

Energy Storage System Safety Roadmap Codes and Standards Update

SAND2018-2619PE

Web Meeting

March 13, 2017

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Hosted by
Pam Cole
Pacific Northwest National Laboratory

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. PNNL-SA-129440/SAND2017-10520 PE

Energy Storage System Safety Roadmap

Codes and Standards Update

2:00 p.m. – 2:05 p.m.	Welcome, Purpose, Expected Outcome and Overview of the Webinar
2:05 p.m. – 2:10 p.m.	ESS Safety Roadmap Codes and Standards Objective and Efforts
2:10 p.m. – 4:00 p.m.	Update on standards/model codes activities (ASME, DNV GL, FM Global, ICC, CSA, NECA, NFPA, UL, NEMA, and IEEE)
4:00 p.m.	Adjourn

2

Sandia
National
Laboratories

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Energy Storage System Safety Roadmap

Codes and Standards Update

Purpose of the meeting

Report on current activities in the voluntary sector codes and standards community that are relevant to ESS safety

Expected Outcome

An update on development of new standards and updating of existing standards and model codes impacting ESS design, construction, installation, commissioning, operation, repair, renewal and decommissioning

3

Sandia
National
Laboratories

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

ESS Safety Roadmap Update

- ▶ Supported by the DOE Office of Electricity Energy Storage Program
- ▶ The goal of the DOE OE ESS Safety Roadmap is to *foster confidence in the safety and reliability of energy storage systems.*
- ▶ Roadmap objective focused on codes and standards - To apply research and development to support efforts that are focused on ensuring that codes and standards (CS) are available to enable the safe implementation of energy storage systems in a comprehensive, non-discriminatory and science-based manner.

BACKGROUND
Energy Storage Systems (ESS) are in increased demand for stationary applications. The aggressive adoption in the U.S. has raised concerns about the degree of risks that pose, and questions about how to best understand and mitigate such risks. Stationary energy storage can bring with it risk management concerns and increase challenges associated with ensuring public safety. There is no expectation that energy storage technologies will always be cost-competitive with energy applications competing to be displaced. There has been and rapid evolution of stationary storage associated with energy storage technologies will also be a concern as the costs continue to fall. New policy initiatives continue to be a primary need for coordinated, industry-wide action to improve the safety and reliability of energy storage systems.

In 2013, with the release of the Grid Energy Storage Strategy, and U.S. Department of Energy's, Office of Electricity Delivery and Energy Reliability (DOE OE) identified the challenges to widespread deployment of energy storage.¹ One of the central challenges identified was a concern about the risks associated with energy storage. This challenge provided the motivation for holding an energy storage safety workshop sponsored by DOE OE in 2014.² A wide range of stakeholders, including the workshop, and with their input, the DOE OE Energy Storage Strategic Plan was developed. This plan has fostered a number of

codes and standards that relate to ESS safety. Sandia National Laboratories held the ESS Safety Forum in early 2017. This brought together the energy storage community to share past efforts and research, as well as helped to identify the most critical needs going forward.

Understanding and mitigating safety risks associated with ESS is receiving greater attention. It has been identified that organizations work together and collaborative efforts need around safety can benefit if they are coordinated in an entity that does not represent any one ESS developer or implementation stakeholder. The DOE OE, through the national labs who support its activities in ESS safety, are shepherding these activities, and initiating efforts to identify and mitigate risks in ESS and establishing the foundation needed to foster communication and collaboration amongst all ESS stakeholders.

INTRODUCTION
This document is the result of past efforts as described above and most notably the Energy Storage Safety Forum held in late February 2017 which had over 100 attendees representing a wide range of stakeholders associated with ESS development and adoption.

