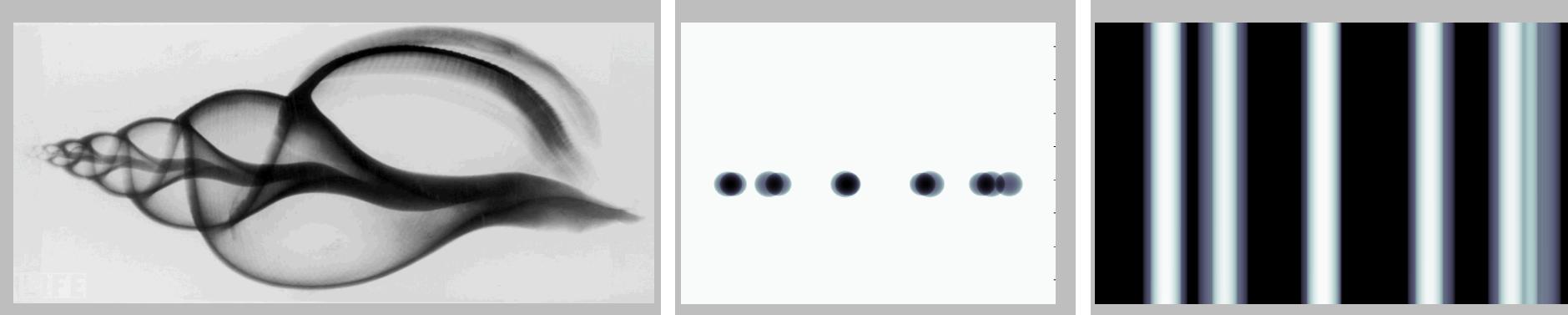


Exceptional service in the national interest



Exploring Mediated Reality to Approximate X-ray Attenuation Coefficients from Radiographs

Edward S. Jimenez, Laurel J. Orr, Megan L. Morgan, and Kyle R. Thompson
Penetrating Radiation Systems and Applications XV at SPIE Optics+Photonics 2014
August 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Introduction

- This is an exploratory project:
 - Feasibility of material identification from 2D Radiograph
 - Expands on an investigation in approximating x-ray attenuation properties.
 - Effective attenuation is not sufficient to identify a material in a radiograph.
- This work will expand on the characterization of the imaging system.
 - Information leveraged along with a direct search method.
- Mediated reality based approaches have been successfully leveraged in imaging applications.

Background

- Ignoring noise, the intensity of pixel j is:

$$I(j) = \int_{\varepsilon \in E} \int_{l_j} I_0(\varepsilon) e^{\mu(x, \varepsilon)x} dx d\varepsilon$$

- Leveraging the mediated reality information of the imaging system:
 - Source profile
 - Energy Range
 - Geometry of Hardware

Background Cont.

- Leveraging all the above and a given image, optimize:

$$\arg \min_{\hat{\mu}(x, \varepsilon)} \left\| \vec{g}_{\mu(x, \varepsilon)} - \hat{g}_{\hat{\mu}(x, \varepsilon)} \right\|_p$$

- The data is represented as vector g .
 - Pixel basis is no longer required.
 - Parameterizations can be considered.
 - In this work $p=2$.

Approach

- Due to the non-linear nature of imaging with polychromatic radiation, a direct search algorithm will be used.
- Nelder-Mead Simplex Algorithm
 - No gradients needed.
 - For n dimensions, $n+1$ vertices on the simplex.
 - Modify simplex based on evaluation of objective function.
- Although Nelder-Mead can fail, it typically does not.
- Drawback: Very slow convergence for high dimensional domain

Implementation

- Three approaches will be investigated:
- Full Nelder-Mead
 - Spectrum is discretized
 - At 450 keV, 450 dimensions
 - Allows for discontinuities at k-edges
- Legendre Polynomials
 - Drastically reduces dimensionality of domain
 - 5 polynomials
 - Does not allow for discontinuities

$$\hat{\mu}(\varepsilon) = \sum_{i=0}^4 c_i p_i(\varepsilon)$$

Implementation Cont.

- The third approach attempts to resolve the edges while reducing dimensionality.
 - Partition energy support into 10 sub-intervals
 - Fit 5 Legendre polynomials in each interval
 - 59 dimensions instead of 450.
 - Allows for up to 10 discontinuities.
 - The intervals can dynamically increase or decrease in length.
 - Constrained to the size of support of the initial profile.
- All images contain objects of a homogeneous material.
 - Digital phantom of 11 spheres 2.5 cm in diameter.
 - Circular arrangement perpendicular to detector plane.

Implementation Cont.

- In the interest of performance and accuracy:
 - Profile is generally decreasing
 - Generally concave up
 - Lowest energy has highest attenuation
 - Highest energy has lowest attenuation
- If any conditions above are violated then error is forced to be maximal.
- Constraints above could potentially hinder the algorithm.

