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e South Korea is strongly pushing to use pyroprocessing to close

their nuclear fuel cycle.
* Limited available land and public opposition to a repository.

* Recycling through the use of fast reactors.

* Because a commercial-scale facility has never been built,
there are many safeguards questions.

* The material form (molten salts and metal products) are much

different than what the international safeguards community is familiar

with as compared to aqueous processing.

* The unit operations are much different than agueous processing.
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Objective

* The goal of this work is to develop a safeguards system design
for electrochemical plants and examine how the system will
perform under diversion scenarios.

* Progress:

» Safeguards challenges have been identified.

* An accountancy structure for a commercial echem plant has been
developed that relies on a ten-day balance period.

* Measurement technologies for four key measurement points have
been evaluated to identify research gaps

* Diversion scenarios have been evaluated using both NRC and IAEA
regulations as a basis
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History

* Electrochemical processing has been examined for several
decades going back to the Experimental Breeder Reactor |l
(EBR-II) program at INL

e EBR-Il was a fast reactor that used electrochemical processing to
recycle the fuel—melt refining was performed from 1964-69.

e Current operations are focused on research and treating the old fuel.

* Recently, the Korea Atomic Energy Research Institute (KAERI)
has been developing electrochemical technology.

* The Pyroprocess Integrated Inactive Demonstration Facility (PRIDE) is
located in Daejeon, and was designed to demonstrate operations using
depleted uranium.



Pyroprocessing Technology
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* Materials accountancy is a combination of containment and
surveillance on solid materials (fuel assemblies at the front
end and oxide products at the back end) and accountancy
measurements throughout the plant.

e Accountancy measurements are based mainly on
measurements of the material dissolved in nitric acid at the
input and output accountability tanks—we can achieve low
measurement uncertainties (0.2-0.8%).

* Plant flushouts occur once or twice a year to close out the
material balance.

* Periodic interim inventory measurements may be made
monthly through sampling of tanks to determine inventory.
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Pyroprocessing Safeguards Challenges

Lack of Accountability Tank

* In electrorefining, the extraction onto the cathode occurs as the material
dissolves into the salt; the process cannot be decoupled, so the electrorefiner
cannot be used to determine input accountability—need alternative input

measurements.

Inability to Flushout the Plant

* Because actinides must buildup in the electrorefiner, it is not feasible to
flushout the plant periodically—requires more extensive use of inventory

measurements and near real time accountability.

Electrorefiner Inventory

e The electrorefiner contains a very large TRU inventory, much larger than any
other vessel in the plant—measuring the salt content will be important.

Product Measurements

e Dendrite structures with entrained salt will be difficult to measure—need to

develop measurements for metal products.
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Separation and Safeguards Performance Model
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Separation and Safeguards Performance Model

* For input parameter description, see the SSPM help document.

Eequired Input Parameters

\45 GWdMTHM. .. v]

Select a burnup and enrichment vale:

Select a time since discharge: ‘25 years vl

Diversion
Would you like to run a diversion scenario? ® Yes () No

Diversion Scenario Parameters

Select the diversion location: |Pu Decontaminati __ v]
Enter diversion start time (hours):
Enter diversion end time (hours): 200

Enter diversion fraction (%a): 0.02

Select the diversion type: |D:iﬂ3ct v]

Automation Panel
Startup

Manual or automatic startup? (C) Manual @ Auto
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Accountancy Structure
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Inventory Measurement Timing Sequence

«— Reduction Vessel
(trace actinide inventory)

«— Electrorefiner
(high actinide inventory)

«— Metal Processing
(in between batches)
«— U Product Processing
(in between batches)

«— U/TRU Product Processing
(in between batches)

«— U/TRU Recovery
(small actinide inventory)

«— Ln & FP Drawdown
(trace actinide inventory)

«— Oxidant Production
(in between batches)




Accountancy Structure

Reduction Inventory
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Delayed Gamma NDA for Input Accountability ) i,

e Measurement is assumed in the front-end
process cell (air environment and

significant shielding required). e
* LWR spent fuel disassembled and m
shredded
* Spent fuel basket is approximately
40”x40”x1” with porous stainless steel o

sides. Each basket contains about 75 kg / |
of spent fuel (1/8 of a PWR assembly). _

* Neutron source: D-D neutron generator
(2.5 MeV) with polyethylene moderator.