The primary focus of this document is to provide a specific

Acknowledgment

Dr. Imre Gyuk

DOE-Office of Electricity Delivery and Energy Reliability

Proudly Operated by Battelle Since 1965

Overview of ESS Safety Codes and Standards

Activities

Activities to support the codes and standards objective

1. Review and assess CS which affect ESS design, installation, and operation
2. Identify gaps in knowledge that require research and analysis that can serve as a basis for criteria in those CS.
3. Identify areas in CS that are potentially in need of revision or enhancement and can benefit from R&D activities.
4. Develop input for new or revisions to existing CS through individual stakeholders, facilitated task forces, or through laboratory staff supporting these efforts.

The goal of the DOE OE ESS Safety Roadmap¹ is to foster confidence in the safety and reliability of energy storage systems.

There are three interrelated objectives to support the realization of that goal: research, codes and standards and communication/coordination. The objective focused on codes and standards is....

To apply research and development to support efforts that are focused on ensuring that codes and standards are available to enable the safe implementation of energy storage systems in a comprehensive, non-discriminatory and science-based manner.

The following activities support that objective and realization of the goal:

- a. Review and assess codes and standards which affect the design, installation, and operation of ESS systems.
- b. Identify gaps in knowledge that require research and analysis that can serve as a basis for criteria in those codes and standards.
- c. Identify areas in codes and standards that are potentially in need of revision or enhancement and can benefit from activities conducted under research and development.
- d. Develop input for new or revisions to existing codes and standards through individual stakeholders, facilitated task forces, or through laboratory staff supporting these efforts.

The purpose of this document is to support the above activities by providing information on current and upcoming efforts being conducted by U.S. standards developing organizations (SDOs) and other entities that are focused on energy storage system safety (IEC documents are listed on the last page).

For the purposes of presenting this information the model codes, standards and other documents (guidelines, recommended practices, etc.) covered are classified in relation to their scope relative to energy storage systems from the 'macro to the micro' as indicated below, noting that more 'macro' documents are likely to adopt by reference more 'micro' documents. **Changes in current activity from the prior edition are shown in bold italics.** Time-sensitive items (e.g. having a schedule/due date) are in bold type and highlighted in yellow.

Overarching CS → CS for ESS Installation → CS for Complete ESS → CS for ESS Components

1. Overarching Codes and Standards— the built environment at large that includes but is not limited to energy storage systems.
2. Codes and Standards for ESS Installations— the installation of the energy storage system in relation to other systems and parts of the built environment.
3. Codes and Standards for a Complete ESS— the entire energy storage system in the aggregate.
4. Codes and Standards for ESS Components— components associated with the energy storage system.

¹ DOE OE Energy Storage Systems Safety Roadmap, PNNL-SA-126115 | SAND2017-5140 R

Codes and Standards Update

Each SDO will present the following information

- ▶ Overview of the SDO Standards Development Process and other high level relevant information to set the stage for a summary of ESS-relevant standards activities.
- ▶ Identification of ESS-relevant standards activities as to title, scope, schedule, etc. and if desired some very high level insight on content (the webinar will not allow time to go into details associated with the standards covered).
- ▶ Web site for more information on their activities

The American Society of Mechanical Engineers

Development of TES-1 Safety Standard for Thermal Energy Storage Systems

AGENDA

- ❑ Overview of ASME and the Standards Development Process
- ❑ Development of TES-1, Safety Standard for Thermal Energy Storage Systems

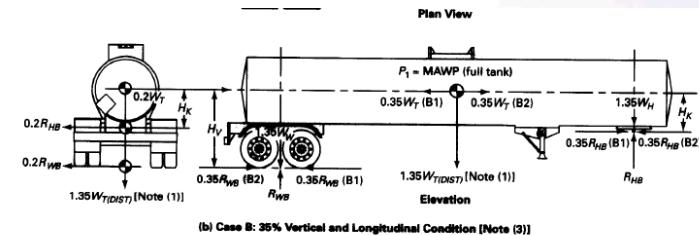
Nonprofit Standards Development Organization

Key Areas:

