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Abstract

Particle Image Velocimetry (PIV) has been widely utilized for in-cylinder flow measurements since 1989. In the first part of the induction
stroke, in-cylinder flow is characterized by the strong interaction between valve jets and piston top. Both experiments and hybrid RANS-
LES modeling approaches have identified the jet-piston interaction as one of the key factors influencing cyclic variability. Bowl-in-piston
cylinder geometries can be expected to substantially change the in-cylinder flow resulting from at least the first half of the intake stroke.
As an alternative way to reduce soot emissions in the light-duty diesel engines, there also exists a great interest in characterizing swirl
structures and their evolution during the compression stroke prior to injection. However, severe image distortion brought by the complex
piston geometries is one of the obstacles for accurate velocity measurements. This work presents an update of general mapping
procedure for analytical approach of optical distortion quantification. The theoretical analysis helps the optimization of swirl-plane PIV
design with re-entrant bowl geometry. The swirl-plane PIV results taken at three planes under steady-state swirl ratio at 2.2 yield in
several analysis: the true swirl ratio evolution, swirl center location and the swirl center axis tilting behavior. The swirl center location
exhibits clockwise motion during the compression stroke. After IVC, swirl center axis tilting towards exhaust ports becomes less as
piston proceeds to -105°aTDC. As the compression continues, the tilting switches to intake ports, and is getting worse until the TDC is
approaching. In the end, this experiment is also used to investigate the impact of jets interaction on the swirl ratio evolution with various
tangential port throttling.

This work is made possible through the support from the Office of Vehicle Technologies:
Gurpreet Singh / Leo Breton and General Motors: Alok Warey (principal technical contact)

Unclassified, Unlimited Release

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000

1 @ Sandia National Laboratories



Outline

e Motivation

e Background
e General mapping procedure for optical distortion quantification
e PV experiments design

e Results
— Swirl ratio evolution and swirl center location
— Study of flow asymmetry

— Swirl ratio behavior with various intake ports throttling
e Summary

e Future Work
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Petersen, B., Miles, P., and Sahoo, D., "Equivalence Ratio Distributions
in a Light-Duty Diesel Engine Operating under Partially Premixed
Conditions," SAE Int. J. Engines 5(2):526-537, 2012, doi:10.4271/2012-

01-0692.

* Interests from industry

 Swirl acceleration during compression

* Swirl change with valve deactivation (4-valve)

e Accuracy of CFD calculations

* Why use piston with conventional bowl geometry?

In-cylinder flow characterized by valve jets-
piston top interactions in the first part of
induction stroke.

Cyclic variability influenced by jet-piston
interactions (identified by experiments and
hybrid RANS-LES modeling).

Bowl-in-piston  cylinder  geometries can
substantially change the in-cylinder flow.

Asymmetry swirl leads to the asymmetry of
combustion.
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| AZR@ Background and Swirl-plane PIV Setup

Bore

Stroke

Displacement Volume
Geometries CR
Squish Height

Intake / Exhaust Valves
Swirl Ratio

Engine Speed

Intake Pressure
Intake Temperature
Coolant Temperature
O2 Mole Fraction

GM 1.9 L Diesel Engine

82 mm
90.4 mm
0.477 L
16.7

0.78 mm
2/2
1.5,22,35
1500 rpm
1.5 bar
99 degC
~89 degC
10%

—

Exhaust ports Intake ports

Laser Sheet

@ 532 nm —

LaVision Imager
Intense CCD
(1376x1040 res)

"

Bowl Rim

Laser Sheet
@532 nm

Bottom View
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e Optical distortion induced by this piston geometry is spatially and temporally dependent.

* The transformation pattern is different in the bowl, injector exit, squish zone and valve
cut-out region.
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A\ Radial Mapping Function

squish region

Mapping Function F(r), z= 10 mm / R/MO’
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e Optical distortion quantification method:

* Manual calibration with uniformly spacing target
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Engine fire-deck
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—

effect from
transformation

-_

) Object plane
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* Ray tracing (implementation is a little different, the curved virtual plane needs
careful calibration with targets.)
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= Radial Mapping Function

Radial Velocity Error (% mean piston speed) @ 1500 rpm, z=10mm
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A\ - Design of PIV Experiment
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* General PIV rule: particle image size
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o PIV Particle Tracer Selection

~ o Aerosol =2 size ~= 1 um, Mie-scattering signal is too weak through piston

N

e Borosilicate glass

e 2 um, little lag error, but induces ring torque problem

« 18 um, lag error during early intake, and ring torque problem
Lycopodium -2 size =32 um, good ring torque, but induces large lag error

Both timescale calculation (from Converge simulation) and PIV results showed that
2um borosilicate glass would follow more flow structures during intake stroke.

Lycopodium (32 pm) Borosilicate glass (2 um) g

—-— helical port
%5529 “:,I/_,,_\\\_ p

S, mean piston speed

-270°%aTDC tangential port - -270°%aTDC
z=3mm z=10 mm
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2\ Interrogation Strategy Optimization

-

Valid Detection Probability for Two-Pass Interrogation 64x64,32x32 (z=10mm)
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e Trade spatial resolution for a higher probability
of measuring valid vectors (accuracy)

Valid Detection Probability for Two-Pass Interrogation 128x128,64x64 (z=10mm)
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Swirl-Plane PIV Measurement Test Cases

AL s

e Laser sheet minimum waist thickness around 500 pm.