Shredded spent fuel (1/8 fuel assembly)
40"

bt —
=

D-D neutron

* |sotopic point source (10 n/s, 2.5 MeV) generator
e 10 second irradiation period O
e 1 second cool down L]

* 30 second acquisition time

* HPGe detector system, 3.2 cm radius, 40%
efficiency




Delayed Gamma Background ) S
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* Passive measurements of signature
isotopes lead to high measurement
uncertainties
. Cs-137, Cs-134, Cm-244, Eu-134 sl | ' T =]

30p
* Dependent on reactor history and initial fuel 25t

20

composition (supplied by operator) and subject s}
to high uncertainties 10} “

Tellé
4Tc106
4v97
4Rb9Om
{Rb90O

Y97
4Rb91

4{rb93

4{Rb90
Y95
Rb91

4sr9s

w

Pu239

* Delayed gamma assay

* Delayed gammas from fission products serve as \

Counts/keV
o NN
S w O wo

*

signature Lotk \.A_-,,w_'_‘,w.«,j.,__? ol A A
* Gamma line intensity ratios can differentiate 50} e
between fission of U-235, Pu-239, Pu-241. |
* Intense radiation from spent fuel complicates 7|
ability to distinguish fissile isotopes ; i\
. . . . Lo 3200 3300 3400 3500 3600 3700
* Mitigated by identifying high energy emitting Energy (keV)

isotopes as signatures (Campbell et al.)
* 3—4 MeV range



Modeling Approach

Sandia
National _
Laboratories

/

TINDER
(Computational Shell/Driver)

MCNP6

3D geometry, material compositions, and neutron source specification
Performs neutron transport calculations in the irradiated material (spent fuel)
Produces neutron and gamma flux in fine energy groups

4

CINDER2008

(Modified to include photon induced reactions)

Using predefined neutron/gamma fluxes and isotopic inventory
Performs dual particle transmutation calculations in the sample material
Produces discrete gamma spectrum (delayed and passive emissions)

¥

MCNP6

The photon source is applied back into the sample and propagated to the
acquisition system

Detector system parameters are applied (detector response, resolution,
Gaussian energy broadening)

Produces expected gamma spectrum as measured by HPGe detector

~
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* PWR spent fuel, 4% initial enrichment, 35 GWd/MTHM
* Gamma emission intensities for fissile isotopes vary slightly, but Tc-106 peak will
be important measure.

* The Tc-106 peak will be ~10° counts, so at ~1% counting statistics, but this could be
optimized more.
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Simulation Results (Decrease of U-235 content from 40% | oo
of fissile makeup to 38%)

Percent change in emission intensity for selected isotopes

lsotope | Te136 | Tc106 | Y97 | Rb90 | Rbo1_

Energy (MeV) 3.235 3.260 3.288 3.383 3.600
Percent change (%) -2.418 2.872 -3.112 -3.148 -3.562

* Pu content increased by 0.62/0.6 = 1.033
» U-235 content decreased by 0.38/0.4 = 0.95

* Fission product yields for Tc-106:
* U-235:0.402, Pu-239: 4.4

(1.033)(4.4) + (0.95)(0.402)

= 1.026 = 2.6%

4.4 +0.402
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* Count rates appear to be in the range needed for 1% counting
statistics

* More work will be required to determine expected
measurement uncertainties

* This geometry seems to be more desirable as compared to a
fuel assembly (no axial variation, less self-shielding, less
volume)

e Calibration could be a challenge, but probably easier than
developing a spent fuel assembly calibration standard.

* Future work will focus on measurement uncertainty and can
also examine the determination of fuel burnup and initial
enrichment.
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Conclusions

* A number of engineering challenges exist for nuclear material
accounting in an electrochemical processing facility.

* Electrochemical facilities will require a new safeguards
approach (as compared to existing aqueous plants).

 We're using modeling and simulation to determine
measurement needs and performance in diversion scenarios.

e Future work will examine the integration of process
monitoring information to help fill in the gaps in traditional
accounting.




