the probability distribution for the

magnitude of the momemtum for the bound electron, 1
p2 I 2 a

hbar M3 1
I1+Ha piêhbarL2M4 . 

    
    So the unknowns of the equation we need to solve are Eg, pi, and f. We want to solve for
either Eg as a function of pi and f or f as a function pi and Eg. Solving for Eg would be rather
complicated, and it is quite easy to solve for f:
    

    f(pi,Eg) = Arccos 2 mc2H Eg + Eb- Eg' L-9HEgL2 + HEg'L2+Hpi cL2- 2 Eg Eg' cosg=
2 pi c HEgL2+ HEg'L2-2 Eg Eg' cosg

                                      (eqn

1).  
    
  So the problem as I understand it is that we are sending in photons of energy Eg (which we
vary) in some direction and then measuring the photon only if it scatters at an angle g and has
energy Eg’. We want to know, for a given photon energy Eg, what is the probability that it will
scatter at an angle g with energy Eg’? A photon of energy Eg will only be detected if pi and f
satisfy eqn 1.
  
  I assume that the bound electron has an isotropic momentum distribution, and so each angle f
(the angle between pi  and  (pg - pg’)) occurs with probility proportional to 2p sinf(pi,Eg), and I

assume that  the  (non-normalized)  distibution  of  pi  is  proportional  to   1
p2 I 2 a

hbar M3 4 p pi2

I1+Ha piêhbarL2M4 ,

where the 4p pi2comes from the fact that there is a sphere of vectors for every momentum magni-
tude pi. So each f-pi combination associated with the bound electron that will satisfiy eqn 1 for a
given Eg  has some probability of occuring. To find the relative probability that  a photon of
energy Eg  will  be detected,  I  numerically integrate over the weights of all  the possible f-pi
combinations that will satisfy eqn1. Assuming that f and pi are independent variables, their joint
distribution will just be the product of their individual distributions: so the probability that a
photon of energy Eg will be detected is proportional to:
  

S =  Ÿ0•:@SinfHpi, EgLD * 1
p2 I 2 a

hbar M3 4 p pi2

I1+Ha piêhbarL2M4 > ‚pi. 

  
  
  
  For a Z=1, with Eg = 9891.7 eV and g = 171 o.  The vertical axis is in arbitrary units and the
horizontal axis is |Eg-Eg’| in eV.
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  Compare this to the distribution given by the hydrogenic model, which gives:
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  This comes from the Gummel paper and is using the expression: 
  

 S = I 256 a2M * „
-J2í Ja 2 Hw-EbL NN*JArcTanB2 a 2 Hw-EbL í I1+q2 a2-2 a2 Hw-EbLMFN

K1-„
-2 pí Ja 2 Hw-EbL NO *

q4 a4+q2 a2 I1+2 a2 Hw-EbLMë3
IIq2 a2+1-2 a2 Hw-EbLM2

+4*2 a2 Hw-EbLM3

 where you may have to add p to the Arctan for part of the curve.
    

    f(pi,Eg) = Arccos 2 mc2H Eg + Eb- Eg' L-9HEgL2 + HEg'L2+Hpi cL2- 2 Eg Eg' cosg=
2 pi c HEgL2+ HEg'L2-2 Eg Eg' cosg



Comparison of  Method to  an Experiment on Solid 
Beryllium at Ambient Conditions collected at a 

scattering energy of  9890 eV and to Souza’s model.�
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Souza, Perkins, Starrett, Saumon and Hansen. Predictions of x-
ray scattering spectra for warm dense matter (2014).  

Blue=Density of States 
Maroon=Wave Functions 
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Comparison of  Method to  Souza’s Model on Warm 
Dense Titanium at 5 eV and 4.51 g/cm3 with a probe 
energy of  4750 eV and collected at an angle of  130o.�

Blue=Density of States 
Maroon=Wave Functions 

Souza, Perkins, Starrett, Saumon and Hansen. Predictions of x-ray 
scattering spectra for warm dense matter (2014).  



Density of States and  
Ideal Density of States  
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Slide comparing to 
Fourier transform of 

Bessel Functions or will 
just overlay bessel on 

previous plot.!
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Comparison to an Experiment on COBRA using 
Ambient Aluminum with a Probe Energy of 4750 eV 

and Collected at a Scattering Angle of 1300 !
by Cad Hoyt from Cornell’s Lab of Plasma Studies !

Blue=Experiment 
Maroon=My Method 
Yellow=Probe Spectrum 



Impulse Approximation!
The structure factor can be written as: !

!
!
!
!

The Hamiltonian operator (H=Ho+V) can be expanded using 
the Campbell-Baker-Hausdorff theorem: !

!
!

The essence of the impulse approximation come from !
!
!

so that all Lie bracket terms vanish. !
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"   Expand the Impulse Approximation to improve 

accuracy. 

"   Compare with ongoing XRTS experiments at Cornell�s 

Laboratory of Plasma Studies and at Sandia National 
Laboratories.  

Future Work 



Atom! ------electron---->!
momentum!

The “free” electrons are not really free. 
They are distorted by the atom.  



High-Resolution Measurements Can 
Benchmark Theory 

�The information content in 
the measured XRTS spectra 
for WDM has been insufficient 
to alert the experimenters to 
the presence of an unphysical 
model for the electronic 
structure.�!

Mattern and Siedler.  Theoretical treatments of the bound-free 
contribution and experimental best practice in X-ray Thomson 
scattering from warm dense matter (2013).!


