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Electronic structure of phosphorus

= Black phosphorus is a layered material
= |nteractions within layers are covalent

= |nteractions between layers are
mediated by dispersion

= Transport occurs primarily within layers

= Environment of layers does affect m

transport

= |t would be useful to be able to predict
these properties from quantum
calculations




Standard electronic structure approach —
Density Functional Theory (DFT)

= Density functional theory

= Replace 3N dimensional wavefunction with
3 dimensional density

= Kinetic piece is approximated well by using
an ansatz of a noninteracting problem in
an effective potential

= Challenge is to replace simple Coulomb
interaction with effective potential

= Classes of approximation vary in what
information is included
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Table 1: Overview of selected popular XC functionals. X is the

exchange functional, C the correlation functional.

Functional Authors Ref.

Local Density Approximation (LDA) (I)

SVWN! X: Slater e
2

C: Vosko, Wilk, Nusair
PW! Perdew, Wang

25

an an Satz Of d nNon i nte ra Cti ng p ro b I em i N Generalized Gradient Approximation (GGA) (II)]S

. . BP86 X: Becke .

an effective potential iy pedew )

. . C: Lee, Yang, Parr .

= Challenge is to replace simple Coulomb PW9L  Perdew, Wang

PBE Perdew. Burke, Ernzerhof 4

22

interaction with effective potential pobeol erdew, Twsinesky cf ol

Hammer. Hansen. Norskov

16

SOGGA  Zhao, Truhlar 30
u C I asses Of a p p roximation va ry N W h at Meta-Generalized Gradient Approximation (meta-GGA) (I1I)

. . .. TPSS Tao, Perdew, Staroverov, Scuseria
information is included Hybrid Functionals (IV) |

B3LYP Becke 18,19
—_ L i PBEO Perdew, Ernzerhof, Burke 3
Oca I d ens Ity on Iy HSE Heyd. Scuseria, Ernzerhof 32
H H B97 Becke B

G ra d lents Of d ens Ity TPSSh Staroverov, Scuseria, Tao, Perdew 34-3%

. s . Fully nonlocal functionals (V)

- Local klnetlc energy denSIty RPA Bohm, Pines 36
B2PLYP  Grimme 37

— Global density

“Both SVWN and PW are different parameterizations for the exchange-correlation
energy of uniform electron gas and give almost identical results.

— Noninteracting wavefunction

= Approximations are non-perturbative 4
I —————————————
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Improving electronic approximations:

Quantum Monte Carlo
= Solve Schrodinger equation directly?
ih%‘l’(r,rl Ly =HP(t,r...1y)

A A e’ Ze s
H=- =) —— +E L =T+V
~2m 2 & I”Z-—Vj‘ i :

= |gnore scaling problem

= Green’s function approach changes differential equation to integral
= |ntegral is still evaluated in 3N dimensions!

= Stochastic sampling vs deterministic

Circle area
~ 6/7 of
square
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Stochastic Sampling + Schrodinger Equation = Quantum Monte Carlo

= |ntegral still exists in a very large space

= Guide sampling according to trial wavefunction from another method

Often DFT wavefunction X correlation terms
= Still exact as long as guess satisfies certain properties

= Must recast integrand as a probability distribution
= Probability distributions must be positive everywhere
= Wavefunction is not positive definite!
= Restrict sampling using nodes of trial wavefunction

= This advance allowed the calculation of the energy of the
homogeneous electron gas

= Basis for all DFT calculations
= Ceperley and Alder. PRL. 45, 566-569 (1980)
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Accuracy in solids has been shown to be
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equal to or better than DFT on a large class
of solids

= Fit Vinet form to E(V) and compare equilibrium volume (density) and bulk
modulus of solids (compressibility) to experiment

Error in Calculated Equilibrium Volume
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= Materials span a factor of 10 in
equilibrium volume
= Four types of bonding are included
= |onic
= Covalent
= Metallic
= Van der Waals
= Lattice Constants within ~0.9%
= Accuracy comparable to popular DFT
functionals of many different types
= PRB 88, 245117 (2013)

Mean error: -0.38 +/- 0.15

Mean absolute error: 2.28 +/- 0.15

RMS error: -0.697 +/- 0.066%

Mean absolute relative error: 1.79 +/- 0.07%



The method has been validated for =i,
large van der Waals systems
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* Van der Waals interactions are handled naturally because the interaction
is not approximated
* The scalability of the method allows calculations on hundreds of atoms

Ar dimer Ar trimer Ar, Kr and Xe fcc solid

L ~<~\

Anti-cancer drug
Ellipticine intercalated
between DNA

Benali et al. JCTC, 2014




Energy (eV)

The largest approximation is often the core- s
valence partitioning (pseudopotentials)

Laboratories

QMC energy (all-electron vs pseudopotential) with QHA vs volume for HCP Be

°r PP —— - Be is a case where the

25 peeudopotential ¢ performance was poor
relative to DFT

« Compare all electron
calculations to
pseudopotential ones

» All electron EOS Properties
agree with experiment

within small error bars!

