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Brief history of Intrepid2 package

Intrepid (INteroperable Tools for Rapid dEveloPment of compatIble Discretizations)

Trilinos package for advanced discretizations of Partial Differential Equations (PDEs)
Developers: P. Bochev, H. C. Edwards, R.C. Curby, K. Peterson, D. Ridzal

Provides compatible high­order discretizations for finite elements,
Supports hybrid discretizations: FEM, FV and FD 

Intrepid2 

  Refactoring of Intrepid for performance portability, using Kokkos.
  Early developers (stage 1): I. Demeshko, A. Delora

  Current developers (stage 2): K. Kim, M. Perego, N. Ellingwood, K. Peterson, N. Roberts

  Stage 1: fully compatibility with Intrepid interface, adoption of Kokkos

  Stage 2: no backward compatibility but same mathematical/logical interface.
                Use of Kokkos dynamic rank views.  

   



Tools for Local Assembly of Compatible finite elements

De Rham complex

HGRAD HCURL HDIV HVOL

Courtesy: P. Bochev



Cell TopologyCell Topology

Cell Integration Cell Integration 

Cell GeometryCell Geometry

Discrete SpacesDiscrete Spaces

Discrete OperatorsDiscrete Operators

Discrete FunctionalsDiscrete Functionals

UtilitiesUtilities

CellToolsCellTools

BasisBasis

FunctionSpaceToolsFunctionSpaceTools

ArrayToolsArrayTools

RealSpaceToolsRealSpaceTools

PolylibPolylib

Integration Integration 

src/Cell

src/Discretization

src/Shared

Orientation tools Orientation tools 
ModifyBasisModifyBasis

ModifyPointsModifyPoints

OrientationMatrix OrientationMatrix 

src/Orientation

Package structure



It is natural to declare these array as Kokkos::view

However, in some cases the rank of the arrays might not be known at compile time.
Solution: Kokkos::DynRankView

Choice of multidimensional array

Intrepid2 work with multi­dimensional arrays: e.g.,

double basisVals[F][P];
double basisGradVals[F][P][D];
double jacMat[C][P][D][D];

 

BASIS INPUT VALUE GRAD CURL DIV

HGRAD (P, D) (F, P) (F, P, D)

HCURL (P,D) (F, P, D) (F,P,D)

HDIV (P,D) (F, P, D) (F, P)

// C - # of cells
// N - # of nodes per cell
// D – spacial dimension (2 or 3)
// F - # of field DOFs
// P - # of integration points

Operations often done on batches of cells

Rank of differential operators evaluated at quadrature points



Properties of Kokkos::DynRankView

// 1. Construction of a dynamic rank view
//     - rank is deduced from the number of dimensions arguments

Kokkos::DynRanView<value_type, exec_space> a(“a”, 3, 9);

// 2. Same subview syntax
auto part = Kokkos::subview(a, 0, Kokkos::ALL());  // part = a(1, :);

// 3 Inter-operability with Kokkos static view
Kokkos::View<value_type**, exec_space> b(“b”, 3, 9);

b = a; // okay
a = b; // error, a static view cannot be converted to DynRankView

Kokkos::deep_copy(b, a);  //okay
Kokkos::deep_copy(a, b);  //okay 



Advantages of using Kokkos::DynRankView

This functor computes the following three contractions
outputFields(cl, lf, rf) = leftFields(cl, lf, qp) * rightFields(cl, rf, qp); 
outputFields(cl, lf, rf) = leftFields(cl, lf, qp, i) * rightFields(cl, rf, qp, i); 
outputFields(cl, lf, rf) = leftFields(cl, lf, qp, i, j) * rightFields(cl, rf, qp, i, j);

Using a view, one would need to replicate the code for the scalar, vector and matrix cases. 

