Intrepidz SAND2018- 2652C
a Performance-Portable Package
for Compatible High-Order Finite Element Discretizations

K. Kim, M. Perego,
N. Ellingwood, K. Peterson, N. Roberts

1.CCR

Center for Computing Research

Sandia National Laboratories, NM, USA

SIAM Parallel Processing, Tokyo, March 8, 2018

Sandia Natlonalf Laboratorles F, is a multlmlssmn Y

laboratory ma ged and o) erated by National - —\

“Technology and E 1neer1 g So utions of Sandia, LLC., F (, }I:

a wholly med of oneywell International, Ny \ ; - 2

Anc., the nt of Energy’s National ~_ T ant Laboratories
EXI:G‘SCI:II_E EDMF“I_I‘I"INE PROJECT -

/Dchlear Security A 1n on under contract DE-NA-

Brief history of Intrepid2 package

Intrepid (INteroperable Tools for Rapid dEveloPment of compatlble Discretizations)

Trilinos package for advanced discretizations of Partial Differential Equations (PDEs)
Developers: P. Bochev, H. C. Edwards, R.C. Curby, K. Peterson, D. Ridzal

Provides compatible high-order discretizations for finite elements,
Supports hybrid discretizations: FEM, FV and FD

Intrepid2

Refactoring of Intrepid for performance portability, using Kokkos.
Early developers (stage 1): I. Demeshko, A. Delora

Current developers (stage 2): K. Kim, M. Perego, N. Ellingwood, K. Peterson, N. Roberts
Stage 1: fully compatibility with Intrepid interface, adoption of Kokkos

Stage 2: no backward compatibility but same mathematical/logical interface.

Use of Kokkos dynamic rank views.
Laboratories

Tools for Local Assembly of Compatible finite elements

HGRAD
D, - H(grad, k) — H(grad, k)
®f : H(curl, k) — H(curl, k)
(I)jb : H(div, r) — H(div, r)

: H(vol, k) — H(vol, k)

I

Courtesy: P. Bochev

SN\ grad
Y ;

De Rham complex

rﬁ\

:I#T.\\ r'rr | .\\ Ji\\
;f; | .\\ f’f | .\\. 7 .\\.
/N el X e dive S
/ | '\ A / ‘l \\'\ r’; ‘ \'\ 0 .
/7 L \-\ ‘;’f ____.---""'_H' ~— \'\ Irf 1 \'\
e — 4 A S ey
HCURL HDIV HVOL

O (W) = 1o F!
®F(u) = (DF) T -u)o F!
®,(u) = (J.'DF, -u)o F,!

O () = (J; 1) o F!

F.: kR —k @

{ HGRAD_transform_VALUE()

HGRAD_transform_GRAD(),
HCURL_transform_VALUE()

HCURL_transform_CURL(),
HDIV_transform_VALUE()

HDIV_transform_DIV(),
HVOL_transform_VALUE().

> Sandia
National
/ Laboratories

Package structure

src/Discretization

src/Shared

1T

src/Orientation
Sandia
National
Laboratories

———

Choice of multidimensional array

Intrepid2 work with multi-dimensional arrays: e.g.,
// C - # of cells

double basisvals[F][P]; // N - # of nodes per cell
double basisGradVals[F][P][D]; // D - spacial dimension (2 or 3)
double jacMat[C][P][D][D]; // F - # of field DOFs

// P - # of integration points

Operations often done on batches of cells

It is natural to declare these array as Kokkos: :view

However, in some cases the rank of the arrays might not be known at compile time.
Solution: Kokkos: : DynRankView

BASIS INPUT VALUE GRAD CURL DIV
HGRAD (P,D) (FP) (F P D)
HCURL (PD) (F, P, D) (F,P,D)

HDIV (PD) (F, P, D) (F P)

Rank of differential operators evaluated at quadrature points

Properties of Kokkos::DynRankView

// 1. Construction of a dynamic rank view
// - rank is deduced from the number of dimensions arguments

