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Motivation and Outline of Presentation 

 fs CARS processes…2 key points! 
 Two-photon Raman preparation at time t = 0  high-precision 
 High-energy picosecond probing by second-harmonic bandwidth 

compression (SHBC) 

 Experiments to assess accuracy and precision 

 H2/air flat flames – compare to equilibrium 

 C2H4/air flat flames – compare to ns CARS 

 Summary and Conclusions 

 Bonus material: Pressure Measurements 

Motivation: Verify the accuracy and precision of fs/ps rotational CARS for 
• Temperature and O2 concentration 
• A wide range of stoichiometry 
• Hydrogen and hydrocarbon fuels 
• Sooting conditions 
• Single-laser-shot measurements at 1 kHz 



Time-Domain Rotational Raman 
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D J = ±2 



fs pulses provide low-noise preparation 
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D J = ±2 

“Two Photon Effect” 
• Large number of frequency 

combinations prepare each 
Raman transition 

• Fourier-transform limited 
pulses 

• Flat spectral phase 
• Low phase and amplitude 

noise 
• Low noise/high efficiency 



Can rotational fs/ps CARS be applied in flames?  
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ns CARS 

fs CARS 

Room-temperature N2 spectra 

• Precision in flame temperatures approaching 1% using vibrational CARS 
• Richardson et al., Roy et al. 

• Similarly outstanding precision reported for rotational CARS below 800 K 
• Stauffer et al., Kearney et al. 

• Can rotational Raman be used at flame temperatures? 
• Temperature and concentration at kHz rates? 



Probe Step 
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Probe Pulse Requirements: 
• Phase locked to fs preparation pulses 
• Frequency narrow to resolve Raman spectral features 



“Bandwidth Carving” Experiments 
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 “Bandwidth-Carving” to 
generate ps probe pulse 

 Two different probe 
resolutions investigated 
with single- and double-
etalon configurations 

 Very inefficient (0.8 to 
2.4% or less 
transmission) 

 Atmospheric air spectra 
in tube-furnace up to 800 
K for probe delays up to 
20 ps 



Results with etalon-generated ps probe beam 
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Spectra from tube-furnace-heated air 
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Results with etalon-generated ps probe beam 
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Spectra from tube-furnace-heated air 
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Ultimately limited to  T  below 800 K 
Low probe-beam energy 

Insufficient CARS SNR for single-shot data 



Second-Harmonic Bandwidth Compression (SHBC) 
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800 nm 
180 cm−1 

90 fs 400 nm 
3-5 cm−1 

3-6 ps 
 

Stretchers 

• Commercial device (Light 
Conversion) 

• Converts fs radiation at 800 nm to 
ps radiation at 400 nm 

• Grating pulse stretchers 

• Phase-conjugate temporal chirps 
imparted upon broadband fs pumps 

• Sum-frequency generation in BBO 

( ) ( )2 ot t d dt t  D   D

( ) ( )1 ot t d dt t  D   D

1 2 2sfg o     

~sfg d dt D

( )
1

~sfg t


D D

• Output linewidth 3.5-4.0 cm−1  

• Conversion efficiency: 35-50%! 

• Output pulse energy: 1-1.4 mJ! 



Hencken Burner 
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Burner Hole Configuration 

Temperature Field Measured  
by Rayleigh Scattering 

(CH4/air) 
CH4/air flame 

• Slightly lifted flat flame 

• Flow rates 98 to 116 SLPM 

• Non-premixed 

• Provides nearly adiabatic flames 

• Temperature and major species 
mole fractions calculated from 
adiabatic equilibrium 



Single-Shot Spectra from Near-Adiabatic H2/air flame 
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H2/Air Flame Measurement Accuracy 
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H2/Air Flame Measurement Accuracy 
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H2/air Flame Measurement Precision 
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C2H4/Air Flames on McKenna Burner 
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C2 

F = 3.14 C2H4-Air Flame 
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• Premixed hydrocarbon/air flame 

• Water-cooled non-adiabatic burner 

• Stable region ~5-15 mm above burner  

• Previously studied at  = 3.14 in our lab 

(and elsewhere!) 

• Wide range of stoichiometry,  = 0.75 to 

3.14 

• Potential contributions from N2, O2, CO, 

(CO2 minimized by probe delay) 



C2H4/Air Flame Spectra 
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Single-Shot at 1 kHz 

• Spectra acquired for 
fuel-lean to rich sooting 
flames 

• High-quality fits 
observed for  < 1 

• Systematic bias toward 
“underfit” of isolated 
lines for fuel-rich flames 

• Fitted temperature 
appears to be robust 

• Reliable spectra 
obtained in sooting 
regions of the flame 

• No EM gain used 



Temperature Accuracy in C2H4/Air Flames: comparison to ns-CARS 
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• Comparison is most valid in 

stable region 5-15 mm height  

• ns-CARS temperatures based 

on fits to shot-averaged spectra 

• Agreement of fs/ps and ns 

CARS is within 1-3% in these 

fuel-rich, sooting flames 

• Within reported accuracy of 

rotational ns-CARS 

• ns-CARS measurements 

• Rotational CARS at Sandia 

11/2013 

• Vibrational CARS at Sandia 

(2006) 

• Rotational CARS at Lund 

(Vestin et al. 2005)  



Temperature Precision in C2H4/Air Flames 
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• Measurement volume positioned 11.5 mm above  burner where flame is stable 

• Small (8%) variation in temperature in this range of   

• Precision is 0.9 to 1.4% in leanest flames investigated : CARS photon yields are highest 

• Precision degrades to ~3% in richest flames 

• Precision appears to be correlated to photon yield 



Impact of Signal-to-Noise on Precision 
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Summary and Conclusions 
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• High-energy probes generated via SHBC enable flame temperature 

measurements with rotational fs/ps CARS 

• We have performed a systematic assessment of accuracy and 

precision 

• Near-adiabatic H2/air flames 

• Premixed hydrocarbon air flames for  = 0.75 to 3.14 

• Temperature accuracy is typically 3% or better 

• Uncertainty in temperature standards is 3% 

• Good accuracy in O2/N2 ratio observed in H2/air flames 

• Precision is outstanding for temperatures up to 1600-1800 K if peak 

SNR is ~ 40 or more 

• sT/T =1-1.5%; sO2/O2 = 1-2% 

• Periodic oscillations of 30 K (2%) amplitude realized in Hencken 

burner 



“Bonus Material” Pressure 
Measurements 
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Measured Response in N2 at T = 300 K 
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J-dependent dephasing enables pressure measurements 
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N2 CARS measurements in room-temperature gas cell 
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• N2 in a room-temperature cell 
• Long probe delays require 

high-energy SHBC for good 
single-shot SNR 

• Single-shot means within 5% 
of transducer or better 

• Precision sp/P ~ 3-7% 
• Sensitivity can be tuned to a 

given pressure range by 
adjusting the probe delay 

• Improved single-shot precision 
is possible 

• Expect ~2x worse than 
temperature precision 

• Schemes based on two-probe 
approaches are feasible 

• Simultaneous T/P monitoring 
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Vertical Spatial Chirp in SHBC Output 
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