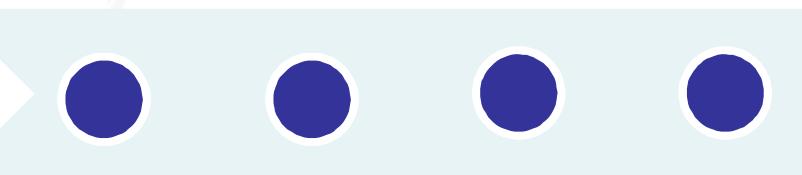
Pressure Technology

Boilers, pressure vessels, piping, materials, welding, valves, flanges

Standardization/Performance Test Codes


Geometric dimensioning and tolerancing (GD&T), dimensional metrology, plumbing, turbines and power plant equipment, fasteners, hand tools, energy assessment

Safety


Elevators & escalators, cranes, automotive lifts, conveyors, rail transit

Nuclear

Component design, containment, quality assurance, risk assessment, air and gas treatment, inspection

Timeline of Early ASME Standardization Milestones

1880

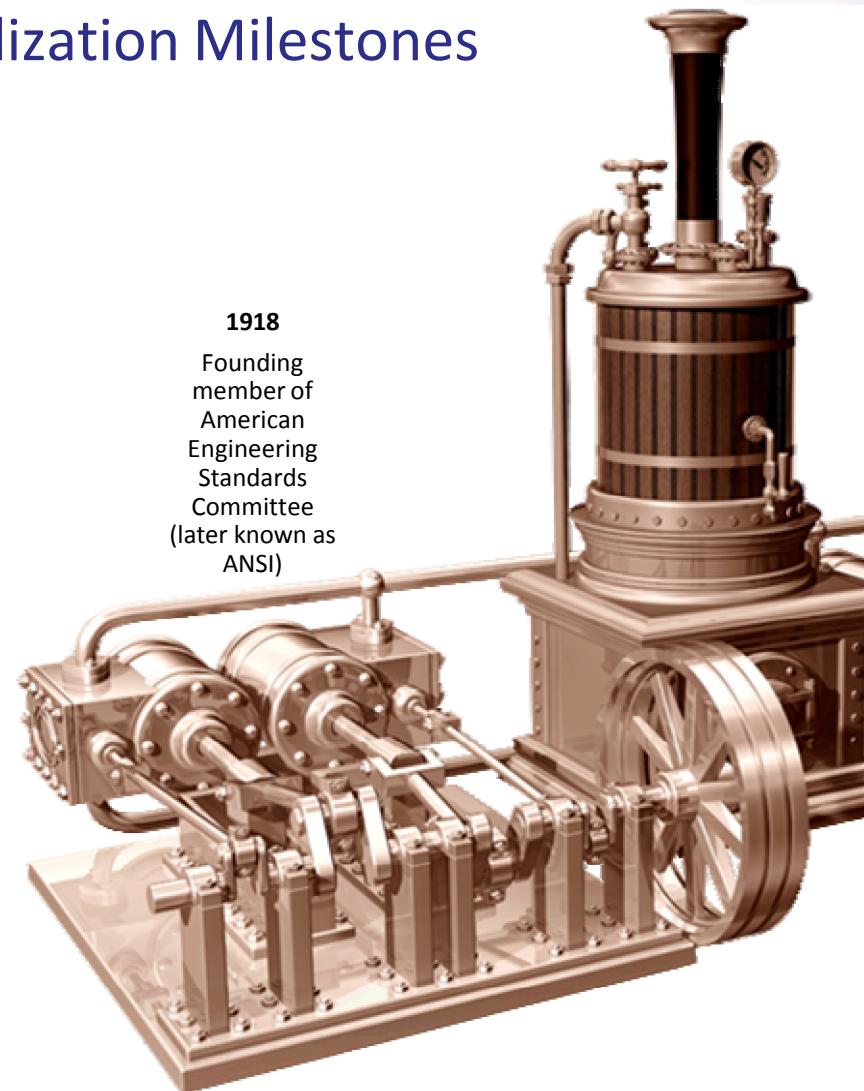
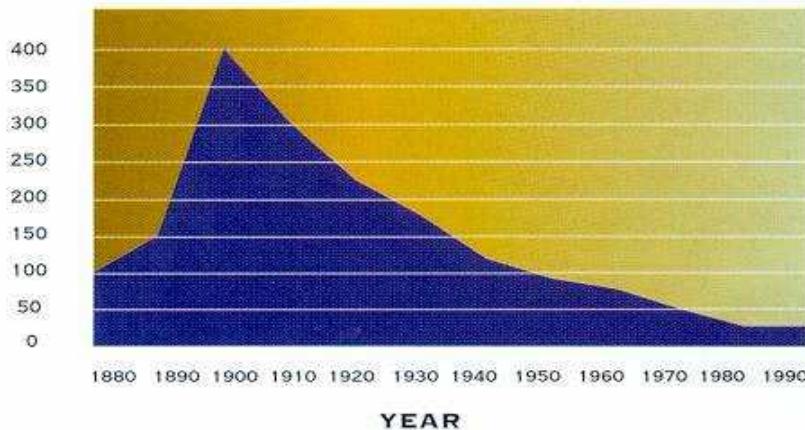
ASME founded to address issues with industrialization and mechanization

