
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE­NA­
0003525.

K. Kim, M. Perego,
N. Ellingwood, K. Peterson, N. Roberts

SIAM Parallel Processing, Tokyo, March 8, 2018

Intrepid2
 a Performance­Portable Package

for Compatible High­Order Finite Element Discretizations

Sandia National Laboratories, NM, USA

SAND2018-2652C

Brief history of Intrepid2 package

Intrepid (INteroperable Tools for Rapid dEveloPment of compatIble Discretizations)

Trilinos package for advanced discretizations of Partial Differential Equations (PDEs)
Developers: P. Bochev, H. C. Edwards, R.C. Curby, K. Peterson, D. Ridzal

Provides compatible high­order discretizations for finite elements,
Supports hybrid discretizations: FEM, FV and FD

Intrepid2

 Refactoring of Intrepid for performance portability, using Kokkos.
 Early developers (stage 1): I. Demeshko, A. Delora

 Current developers (stage 2): K. Kim, M. Perego, N. Ellingwood, K. Peterson, N. Roberts

 Stage 1: fully compatibility with Intrepid interface, adoption of Kokkos

 Stage 2: no backward compatibility but same mathematical/logical interface.
 Use of Kokkos dynamic rank views.

Tools for Local Assembly of Compatible finite elements

De Rham complex

HGRAD HCURL HDIV HVOL

Courtesy: P. Bochev

Cell TopologyCell Topology

Cell Integration Cell Integration

Cell GeometryCell Geometry

Discrete SpacesDiscrete Spaces

Discrete OperatorsDiscrete Operators

Discrete FunctionalsDiscrete Functionals

UtilitiesUtilities

CellToolsCellTools

BasisBasis

FunctionSpaceToolsFunctionSpaceTools

ArrayToolsArrayTools

RealSpaceToolsRealSpaceTools

PolylibPolylib

Integration Integration

src/Cell

src/Discretization

src/Shared

Orientation tools Orientation tools
ModifyBasisModifyBasis

ModifyPointsModifyPoints

OrientationMatrix OrientationMatrix

src/Orientation

Package structure

It is natural to declare these array as Kokkos::view

However, in some cases the rank of the arrays might not be known at compile time.
Solution: Kokkos::DynRankView

Choice of multidimensional array

Intrepid2 work with multi­dimensional arrays: e.g.,

double basisVals[F][P];
double basisGradVals[F][P][D];
double jacMat[C][P][D][D];

BASIS INPUT VALUE GRAD CURL DIV

HGRAD (P, D) (F, P) (F, P, D)

HCURL (P,D) (F, P, D) (F,P,D)

HDIV (P,D) (F, P, D) (F, P)

// C - # of cells
// N - # of nodes per cell
// D – spacial dimension (2 or 3)
// F - # of field DOFs
// P - # of integration points

Operations often done on batches of cells

Rank of differential operators evaluated at quadrature points

Properties of Kokkos::DynRankView

// 1. Construction of a dynamic rank view
// - rank is deduced from the number of dimensions arguments

Kokkos::DynRanView<value_type, exec_space> a(“a”, 3, 9);

// 2. Same subview syntax
auto part = Kokkos::subview(a, 0, Kokkos::ALL()); // part = a(1, :);

// 3 Inter-operability with Kokkos static view
Kokkos::View<value_type**, exec_space> b(“b”, 3, 9);

b = a; // okay
a = b; // error, a static view cannot be converted to DynRankView

Kokkos::deep_copy(b, a); //okay
Kokkos::deep_copy(a, b); //okay

Advantages of using Kokkos::DynRankView

This functor computes the following three contractions
outputFields(cl, lf, rf) = leftFields(cl, lf, qp) * rightFields(cl, rf, qp);
outputFields(cl, lf, rf) = leftFields(cl, lf, qp, i) * rightFields(cl, rf, qp, i);
outputFields(cl, lf, rf) = leftFields(cl, lf, qp, i, j) * rightFields(cl, rf, qp, i, j);

Using a view, one would need to replicate the code for the scalar, vector and matrix cases.

