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Motivation and Outline of Presentation @ &s.

Motivation: Verify the accuracy and precision of fs/ps rotational CARS for

Temperature and O, concentration

A wide range of stoichiometry

Hydrogen and hydrocarbon fuels
Sooting conditions

Single-laser-shot measurements at 1 kHz

ﬁs CARS processes...2 key points! \

m Experiments to assess accuracy and precision

= Two-photon Raman preparation at time t = 0 2 high-precision

= High-energy picosecond probing by second-harmonic bandwidth
compression (SHBC)

= Summary and Conclusions

= H,/air flat flames — compare to equilibrium
= C,H,/air flat flames — compare to ns CARS

" Bonus material: Pressure Measurements /




Time-Domain Rotational Raman )5

®Oprobe OCAR
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preparation probing
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fs pulses provide low-noise preparation @ .

2

AJ

Frequency (cm™)
“Two Photon Effect”

* Large number of frequency
combinations prepare each
Raman transition

* Fourier-transform limited

t = O pulses
preparation * Flat spectral phase

* Low phase and amplitude
noise
* Low noise/high efficiency




Can rotational fs/ps CARS be applied in flames? ) atra
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* Precision in flame temperatures approaching 1% using vibrational CARS
* Richardson et al., Roy et al.

e Similarly outstanding precision reported for rotational CARS below 800 K
e Stauffer et al., Kearney et al.

e Can rotational Raman be used at flame temperatures?

 Temperature and concentration at kHz rates?




Probe Step ) g,

Probe Pulse Requirements:

* Phase locked to fs preparation pulses

* Frequency narrow to resolve Raman spectral features




“Bandwidth Carving” Experiments [,
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Results with etalon-generated ps probe beam ) et
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Results with etalon-generated ps probe beam ) et
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Second-Harmonic Bandwidth Compression (SHBC) & =

 Commercial device (Light CL
: 800 n ——
Conversion) _y

180 cm™ _ﬂ__,__jl
* Converts fs radiation at 800 nmto  90fs %CL ‘\rj 400 nm

- -1
ps radiation at 400 nm 3-5cm

3-6 ps

. Stretchers
e Grating pulse stretchers

* Phase-conjugate temporal chirps
imparted upon broadband fs pumps =

* Sum-frequency generation in BBO
e Qutput linewidth 3.5-4.0cm™

Aogy ~ do/dt
-1
Aa)sfg ""(At)

e Conversion efficiency: 35-50%!

Frequency (cm-

e Output pulse energy: 1-1.4 mJ!

- wn




Hencken Burner ) i

* Slightly lifted flat flame
* Flow rates 98 to 116 SLPM

* Non-premixed
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* Provides nearly adiabatic flames

 Temperature and major species
mole fractions calculated from
adiabatic equilibrium

Temperature Field Measured
by Rayleigh Scattering
(CH,/air)
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Single-Shot Spectra from Near-Adiabatic H2/air flame
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H,/Air Flame Measurement Accuracy (@&
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H,/Air Flame Measurement Accuracy ()&,
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H,/air Flame Measurement Precision
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C,H,/Air Flames on McKenna Burner @i
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* Premixed hydrocarbon/air flame
« Water-cooled non-adiabatic burner
« Stable region ~5-15 mm above burner

* Previously studied at ¢ = 3.14 in our lab
(and elsewhere!)

« Wide range of stoichiometry, ¢ = 0.75 to
3.14

« Potential contributions from N,, O,, CO,
(CO, minimized by probe delay)

O +SOOT VOLUME
FRACTION [ppm]

—l TEMPERATURE [K]

[wdd] NOILOVY4 FINNTOA LOOS

Il v \\ o e b b gy
5 10 15 20 25 30
HEIGHT ABOVE BURNER [mm]