1884

Issues first standard, Code for the Conduct of Trials of Steam Boilers

1905

Standard for Proportions of Machine Screw Sizes



1914

First edition of the Boiler and Pressure Vessel Code

1918

Founding member of American Engineering Standards Committee (later known as ANSI)

NUMBER OF EXPLOSIONS

...by the numbers

- 500+ published standards (more recently, over 50 technical related non-standards publications)
- 4,900 volunteer subject matter experts from over 50 countries
- 700 boards, standards developing committees and supporting subgroups
- 40 U.S. Technical Advisory Groups (TAGs) to the International Organization for Standardization
- 6,500 certified companies (>50% non-U.S) in 74 countries



Accredited by ANSI

ANSI's *Essential Requirements* establish due process for standards development via:

- Openness
- Lack of dominance/Balance of interest
- Coordination and harmonization
- Consensus
- Consideration of views and objections
- Notification
- Written procedures
- Appeals

MANUFACTURING

The technologies associated with traditional and advanced manufacturing from product design through to production.

PRESSURE TECHNOLOGY

The technologies applicable to the design, materials, fabrication, examination, installation, commissioning, and maintenance of pressure equipment.

CLEAN ENERGY

The technologies for electric power generation, storage, distribution, and usage while minimizing the impact on the environment.

BIOENGINEERING

The technologies associated with the application of the engineering process in developing products, pharmaceuticals, biologics, cosmetics, food supplements, and the prevention and treatment of disease.

ROBOTICS

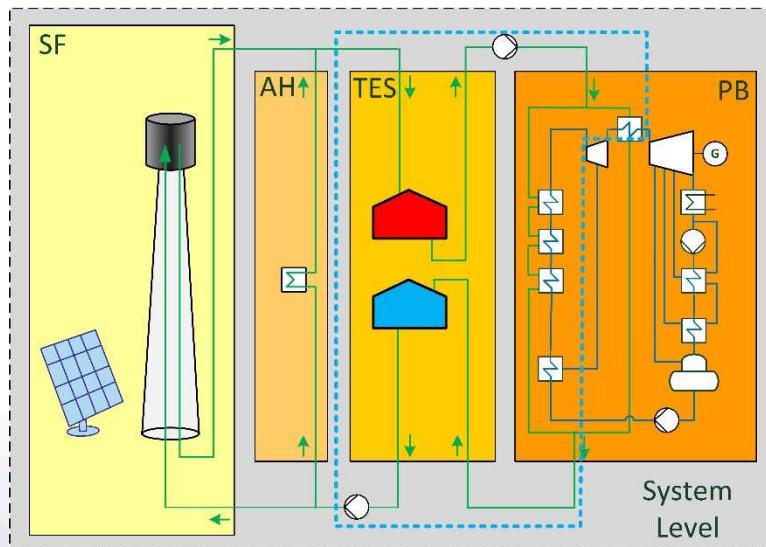
The technologies for industrial machine systems and emerging areas such as service robots, drones, and autonomous vehicles.