Evaluation

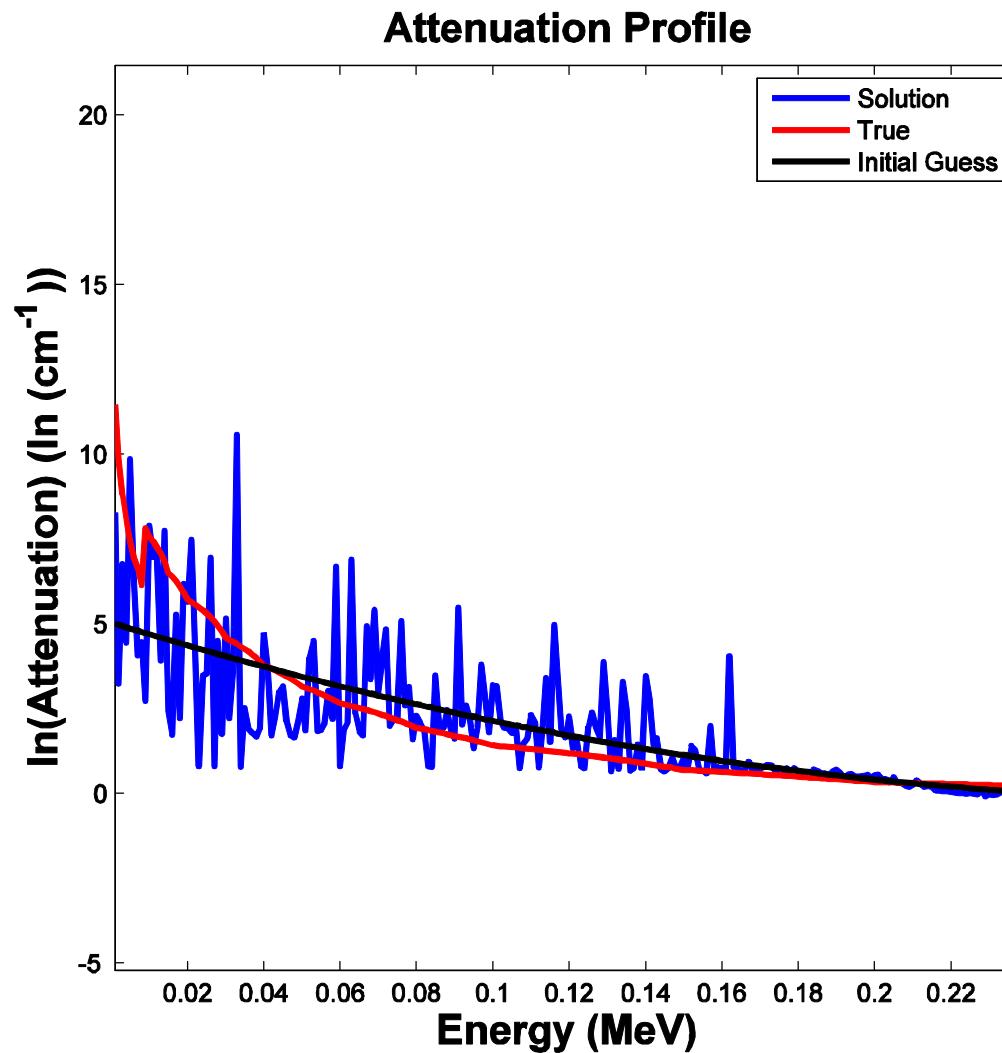
- Compare performance of each approach described.
- Each will run until minima is reached or 96 hours elapse.
- Candidate profiles will be compared to:
 - Profiles yielded from the other approaches.
 - Initial guess
 - True profile
- Five materials:
 - Copper
 - Lead
 - Tin
 - Polyethylene
 - Water

Evaluation Cont.

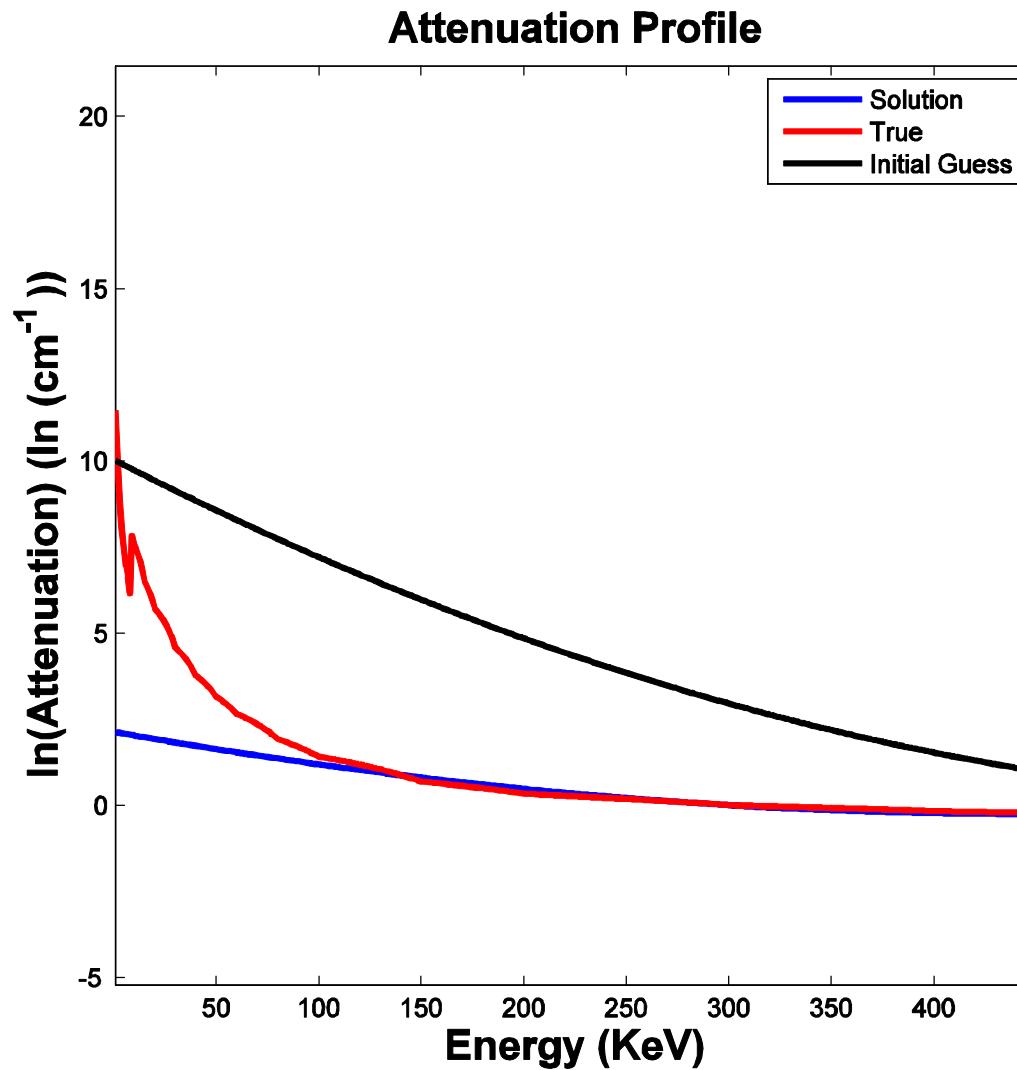
- Imaging system:
 - Simulated in Matlab.
 - 450 keV Bremsstrahlung profile (Tungsten target).
 - Object is 11 spheres of homogeneous material.
 - Ideal Detector at 2048x2048 pixels (0.02cmx0.02cm)
 - Detector to Source: 226cm
- To improve numerical stability, the objective function is:

