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What are the challenges?

* Based on new understanding of light-matter interactions at nanoscales, we seek new applications
of photon-phonon interactions as a new form of information transduction from light to sound, etc.

* Engineerable coupling between resonant photonic and phononic modes has been achieved in a

variety of chip-scale systems.

* The realization of narrow-band filters that simultaneously achieve high optical power handling,
and wavelength insensitivity in silicon to enable new signal processing schemes.

What is photonic-phononic emitter-receiver? Exoerlmental results

How to measure the PPER response?

Pump: pump laser at 1547 nm

Probe: probe laser at 1536 nm

IM: intensity modulator

RF: RF signal generator with bias controller

AOM: acousto-optic modulator frequency shifter by 40 MHz
IF: interference filter

PD: receiver

SA: signal analyzer
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« Temporal coupled-mode theory of phononic modes
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e Analytical expression of the PPER functionalities
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cq(t), cp(t): phononic mode at Wg- A and Wg-B
Q,: angular resonant frequency
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Fabrication
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 High optical power handling (=70 mW) with no shape distortion
« Wavelength insensitive narrow-band filter

- Wavelength converter for any wavelength

w: modal coupling rate of phonon between Wg-A and Wg-B - No optical cavity
n(t) = ne.exp(—iQt), and n(t)A, A5 is the driving term.

o Laser linewidth insensitivity
- No need to have frequency stabilization or frequency locking
- LED can be used.

« Excellent performance: High dynamic range attenuation (70 dB), high Q-factor, wide rejection
bandwidth (1.8 GHz), and high selectivity (bandwidth of 3 MHz, low shape factor of 5, and slope of
20/3 [dB/MHz]).

 No optical cross-talk

 Potential application in guantum information processing
 Reflectionless geometry negates the need for optical isolators.
e Directional preference through interband transition.

« Large design space for hybrid photonic-phononic design: Lithographically engineerable
responses

This PPER system can be the impetus for numerous powerful new coherent
Information signal processing schemes including wavelength conversion, amplifier,
RF mixing, isolator, and RF photonic filter.
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