TES-1 Safety Standard for Thermal Energy Storage Systems

Molten Salt Thermal Energy Store Systems

Surveys: 2 Industry Surveys Issued

Results: Interest in developing a safety guideline related to thermal energy storage systems.


Current: TES-1 Development of Safety Standard for Molten Salt Thermal Energy Storage Systems

Future: TES-2: Safety Standard for Thermal Energy Storage Systems Requirements for Phase Change, Solid and Other Thermal Energy Storage Systems

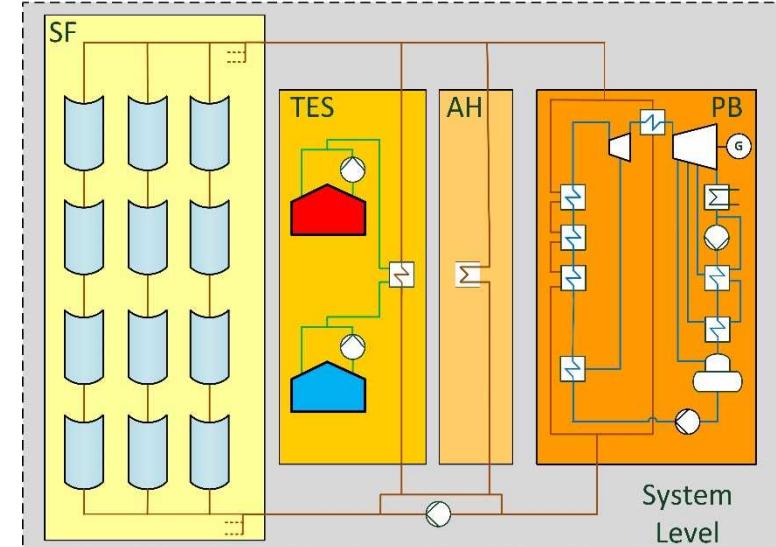
To develop and maintain safety codes and standards covering the design, construction, testing, maintenance, and operation of thermal energy storage systems for the life cycle of the equipment.

Molten salt thermal energy systems include:

- the storage medium and associated storage vessels
- Circulation pumps, piping, and heat exchangers that are in contact with molten salt.

Molten-Salt Power Tower SubSystems:

SF = Solar Field


AH = Auxiliary Heater

TES = Thermal Energy Storage

PB = Power Block

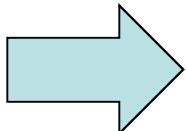
Blue dashed box indicates the systems covered in this guideline.

Graphic courtesy SolarPACES Guideline for Bankable STE Yield Assessment

Parabolic Trough Plant SubSystems:

SF = Solar Field

AH = Auxiliary Heater


TES = Thermal Energy Storage

PB = Power Block

Graphic courtesy SolarPACES Guideline for Bankable STE Yield Assessment

TES for a CSP Tower System

TES for Parabolic Trough Plant

Outline

- Chapter 1** Scope, Definitions and References
- Chapter 2** Planning and Design
- Chapter 3** Construction, Installation, and Commissioning
- Chapter 4** Inspection, Operation, and Maintenance
- Chapter 5** Decommissioning

Topics for Consideration:

- Safety and environmental compliance
- Selection of materials
- Handling of materials
- Personnel safety

- First Draft of the standard has been developed and submitted for public review
- Committee is still accepting membership applications for contributing and full members
- Committee is looking for more input from operating facilities

ASME Standards & Certification

Learn more about ASME Standards & Certification

<http://www.asme.org/kb/standards/standards>

TES contact: Nicole Gomez
gomezn@asme.org

ASME HEADQUARTERS
Two Park Avenue
New York, NY 10016-5990 U.S.A.