$$\underset{\hat{\mu}(x, \varepsilon)}{\operatorname{argmin}} \|\log(\vec{g}_{\mu(x, \varepsilon)}) - \log(\hat{g}_{\hat{\mu}(x, \varepsilon)})\|_2$$

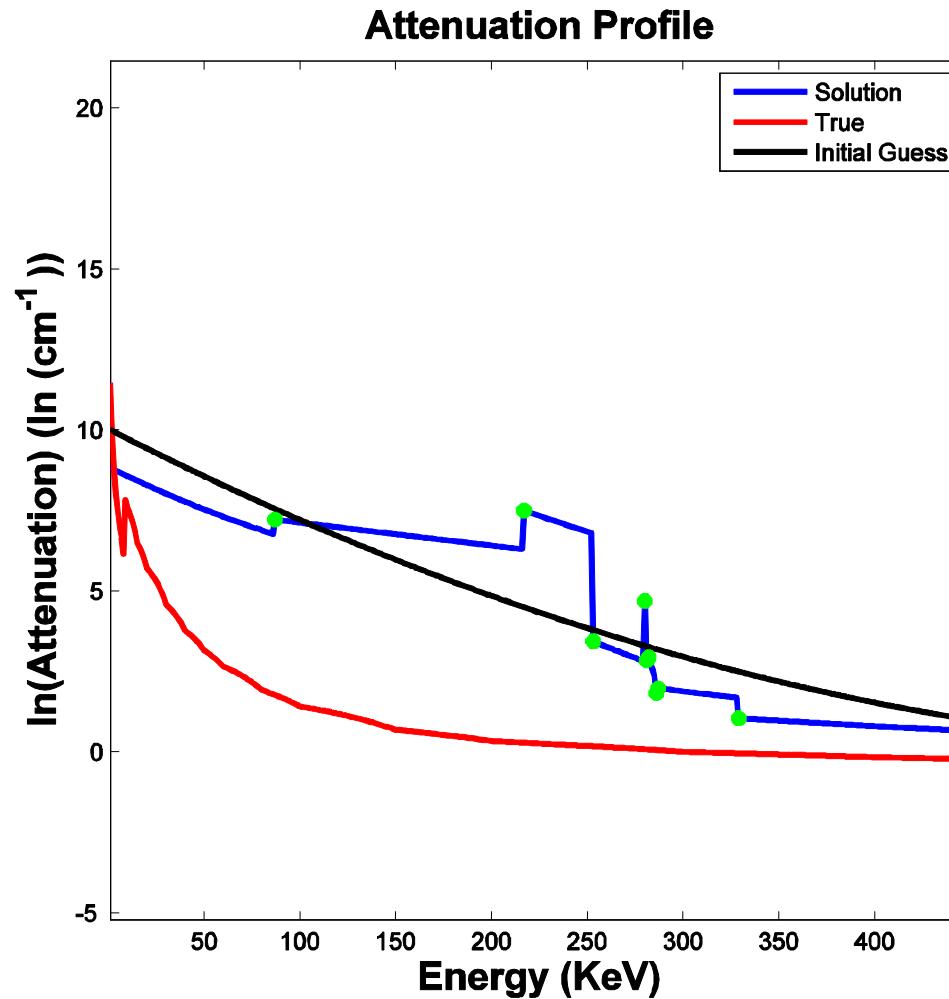
Results: Full Nelder-Mead (Cu)