25 30 35 40 45 50 55 60 65 70
Volume (bohr3 / Be)

HCP Equilibrium Parameters

QMC All Electron QMC  Exp
cl/a 1.569 +/- 0.004 1.569 +/- 0.004 1.568
V, (angstrom”3) 7.746 +/- 0.078 8.129 +/- 0.012 8.117
Bulk Modulus
124 +/- 2 115.7 +/-1.5 116.8
(Gpa)




Two pseudopotentials were tested and ) i
validated for phosphorus
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= Compare properties of dimer and isolated atom to experiment

Energy per atom relative to isolated (eV)

P, energy vs separation from DMC comparing pseudopotentials

= 1.8618 +/- 0.0009 A (5e) 13¢ —o—
=1.8824 +/- 0.0018 A (13e)
=1

;
.
r .89340 +/- 0.00044 A, CCCDB

e
e
e

D, = 5.0034 +/- 0.0067 eV (5e)
D, = 4.9994 +/- 0.0402 eV (13e)
D, = 5.03 +/- 0.02 eV, JCP 94, 7221 (1991

1.8 1.85 1.9 1.95 2

Separation (A)

« Accuracy of atomic results
Is limited in practice by the
choice of trial wavefunction

« Both choices of valence
yield results in good
agreement with experiment
(within fixed node error)

5 e~ valence 13 e~ valence expt

lonization potential 10.7112 +/- 0.00084 | 10.6832 +/- 0.0598 10.48669

Electron affinity 0.6405 +/- 0.0084 0.7483 +/- 0.0626 0.746609




Previous work on graphite shows strengths and ) e,
limitations of QMC for layered materials

Graphite energy as a function of
layer separation

= Bond length is 7 L A R
", e VMC  2x2x1 super-cell
50 o LRDMC 2x2x1 super-cell
\ A LRDMC 2x2x?2 super-cell

insensitive to
calculation cell

= Rigorous procedure for
estimation of finite size
effects makes

energetics difficult -0

Binding Energy [meV/atom]

-100

| L | L | ! |

3 4 5 6 7
separation D [ Al

Spanu et al. PRL, 103, 196401 (2009)



Advances in computational resources have allowed (g s,
insight into finite size effects for layered materials
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In plane is insensitive to number layers  1/N? scaling with number of layers
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Relative Total Energy (eV/atom)

Calculations on bulk black phosphorus yield s
good structure compared to experiment
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= Cannot calculate forces in DMC, using geometries from
approximate DFT vdW functional

= Considerably stiffer as a function of layer spacing than GGA+D2
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Calculations of bound exciton show
strong influence of layer spacing
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= Calculations performed by exciting an electron to the
conduction band in the DMC trial wavefunction (provides
upper bound on true excitation energy)

= Good agreement with experiment at equilibrium geometry
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Isolated black phosphorene shows ...
little relaxation of geometry from bulk
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Single layer Bulk

Static Relaxation of Soft Axis Static Relaxation of Soft Axis
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Allows calculation of binding energy wrt layer spacing: 40 +/- 7 meV
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Optical excitation for phosphorene
shows linear increase with strain

* Values considerably larger than experiment
* Role of environment?
« Trial wavefunctions from DFT possibly worse?

3.3
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Blue allotrope is similarly underbound by DFT) &
within the sheet

Static Relaxation of In-Plane Axes
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Conclusions

* Electronic structure of phosphorus is challenging for DFT

= DMC provides an alternative with proven accuracy for vdW,
but challenges for layered materials

= DMC results for black phosphorus provide excellent
geometries compared to experiment

= Comparison with single layer sheet provides binding energy of
40 +/- 7 meV

= Calculations of optical properties a work in progress but
suggest DFT wavefunctions are significantly better for bulk
than layered structure
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