ENERGY

ENERGY

GRIDSTOR: Recommended Practice on safety, operation and performance of grid-connected energy storage systems

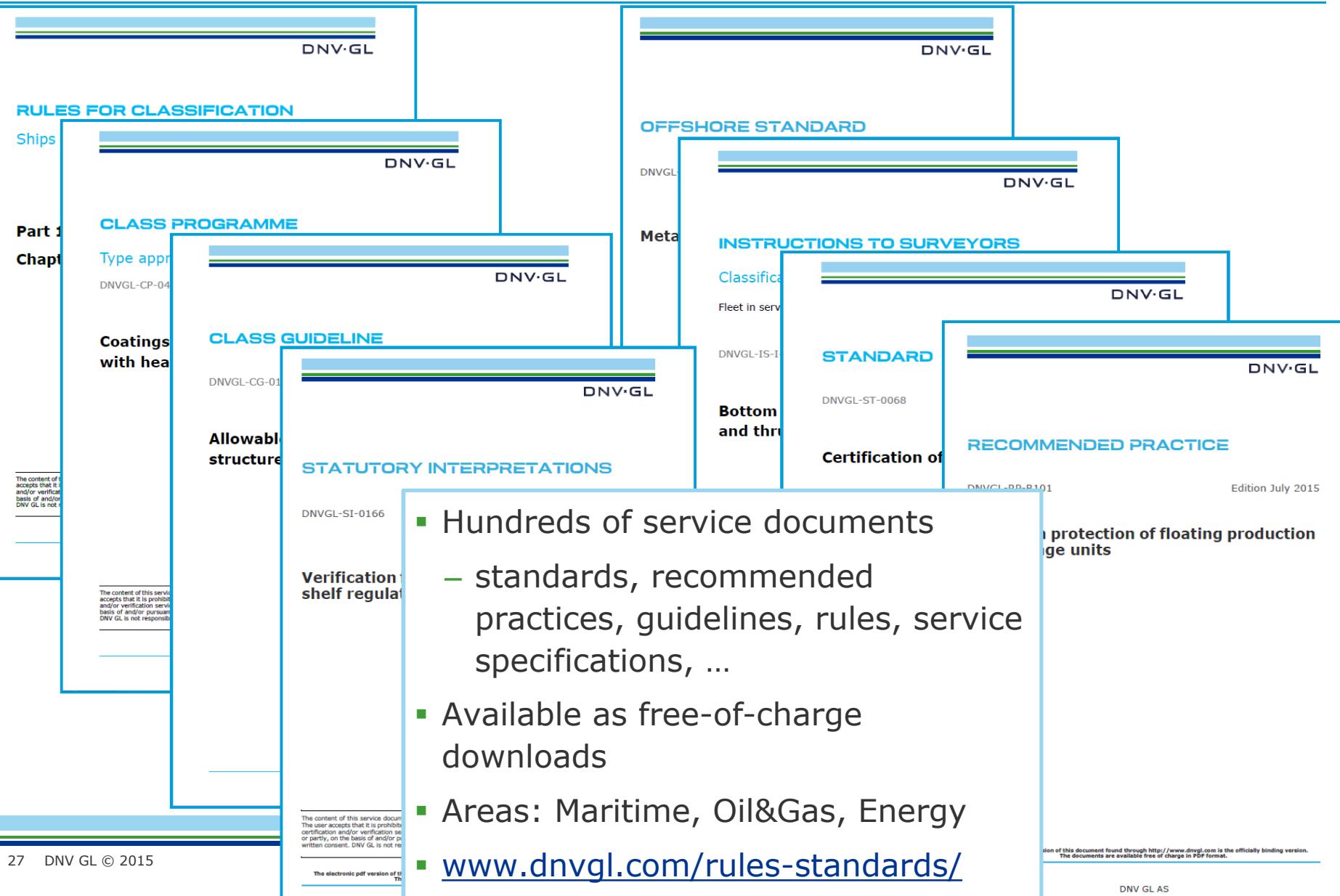
DNVGL-RP-0043

Who we are –

DNV GL Energy: services along the energy value chain

Impact

- Technology and market assessment
- Business case analysis
- (Grid) modelling
- Due diligence
- Technology selection


Performance

- Modelling
- Testing
- Power failure investigation
- Prototype development
- Inspection

Implementation

- Owners engineer
- Bankability assessment
- Procurement and commissioning support
- Acceptance test

DNV GL service documents

DNV GL service document process and governance

- Governance objective: To ensure consistency in the way service documents are governed and managed throughout their life cycle including a clarification of authorities, responsibilities and tasks for key stakeholders involved.