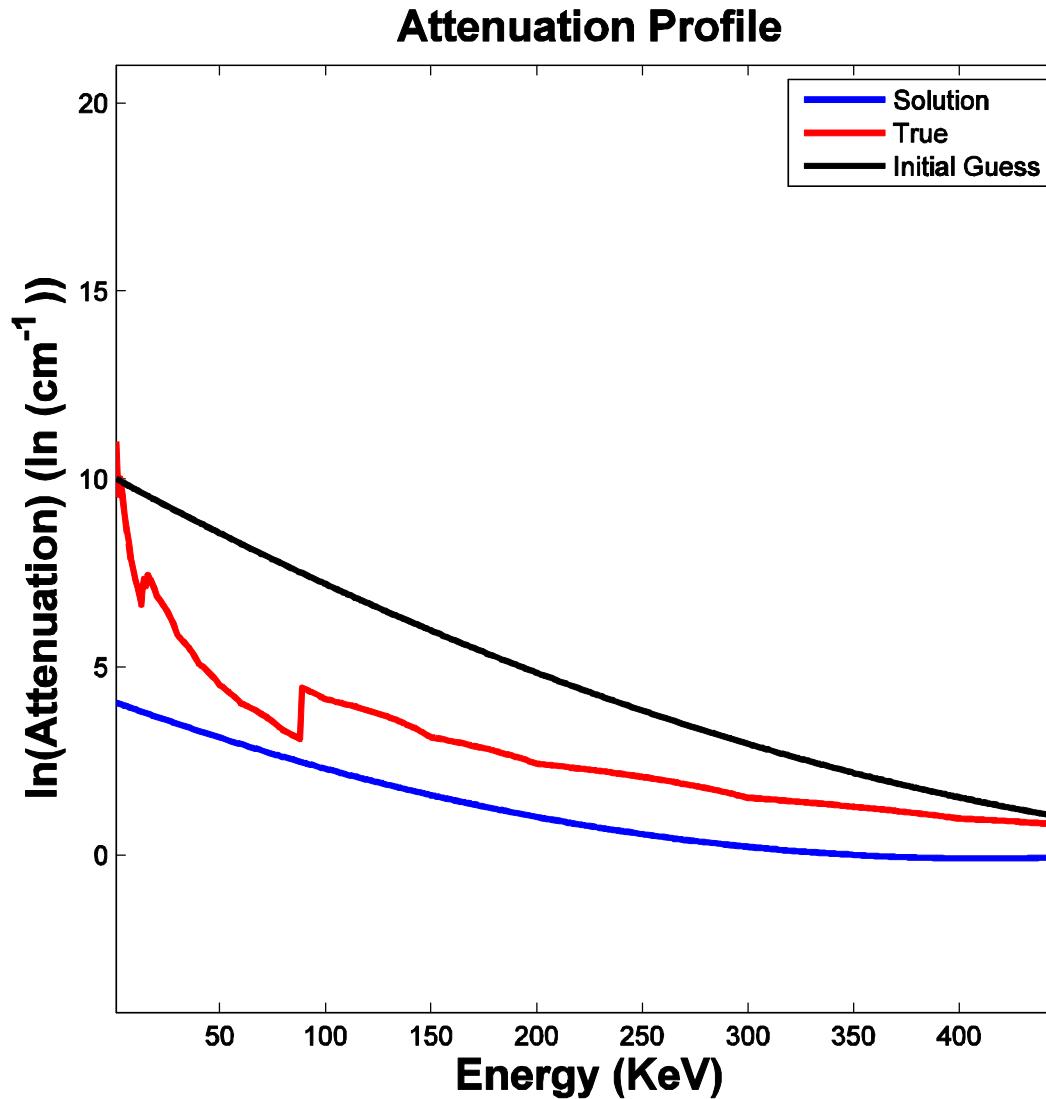
Results: Legendre Polynomials (Cu)



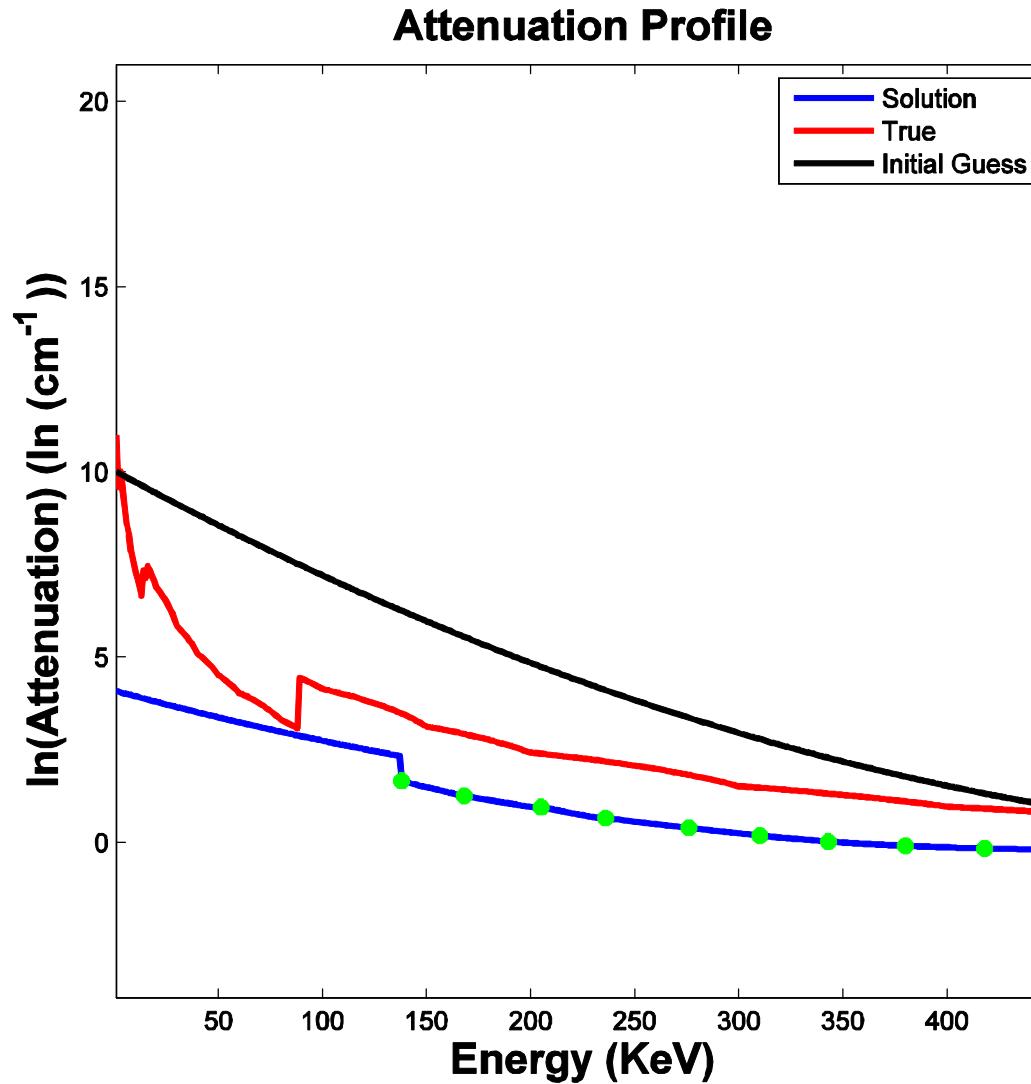
Results: Multi-Intervals (Cu)