Borosilicate glass (2 um) seeding particle.

Camera aperture opening f# = 11.

Every 15 CAD throughout intake and compression stroke (green region) for steady-state swirl ratio
at 1.5, 2.2 and 3.5.

Multi-pass interrogation strategy: 128x128-pixel window -> 64x64-pixel window.

t .
The 1°* swirl-plane PIV results! measurement crank angles at
each laser sheet location

/ / [

B RN
D 0 O

t

Distance from fire deck [mm]

» Valy

-360 -330 -300 -270 -240 -210 -180 -150 -120 -90 -60 -30 O
-323°aTDC Crank Angle [degrees]
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A Swirl Ratio Evolution and Swirl Center Location

Swirl Ratio

2.5

Crank Angle [degrees]

v/s, IO [T

0 04081216 2 24283236 4

~ .165°aTDC

0.5 ; ; ; ; ;
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e The swirl ratio measured within each plane
increases as the piston approaches the
firing TDC.

° In the z=10mm plane, the swirl center
precession exhibits clockwise motion in
general.
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A\ Swirl Center Location in Different Planes

.

e Both experiment and

simulation showed that the
swirl center is closer to the
intake ports when the swirl
plane is farther away from the
fire deck, at 50bTDC. (Petersen,
SAE2011-01-1285 and Perini
2013 Computers & Fluids)

intake

e While at BDC, simulation

showed that swirl center is
closer to the exhaust ports
when the swirl plane is farther
away from the fire deck. (Perini
2013 Computers & Fluids)
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2N\ \Vertical Tilting of Swirl Center Axis

exhaust & - intake

12 : P e OQur current swirl-plane PIV
100 ______________ ©10mm results With Rs=2.2 confirm the
g .............. -©-18 mm _ previous findings (Petersen,
- | SAE2011-01-1285 and Perini
E 4 2013 Computers & Fluids).
> e e
o e With swirl center location
calculated at three different

plane, vertical tilting of swirl

x [mm] center axis is quantified.
90 ‘ - ‘ ; ‘ e After IVC (-150°aTDC), tilting
- 807 | ' towards exhaust ports
— 79 becomes less as  piston

g 0 proceeds to -105°aTDC.

;

S, 5 e As the compression continues,
3 50 the tilting switches to intake

10t , ports, and is getting worse
until the TDC is approaching.

0 i i I i ;
-180 -150 -120 -90 -60 -30
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2\ Swirl Ratio Behavior with Various Intake Port

74
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CRE. Throttling
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1.5 —&— Helical Pin 15
—&— Helical Pin 19
1.25 i 1 :
0o /2 4 6 8 10 12 14 16 18 20

fully-throttled

Tangential Pin Number

e A non-monotonic behavior of the swirl ratio
(flow bench) with various tangential port
throttling, helical port un-throttled Pin19
(SAE2009-01-1124).

e A similar trend is observed with the swirl-
plane PIV measurements at -60°aTDC.

— &—— un-throttled

Swirl Ratio at -60°aTDC

Swirl Ratio

02% 2 4 6 8 10 12 14 16 18 20
Tangential Pin Number
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2\ Swirl Ratio Behavior with Various Intake Port

ALe Throttling
Swirl Ratio at -60°aTDC

e Angular momentum from tangential port is
linearly correlated with the increase of swirl
ratios.

e The reason why the swirl ratio increases
with further tangential port throttling

Swirl Ratio
N
(6]

1_..
0.75. | | remains unclear.
0.5 - | — un-throttled
0.25 T
o/l 4 6 8 10 12 14 16 18 20 S rix
Tangential Pin Number

2 -0.8 -064 -048 -0.32 -016 0 0.16 032 048 064 038
fully-throttled [m”/sec]

— 55p

\\\\\
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Ensemble average
angular momentum

-285°aTDC

-285%TDC T PIN 02
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// e A general mapping procedure for analytical approach of optical
distortion quantification has been established.

e Theoretical analysis helps the optimization of swirl-plane PIV
experimental design when severe distortion is present.

e At the z=10mm plane, with Rs=2.2, the swirl center location exhibits
clockwise behavior in the compression stroke.

e After IVC (-150°aTDC), swirl center vertical tilting towards exhaust
ports becomes less as piston proceeds to -105°aTDC. As the
compression continues, the tilting switches to intake ports, and is
getting worse until the TDC is approaching.

e Jets interaction visualized by PIV helps us understand the non-
monotonic behavior of swirl ratio with various tangential port
throttling and how port design impacts swirl ratio.
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Future Work

e Investigate two different bowl geometries to study the impact of bowl
geometry on the flow structure.

e Compare with CFD simulation results.

—

exhaust port

—

intake por

z=3mm
> z=10mm
Laser Sheet z=18mm
@ 532 nm
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