Kokkos: :DynRanView<value_type, exec_space> a(“a”, 3, 9);

// 2. Same subview syntax
auto part = Kokkos::subview(a, 0, Kokkos::ALL()); // part = a(1, :);

// 3 Inter-operability with Kokkos static view
Kokkos: :View<value_type**, exec_space> b(“b"”, 3, 9);

b
a

a; // okay
b, // error, a static view cannot be converted to DynRankView

Kokkos: :deep_copy(b, a); //okay
Kokkos: :deep_copy(a, b); //okay

National

Advantages of using Kokkos::DynRankView

This functor computes the following three contractions

outputFields(cl, If, rf) = leftFields(cl, If, gp) * rightFields(cl, rf, gp);
outputFields(cl, If, rf) = leftFields(cl, If, qp, i) * rightFields(cl, rf, qp, i);
outputFields(cl, If, rf) = leftFields(cl, If, gp, i, j) * rightFields(cl, rf, gp, i, j);

Using a view, one would need to replicate the code for the scalar, vector and matrix cases.

KOKKOS INLINE_FUNCTION
void operator()(ordinal_type iter) const {
ordinal_type cl, If, rf;
unrolindex(cl, If, rf, iter, outputFields.dimesion(0), outputFields.dimesion(1), outputFields.dimesion(2));

/| member variables outputFields, leftFields, rightFields
auto result = Kokkos::subview(outputFields, cl, If, rf);

/| extra ranl ignored when computing subviews (only w/ DynRankView)
const auto left = Kokkos::subview(leftFields, cl, If, Kokkos::ALL(), Kokkos::ALL(), Kokkos::ALL());
const auto right = Kokkos::subview(rightFields, cl, rf, Kokkos::ALL(), Kokkos::ALL(), Kokkos::ALL());

constordinal_type npts = left.dimension(0);
const ordinal_type iend = left.dimension(1);
const ordinal_type jend = left.dimension(2);

value_type tmp(0);
for (ordinal_type qp = 0; gp < npts; ++qp)
for (ordinal_type i = 0; i < iend; ++i)
for (ordinal _type j = 0; j < jend; ++j)
tmp += left(qgp, i, j)*right(gp, i, j);
result() = result() + tmp;

Assembly of element stiffness matrix

Az’j = /V’Uz : V’UjdX

F. Kk —k

* / ((DE,)~"V%;) - (DF,)~"'Vv;) Jdx

D> ((DF);TV¥iq) - (DF.);TVV54) Jew,

q

Intrepid2 APIs

Cubature: :getCubature

Basis:getValue

CellTools: setJacobian, setJacobianDet
FunctionSpaceTool: :applyTransform,
computeCellMeasure

FunctionSpaceTools: :integrate

.
National

Assembly of element stiffness matrices

>

F.:k—k

e

Aij = /Vl)q, : VUjdX
/ ((DE,)~"'V¥;) - (DF,)~'VY;) Jdx

Y ((DF.);TViq) - (DF.);TVY5,4) Jqw,

q

// Dimensions:

// C - # of cells

// N - # of nodes per cell

// D - spacial dimension (2 or 3)
// F - # of field DOFs

// P - # of integration points
Kokkos: :DynRankView

// elements on reference coordinates
cubPoints(P, D),

cubWeights(P),

refGradvals(F,P, D),

//cell geometry
nodes(C, N, D),
jacMat(C, P, D, D),
jacInv(C, P, D, D),
jacbet(C, P),

//elements on physical coordinates

physGradvals(C, F, P, D),
elemStiff(C, F, F);

L

Sandia
National
Laboratories

Assembly of element stiffness matrices

// nodal basis for Tets
Basis_HGRAD_TET_FEM<DeviceSpace,double, double> basis(degree);

// compute reference element
i cubTet.getCubature(cubPoints, cubWeights);
Foi . basis.getValues(refGradvals, cubPoints, OPERATOR_GRAD);
kR — K