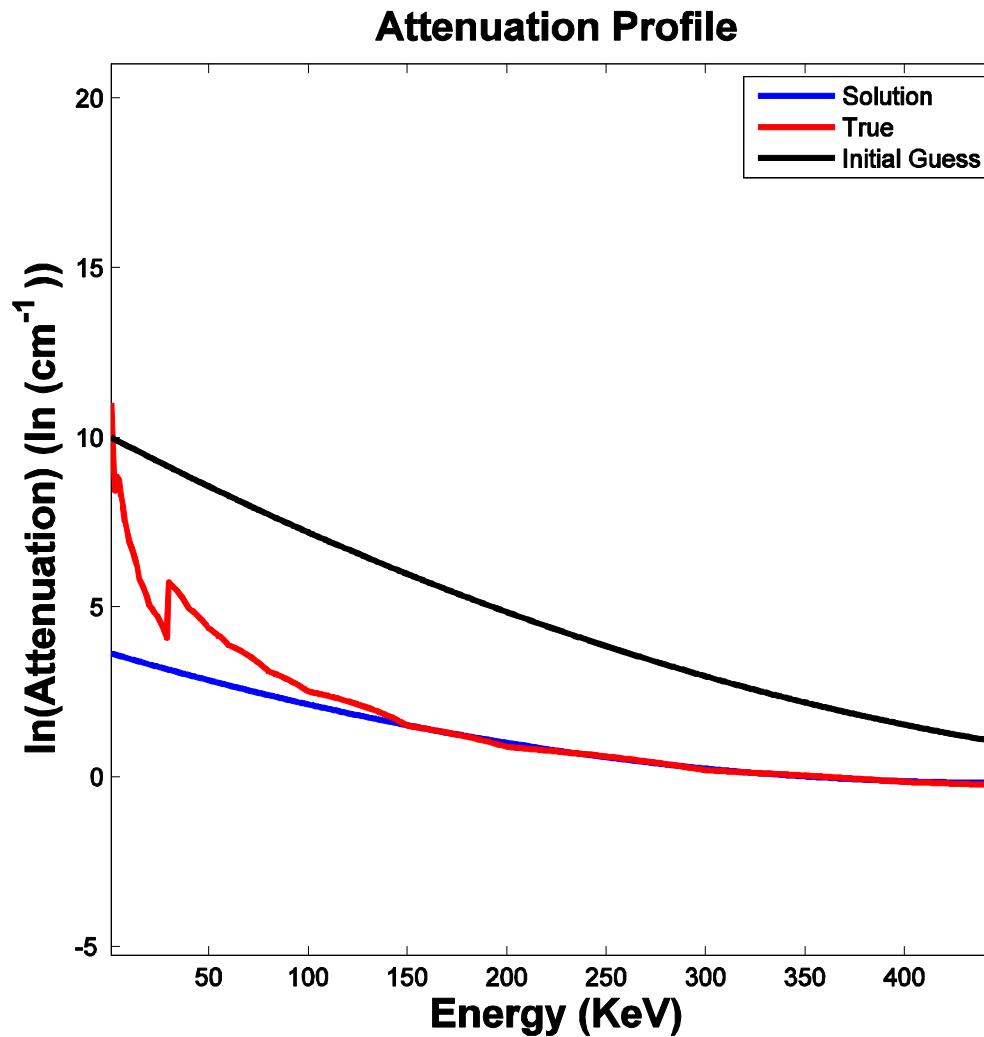
Results: Legendre Polynomials (Pb)