KOKKOS_INLINE_FUNCTION
 void operator()(ordinal_type iter) const {
 ordinal_type cl, lf, rf;
 unrolIndex(cl, lf, rf, iter, outputFields.dimesion(0), outputFields.dimesion(1), outputFields.dimesion(2));

 // member variables outputFields, leftFields, rightFields

 auto result = Kokkos::subview(outputFields, cl, lf, rf);

 // extra ranl ignored when computing subviews (only w/ DynRankView)
 const auto left = Kokkos::subview(leftFields, cl, lf, Kokkos::ALL(), Kokkos::ALL(), Kokkos::ALL());
 const auto right = Kokkos::subview(rightFields, cl, rf, Kokkos::ALL(), Kokkos::ALL(), Kokkos::ALL());

 constordinal_type npts = left.dimension(0);
 const ordinal_type iend = left.dimension(1);
 const ordinal_type jend = left.dimension(2);

 value_type tmp(0);
 for (ordinal_type qp = 0; qp < npts; ++qp)
 for (ordinal_type i = 0; i < iend; ++i)
 for (ordinal_type j = 0; j < jend; ++j)
 tmp += left(qp, i, j)*right(qp, i, j);
 result() = result() + tmp;
}

Assembly of element stiffness matrix

Intrepid2 APIs
● Cubature::getCubature
● Basis:getValue
● CellTools: setJacobian, setJacobianDet
● FunctionSpaceTool::applyTransform,
computeCellMeasure

● FunctionSpaceTools::integrate

Assembly of element stiffness matrices

// Dimensions:
// C - # of cells
// N - # of nodes per cell
// D – spacial dimension (2 or 3)
// F - # of field DOFs
// P - # of integration points
Kokkos::DynRankView

// elements on reference coordinates
cubPoints(P, D),
cubWeights(P),
refGradVals(F,P, D),

//cell geometry
nodes(C, N, D),
jacMat(C, P, D, D),
jacInv(C, P, D, D),
jacDet(C, P),

//elements on physical coordinates
physGradVals(C, F, P, D),
elemStiff(C, F, F);

Assembly of element stiffness matrices

// nodal basis for Tets
Basis_HGRAD_TET_FEM<DeviceSpace,double,double> basis(degree);

// compute reference element
cubTet.getCubature(cubPoints, cubWeights);
basis.getValues(refGradVals, cubPoints, OPERATOR_GRAD);

// compute cell transformation matrices
CellTools::setJacobian(jacobian, cubPoints, nodes, basis);
CellTools::setJacobianInv(jacInv, jacobian);
CellTools::setJacobiaDet(jacDet, jacobian);

//Transform basis to physical coordinates
using FunctionalSpaceTool FCT;

FCT::computeCellMeasure(weightedMeasure,
 jacDet, cubWeights);
FCT::HGRADtransforHGRAD(phyGradVals,jacInv, refGradVals);
Fct::multiplyMeasure(phyGradValsWeighted,
 weigthedMeasure, phyGradVals)
FCT::integrate(elemStiff, phyGradVals, phyGradValsWeighted);

NVIDIA Tesla P100
Chip: 56 SMs, 32 FP64 CUDA Cores/SM
Peak performance: 4.7 TFLOPs in double precision, 732+ GB/s (HBM)

Assembly of element stiffness matrices

Workset size:
20480
5120
2560
1280

Speed­up per entry:
7.8x
4.5x
1.8x
1.1x

Courtesy: N. Roberts

Orientation Tools
(HCurl case, 2d)

In high­order finite elements
DOFs of adjacient elements may not be ordered in
the same way on the shared face.
We need to enforce the matching of DOFs.

Solution: locally map the DOFs of a face or edge
according to the global numbering and transform
the corresponding basis accordingly

a

d

c

b

Orientation Tools
(Hcurl case, 3d)

Possible orientations for triangles

We store six matrices A,
one for each orientation.

0.010.11
1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

Poisson Problem (HGRAD)

p=1

p=2

p=3

p=4

Mesh size (h)

H
1
 e

rr
o
r

0.010.11
1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

Curl Laplacian (HCURL)

p=1

p=2

p=3

p=4

Mesh size (h)

H
(c

u
rl

)
e
rr
o
r

Orientation Tools
demonstration for HGRAD and HCURL problems

Problems implemented using Trilinos package Panzer.

Results show theoretical order of convergence.

Courtesy: K. Kim, E. Cyr

Conclusion

● Portable implementation for advanced (finite element) discretizations

● Currently used by several applications including Albany (J. Watkins talk), Drekar(MFH),
Camellia (DG) and in the Trilinos package Panzer.

● Actively developed and currently assessing performance on CPUs/GPUs:
- recompute vs storing arrays, avoid subviews, hierarchical parallelism?

● Ongoing/future work:
- optimization for PIC codes (evaluation at few points vs standard batch eval at quadrature
points)
- handling of hybrid meshes
- projection tools for high-order finite elements

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