// compute cell transformation matrices
CellTools::setJacobian(jacobian, cubPoints, nodes, basis);
CellTools::setJacobianInv(jacInv, jacobian);
CellTools::setJacobiaDet(jacDet, jacobian);

Ay = /vvi‘vvjdx //Transform basis to physical coordinates
K using FunctionalSpaceTool FCT;

/ ((DF;{)_TV‘A%) : ((DF/{)_TV‘A’j) Jdx FCT: :computeCellMeasure(weightedMeasure,
R jacDet, cubWeights);
-Toes.). —Tos FCT: :HGRADtransforHGRAD(phyGradVvals, jacInv, refGradvals);
Z ((DF")Q VVW) ((DF’””)Q VVM) Jqtq Fct::multiplyMeasure(phyGradvalsweighted,
q weigthedMeasure, phyGradvals)
FCT::integrate(elemStiff, phyGradvals, phyGradvalsWeighted);

Sandia
National

Laboratories

Assembly of element stiffness matrices

NVIDIA Tesla P100
Chip: 56 SMs, 32 FP64 CUDA Cores/SM
Peak performance: 4.7 TFLOPs in double precision, 732+ GB/s (HBM)

8 Workset size: Speed-ull:) per entry:I |

val -»poly degree: 1| 20480 7.8X]
-&-poly degree: 2| 5120 4.5X

6L poly degree: 3| 2560 1.8x i
=<poly degree: 4| 1280 1.1x

0 2 4 6 8 10
total elements

Courtesy: N. Roberts

Orientation Tools
(HCurl case, 2d)

In high-order finite elements

DOFs of adjacient elements may not be ordere
the same way on the shared face.

We need to enforce the matching of DOFs.

Solution: locally map the DOFs of a face or ed
according to the global numbering and transft
the corresponding basis accordingly ‘

oF =Y Al
j

nie)=1-¢

> ALY (E0(E0) - te = pi(6e) - €

National

Possible orientations for triangles

2

2

T__T:1

Orientation =0

T_J:z

Orientation =3

2

2

Orientation Tools
(Hcurl case, 3d)

3 3 c
D
2 | 2 F
g — -
A
0 0 ﬂ
B
1 1 T

Reference element

Local coordinates

1

IS SN

Orientation = 1

2

2N

Orientation = 4

Modified reference element Phiysical element

Consistent coordinates
to a global crentation

N ZA;S%'T(T(W(&))) by = 0i(&) - T

2

2 We store six matrices A,
=2 one for each orientation.

Orientation = 2

a

T_> . ia
! National
Orientation = 5 Laboratories

1

Orientation Tools
demonstration for HGRAD and HCURL problems

Problems implemented using Trilinos package Panzer.

7linos

Curl Laplacian (HCURL)
Poisson Problem (HGRAD)

1.00E+00
1.00E+01 ‘\‘\‘\,\‘
1.00E-01
1.00E+00
L 00E-01 1.00E-02
_ 1.00E-02 —e—p=1 % 1.00E-03 . pi;
2 100E-03 *—p=2 < +p—
g e p=3 S 1.00E-04 p=3
T 1.00E-04 _ 2 p=4
p=4 T 1.00E-05
1.00E-05 '
1.00E-06 1.00E-06
1.00E-07
1.00E-07
1 0.1 0.01 1 0.1 0.01
Mesh size (h) Mesh size (h)

Results show theoretical order of convergence.

Courtesy: K. Kim, E. Cyr /

Sandia
National
Laboratories

Conclusion

Portable implementation for advanced (finite element) discretizations

Currently used by several applications including Albany (J. Watkins talk), Drekar(MFH),
Camellia (DG) and in the Trilinos package Panzer.

Actively developed and currently assessing performance on CPUs/GPUs:
- recompute vs storing arrays, avoid subviews, hierarchical parallelism?

Ongoing/future work:

- optimization for PIC codes (evaluation at few points vs standard batch eval at quadrature
points)

- handling of hybrid meshes

- projection tools for high-order finite elements

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

