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Collective-Spin Systems:

W@D -Spin wave logic
INTRODUCTION TO SYSTEMS
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* Digital logic requires (Cf. Keyes Rep. Prog. Phys. ‘05):

— Gain

— Signal Restoration

— |/O isolation

— Boolean completeness
— Concatenability

 “Wires” are needed
e Scaling is another constraint
* Analog applications have no
consistent benchmarks
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Spin waves obey magnetostatic
Maxwell’s equations

V-B=V-(H+47M) =0,
Walker, Phys. Rev. ‘57, Kittel, Phys. Rev. ‘48

V xH =0,

Spin wave computing
= Optical computing

A “photon” with large B, small E. Wavelength ~um at 10 GHz
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Bracher, APL (2013)

Electromagnetic Wave
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Speed of spin wave ~ ¢/10*




Plane of magnetic film
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Generation of spin waves

-spin valves
-MTJ
-point contacts

J~107 A/cm?
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Logic unit for SW computing:
an | nte rfe rom ete | -Very sensitive to dimensions

| -No intrinsic gain
gl RO Qutput ME cell -signal restoration neede

: -overhead has cost implications
: -Standing wave modes for spin waves
: at dimensions ~ wavelength

: -localization
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-Reflections at boundaries
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Keyes theorem: interferometers do not make good logic devices



Wires are also a problem
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This will be very difficult to implement:



Scaling of IVISW wires

Ercole PRB (‘98)

-Dispersion, group
velocity

change strongly
with dimensions

-1 um wire width, 40 nm thickness,

1 um spacing

-Spin wave modes no longer propagate

-Nodes at ends of logic gate

Spin-Wave Frequency (GHz)
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Non-Boolean applications

Gain is less important

High throughput: send multiple frequencies along same wire

We consider frequency discrimination as an example

MSW devices have long been used for analog microwave electronics (peak in’80s)
Cf. Ishak Magnetostatic Wave Technology: A Review Proc. IEEE (88)
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FREQUENCY (riz) frequency discrimination

Typical numbers: Af'=100 MHz leads to At=30 ns over 3 mm with microwave stripline excitation



-Microwaves striplines are power/cost prohibitive for computation
-How would frequency discrimination change using a scalable excitation method?

-Spin valves, for example, J~107-10% A/cm?, with propagating MSW wavelengths of ~200 nm
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p-BLS measurements

Calculated intensity

: . Madami, Nat. Nanotech. 11
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Frequency discrimination:

group velocity ~ 10* m/s
Coherence length ~ 1 um

At=100 ps

-comparable to ~10 GHz frequency



Logic with nanomagnets

Domino logic

-Magnetic Cellular Automata
-Nanomagnetic logic
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Niemier, J.Phys.Cond. Mat. (11)

Fringing fields (+ CMOS equivalent)
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Behin-Aein, Nature (2010)
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Coey, J. Phys. Cond. Mat (2014)

-Logic requirements have been
addressed using numerous
proposals.

-More experiments needed to test
proposals

-Global magnetic field clocks
(cost/size prohibitive) may not be
needed, using (current-driven) spin
Hall effect instead

-We look at scaling problems
intrinsic to magnets

-Gain originates from bistability of magnets

Magnetization

Electrons

b Input

Magnets on
hard axis

_ Current
@ W pulse
(clock)

Bohmik,Nature 2013



Scaling for magnetics
Stray field
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Litho-based errors in preferred axis alignment
Unwanted stray fields may have similar effect

-key problem: it is difficult to confine magnetic flux, what happens when magnets densely packed?
-Analogous to leakage current problems in CMOS



Electrical Circuit Analogy

EQUIVALENT
CIRCUITS
Electrical Magnetic
i —* (e
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Electrical Magnetic
Voltage v Magnetomotive Force S = N1
Current 7 Magnetic Flux ¢
Resistance R Reluctance R
Conductivity 1/p Permeability x

Current Density J  Magnetic Flux Density B
Electric Field £ Magnetic Field Intensity H
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MIT open course, Electromagnetic Energy, From motors to lasers




Conductivity (1/Q m)

Air 1015 A

Thermal SiO, on Si 10-16-10-°

Sea water 4.8 23 orders of magnitude
Silicon 10~4—104

Metals (Au, W, etc..) 107 M

_': Etch Stop Layer

4| 4= Dielectric Capping Layer
- Copper Conductor with
Barrier/Nucleation Layer
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ITRS 2004



Cramming more magnetic components
onto integrated circuits

Permeability*

Type | superconductors
Air

Metals (Au, W, ..)

Sea Water

Silicon

Magnets:
NdFeCo

CoPt

Ni

Py (FeNi)

mu metal (NiFeCoMo)
Fe (99.99%)

Metglass

Force between two magnets ~“H? x area

~1
~1
~1
~1

~1

~1

102
103
104
104
108

\ 4

6 orders of
magnitude

*Depends on size, field, shape; largest number chosen

B ’/7/
1 dB/dH =
(BH)yax Ho




Force between two magnets ~“H? x area

Scaling: reduce magnet size
-Switching barrier decreases
-Force decreases

-Flux leakage still present

Flux leakage, will reduce force between magnets

How many magnets can be
concatenated together?

Permeability
Air 1
Magnet 1-10%

Conductivity

Air 101>
Si (insulating) 104
Water 1

Si (conducting) 104
Metal 107