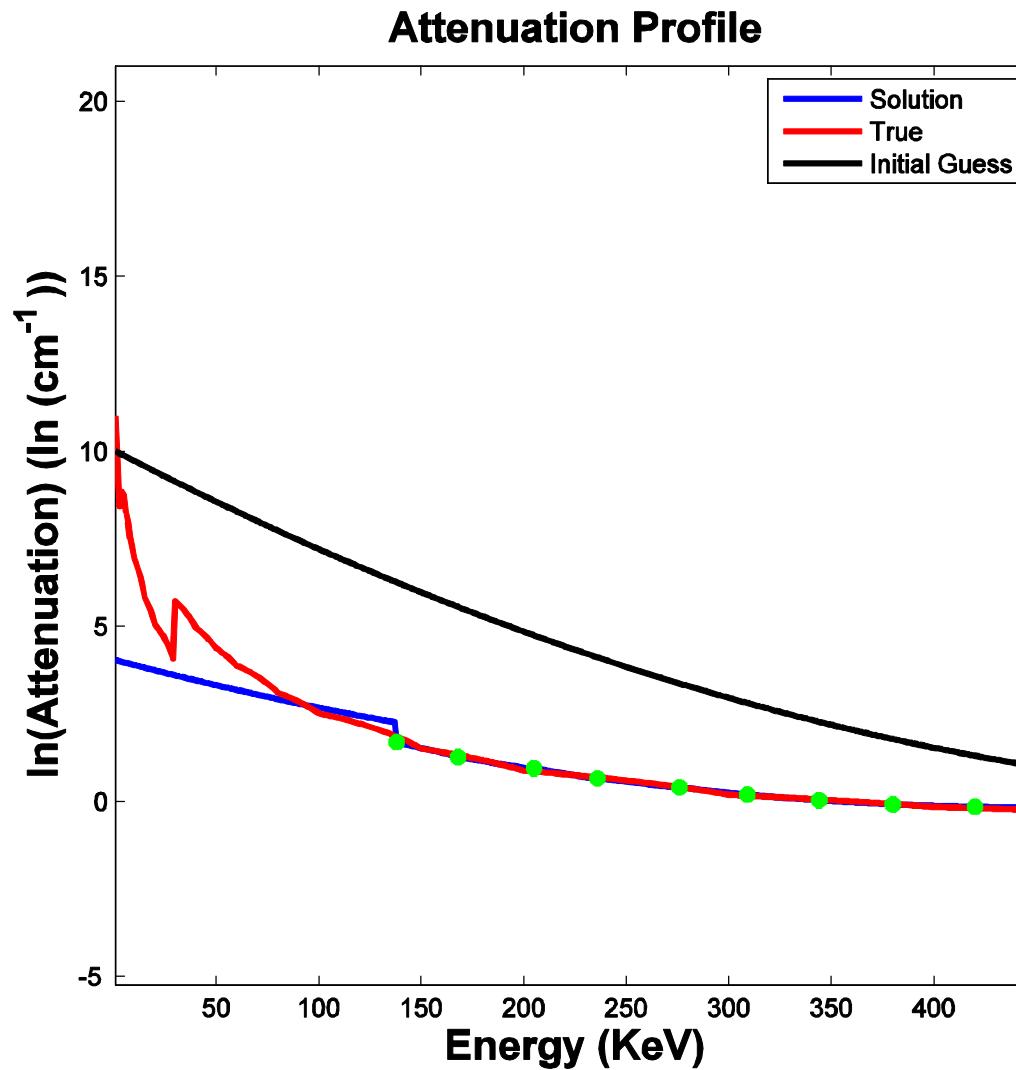
Results: Multi-Intervals (Pb)



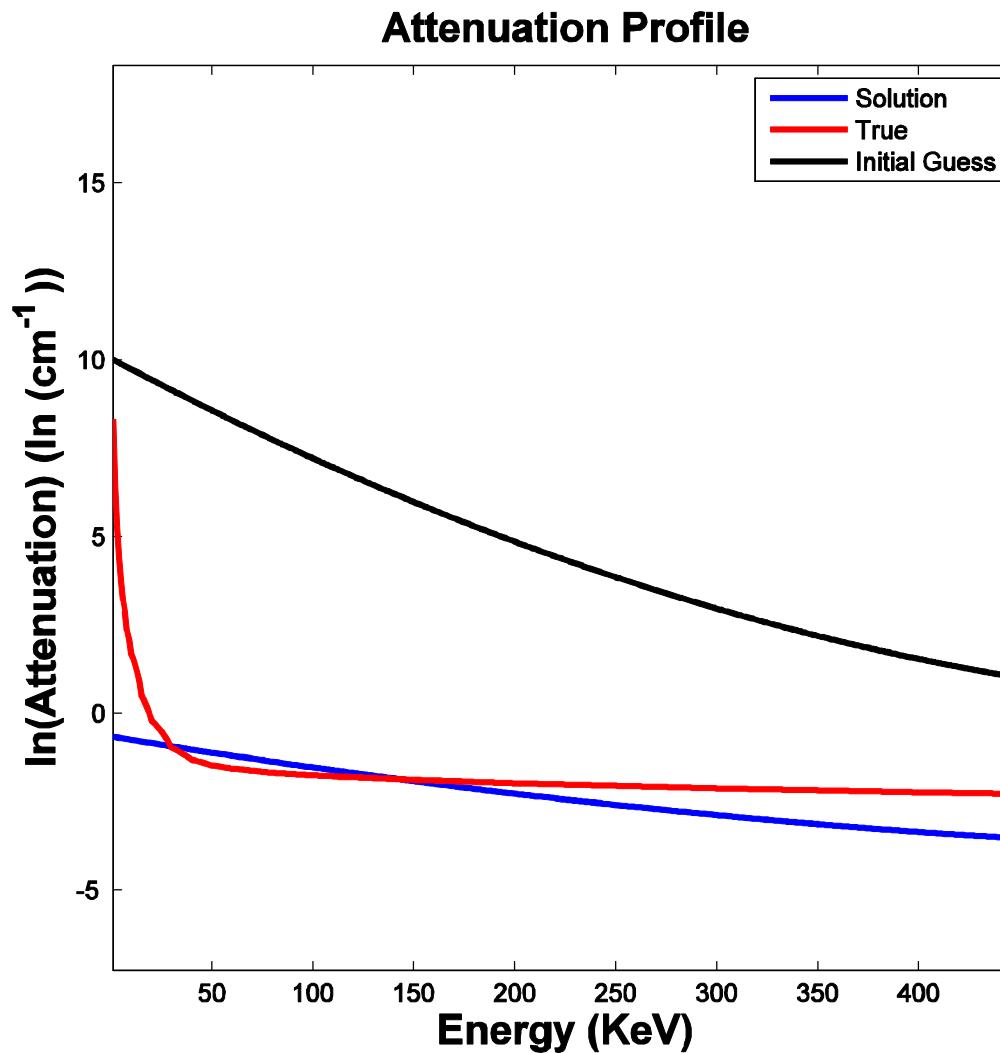
Results: Legendre Polynomials (S_n)