KOKKOS_INLINE_FUNCTION
      void operator()(ordinal_type iter) const {
        ordinal_type cl, lf,  rf;
        unrolIndex(cl, lf, rf, iter, outputFields.dimesion(0), outputFields.dimesion(1), outputFields.dimesion(2));

        // member variables outputFields,  leftFields, rightFields

        auto result = Kokkos::subview( outputFields,  cl, lf, rf );

        // extra ranl ignored when computing subviews (only w/ DynRankView)
        const auto left  = Kokkos::subview( leftFields,  cl, lf, Kokkos::ALL(), Kokkos::ALL(), Kokkos::ALL() );
        const auto right = Kokkos::subview( rightFields, cl, rf, Kokkos::ALL(), Kokkos::ALL(), Kokkos::ALL() );

        constordinal_type npts = left.dimension(0);
        const ordinal_type iend = left.dimension(1);
        const ordinal_type jend = left.dimension(2);

        value_type tmp(0);        
        for (ordinal_type qp = 0; qp < npts; ++qp) 
          for (ordinal_type i = 0; i < iend; ++i) 
            for (ordinal_type j = 0; j < jend; ++j) 
              tmp += left(qp, i, j)*right(qp, i, j);
          result() = result() + tmp;
}



Assembly of element stiffness matrix

Intrepid2 APIs
● Cubature::getCubature
● Basis:getValue
● CellTools: setJacobian, setJacobianDet
● FunctionSpaceTool::applyTransform, 
computeCellMeasure

● FunctionSpaceTools::integrate



Assembly of element stiffness matrices  

// Dimensions:
// C - # of cells
// N - # of nodes per cell
// D – spacial dimension (2 or 3)
// F - # of field DOFs
// P - # of integration points
Kokkos::DynRankView

// elements on reference coordinates
cubPoints(P, D),
cubWeights(P),
refGradVals(F,P, D),

//cell geometry
nodes(C, N, D),
jacMat(C, P, D, D),
jacInv(C, P, D, D),
jacDet(C, P),

//elements on physical coordinates
physGradVals(C, F, P, D),
elemStiff(C, F, F);



Assembly of element stiffness matrices  

// nodal basis for Tets
Basis_HGRAD_TET_FEM<DeviceSpace,double,double> basis(degree); 

// compute reference element
cubTet.getCubature(cubPoints, cubWeights);
basis.getValues(refGradVals, cubPoints, OPERATOR_GRAD);

// compute cell transformation matrices
CellTools::setJacobian(jacobian, cubPoints, nodes, basis);
CellTools::setJacobianInv(jacInv, jacobian);
CellTools::setJacobiaDet(jacDet, jacobian);

//Transform basis to physical coordinates
using FunctionalSpaceTool FCT;

FCT::computeCellMeasure(weightedMeasure,
                        jacDet, cubWeights);
FCT::HGRADtransforHGRAD(phyGradVals,jacInv, refGradVals);
Fct::multiplyMeasure(phyGradValsWeighted,
                     weigthedMeasure, phyGradVals)
FCT::integrate(elemStiff, phyGradVals, phyGradValsWeighted);



NVIDIA Tesla P100
Chip: 56 SMs, 32 FP64 CUDA Cores/SM
Peak performance: 4.7 TFLOPs in double precision, 732+ GB/s (HBM)

Assembly of element stiffness matrices  

Workset size:
20480
5120
2560
1280

Speed­up per entry:
7.8x
4.5x
1.8x
1.1x
 

Courtesy: N. Roberts



Orientation Tools
(HCurl case, 2d)

In high­order finite elements 
DOFs of adjacient elements may not be ordered in 
the same way on the shared face.
We need to enforce the matching of DOFs.

Solution: locally map the DOFs of a face or edge 
according to the global numbering and transform 
the corresponding basis accordingly

a

d

c

b



Orientation Tools
(Hcurl case, 3d)

Possible orientations for triangles

We store six matrices A, 
one for each orientation.
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Orientation Tools
demonstration for HGRAD and HCURL problems

Problems implemented using Trilinos package Panzer.

Results show theoretical order of convergence.

Courtesy: K. Kim, E. Cyr



Conclusion

● Portable implementation for advanced (finite element) discretizations

● Currently used by several applications including Albany (J. Watkins talk), Drekar(MFH), 
Camellia (DG) and in the Trilinos package Panzer.

● Actively  developed and currently assessing performance on CPUs/GPUs:
- recompute vs storing arrays, avoid subviews, hierarchical parallelism?

● Ongoing/future work: 
- optimization for PIC codes (evaluation at few points vs standard batch eval at quadrature 
points)
- handling of hybrid meshes
- projection tools for high-order finite elements

Thanks!
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