C,H,/Air Flame Spectra ) s
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Shot-Averaged Single-Shot at 1 kHz
—Experiment ——Theory ——Residual — Experiment ——Residual — - Theory
1 T T T T T T T T T T T T T T T T T 1 FT T T T T T T T T T T T T T T T T T T T T ]
Fh = tdp =0.75 3 .
0.8 ?$:(i'57§1 K 0.8 ?$=1556 K 1 ° Spectra acqwred for
0.6 FO /N = 6.6% 0.6 O /N_=6.6% E . .
0.4 (05N, =0:6% 0.4 72 2" 7 fuel-lean to rich sooting
02 E g 0.2 ¢
0 bV | o flames
0.2 402 ¢ i i )
E::::'::H'::::'::::'::::, 1 e . == I'“gl']'ql"a“tyﬂts
@ g =091 ' ' 0.8 [0=158 ]
R T 08 - Tes0k 3 observed for g < 1
S (4 FO,N, =0.05% 04k ' L
8 oof 0ok i ¢ Systematic bias toward
I " " \ . .
= 9 _ Og : “underfit” of isolated
2 0.2 pamW M Ans At anpanag O-< F . .
& S SN AT Iy S S lines for fuel-rich flames
Q IR 5_(1)=2.51I I I I E
2 08FE¢=158 ’ 10827 E .
JC) 0.6 ET=1731K 106! =199K * Fitted temperature
0.4 ¢ ] 044 appears to be robust
3;: 02F i 0.2 PP
@) 0k 0 &

* Reliable spectra
obtained in sooting

0.2 § 1-0.2
: —-—
F0 = 3.14

F=3.14" "~

0.8 [+ _ 0827 .
06 i = o8 pom 06 [T = 1548 K regions of the flame
0.4 Fv T Th 04 ¢ .
02 02 * No EM gain used

0 & 0k

0.2 § 0.2 §

04p. o oWy Y o4k N
50 100 150 200 250 300 50 100 150 2010 250
Raman Shift (cm™ Raman Shift (cm™)
- ]



Temperature Accuracy in C,H,/Air Flames:

Sandia
m National
Laboratories

comparison to ns-CARS
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« Comparison is most valid in
stable region 5-15 mm height

 ns-CARS temperatures based
on fits to shot-averaged spectra

« Agreement of fs/ps and ns
CARS is within 1-3% in these
fuel-rich, sooting flames

« Within reported accuracy of
rotational ns-CARS

* Nns-CARS measurements

 Rotational CARS at Sandia
11/2013

 Vibrational CARS at Sandia
(2006)

 Rotational CARS at Lund
(Vestin et al. 2005)
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* Measurement volume positioned 11.5 mm above burner where flame is stable

* Small (8%) variation in temperature in this range of ¢

e Precision is 0.9 to 1.4% in leanest flames investigated : CARS photon yields are highest

* Precision degrades to ~3% in richest flames

* Precision appears to be correlated to photon yield
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Summary and Conclusions ) .

« High-energy probes generated via SHBC enable flame temperature
measurements with rotational fs/ps CARS

 We have performed a systematic assessment of accuracy and
precision

« Near-adiabatic H,/air flames

* Premixed hydrocarbon air flames for ¢ = 0.75t0 3.14
« Temperature accuracy is typically 3% or better
* Uncertainty in temperature standards is 3%
» Good accuracy in O,/N, ratio observed in H,/air flames

* Precision is outstanding for temperatures up to 1600-1800 K if peak
SNR is ~ 40 or more

» Periodic oscillations of 30 K (2%) amplitude realized in Hencken
burner




III

“Bonus Material” Pressure

Measurements




Measured Response in N, at T=300 K (@&,
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J-dependent dephasing enables pressure measurements i) fers
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N, CARS measurements in room-temperature gas cell
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Single-Laser-Shot Pressure Measurements i) fers
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Extra Slides for Potential Questions




Time Gated Minimization of CO2
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Pump Stokes Delay Shifts Bandwidth Center i) Yoo
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* Delay between pump and Stokes
pulses shifts the peak signal

e Allows full utilization of limited
bandwidth

* |Increased signal for high-J
transitions in flames

e 2-3x hit on peak nonresonant
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Vertical Spatial Chirp in SHBC Output @&.
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Probe Step and Spectral Synthe5|s 1) .

Pure Gases, T = 300 K
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