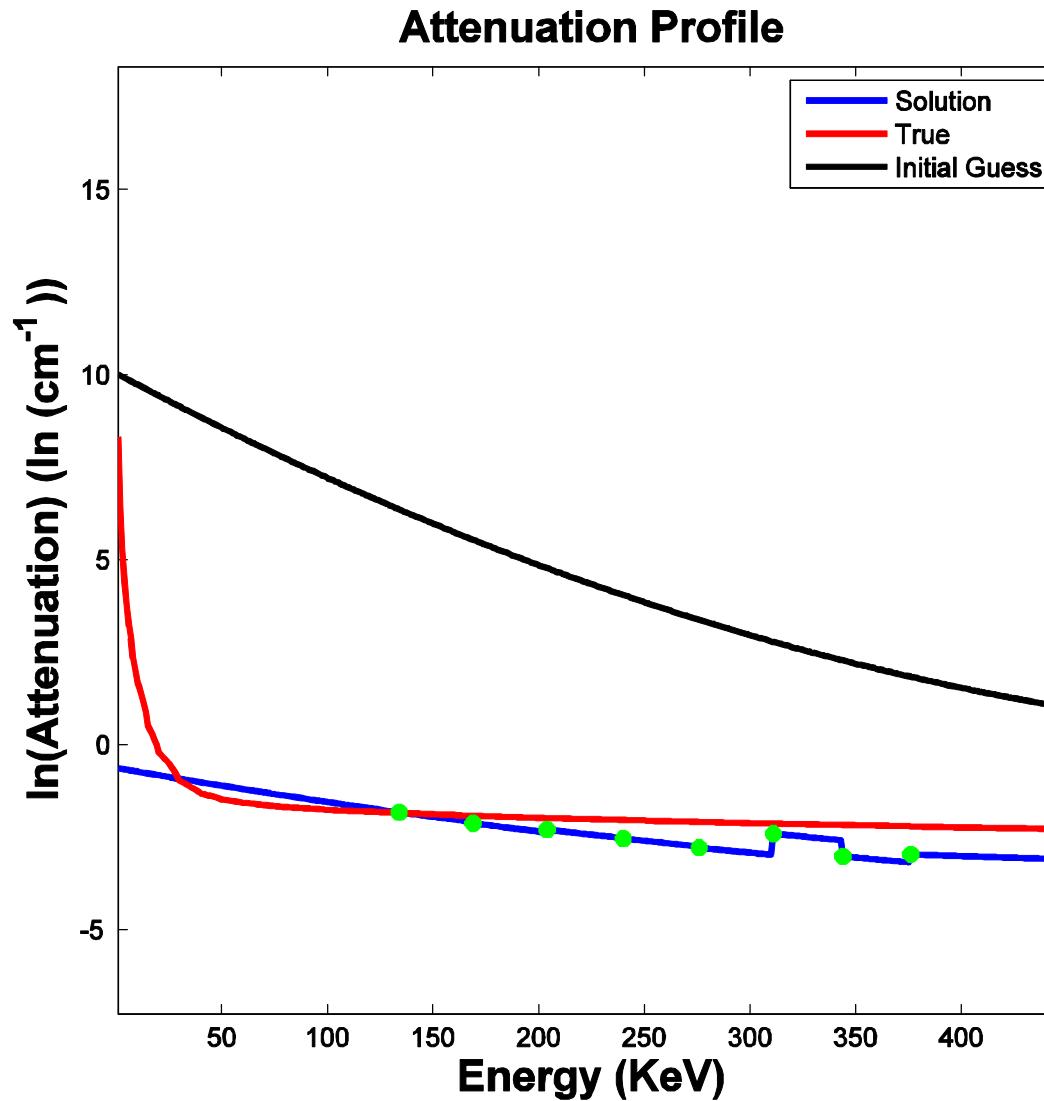
Results: Multi-Intervals (Sn)



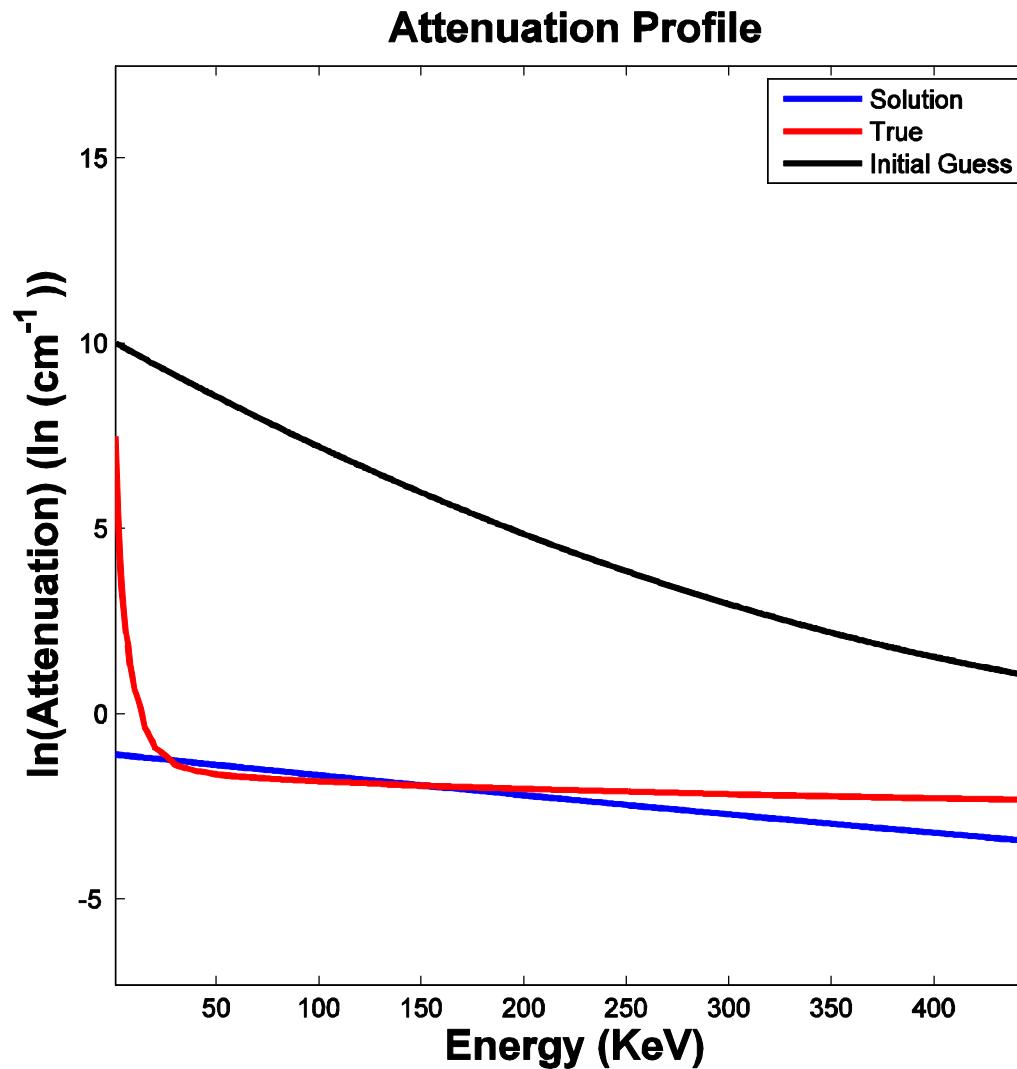
Results: Legendre Polynomials (Water)



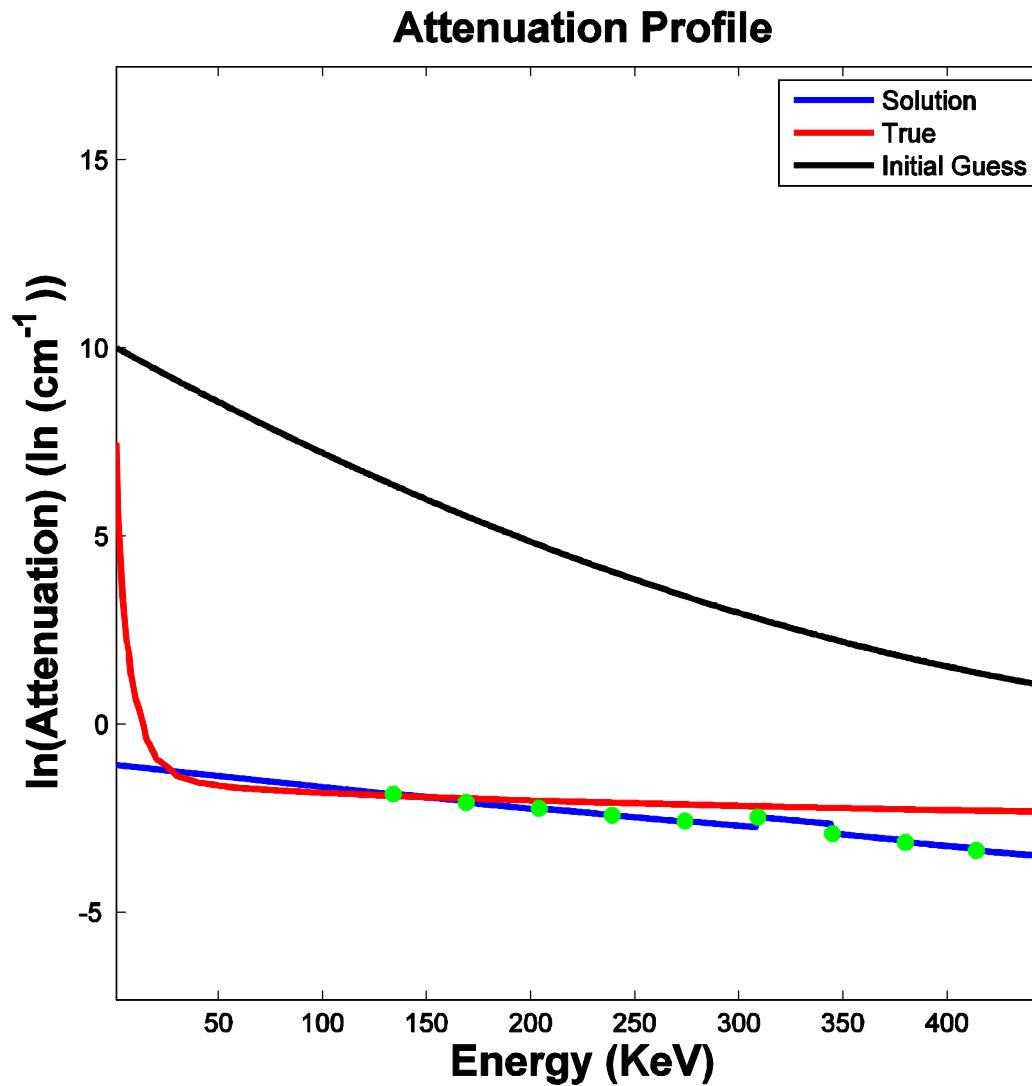
Results: Multi-Intervals (Water)



Results: Legendre Polynomials (Polyeth.)



Results: Multi-Intervals (Polyeth.)



Conclusions

- Improvements in the estimation task over previous work.
- Unfortunately, none resolved K-edges.
- The domains exhibit apparent local minima.
- The presence of null spaces may be hindering search.
- Future work holds promise.
- Ability to identify material in Radiographs is potentially disruptive.