Support and advice internal & external customers

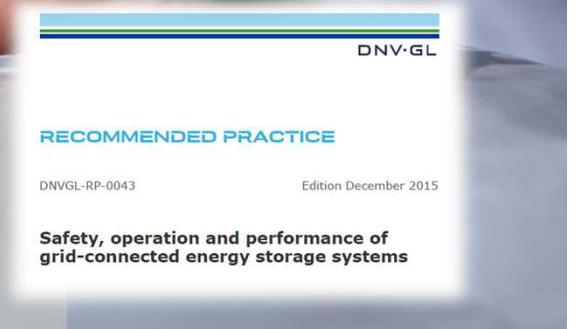
Maintain and develop framework

Joint Industry Projects: creation and review by the industry itself

GRIDSTOR consortiums 2015 + 2017:

Hearing participants 2015 + 2017

- Alliander
- Clean Energy Council
- Denchi Power
- Ecovat Renewable Energy Technologies
- Electricity Storage Network
- Enel, Ingegneria & Ricerca SpA
- GE Energy Storage
- GNB Industrial Power
- MuGrid analytics
- New York Battery and Energy Storage Technology Consortium (NY-BEST),
- Norton Rose Fulbright LLP
- Scholt Energy Control
- Scottish and Southern Energy Power Distribution (SSEPD)
- UK Power Networks
- Younicos
- ..and 125 other organizations


DNV GL issued a Recommended Practice (DNVGL-RP-0043) on **grid-connected energy storage**

- Guidelines and methods to evaluate, assess and test safety, operation and performance of grid-connected energy storage systems
- Referencing ISO, IEC, IEEE, UL etc. standards ([197](#)) if possible and relevant, enhancing where needed
- Approach: technology agnostic, specific where necessary; worldwide application

Defining building blocks for an open competitive market place

Continuous updates following technology development and end-user applications

Update published September 2017

GRIDSTOR RP scope and approach

Based on feedback key players

Refined with consortium

Comprehensive

References to existing standards

New content if required

Free to use

SAFETY	OPERATION
FMEA/Bowtie analysis	Monitoring
Risks and mitigation	Control
Design consequences	Grid connection
Procedures & documentation	Environmental analysis
PERFORMANCE	APPROACH
Definitions	System and component level
Conditions	Technology-agnostic and -specific
Measurement	Applications and life cycle phases
Life cycle costs	Standards, guidelines and regulations

GRIDSTOR 2017: updated elements

- Additions / expansions: cyber security, communication protocols, microgrids, conformity assessment incl. FAT/SAT testing, warranty, decommissioning, tendering and procurement, bankability, residual value, greenhouse gas emissions calculation.
- Technology-specific recommendations and background was added on (sub-)technologies: inorganic lithium ion batteries, compressed air energy storage (CAES), liquid air energy storage (LAES), supercapacitors, lead crystal batteries
- Technology-specific safety recommendations for Li-ion batteries were updated
- Recommendations regarding first responders, fire considerations and thermal management were updated
- Overview of normative and informative references was actualised and expanded to include the RP updates described above
- Section 3 was expanded by three applications, previously belonging to other categories: ramp rate control, generation peak shaving, capacity firming
- Section 7 was reorganised for clarity and a more elaborate introduction was added
- Section 10 was turned into Appendix B
- Section 5.2's paragraphs on leveled cost of storage (LCOS) and life cycle costs were moved to the new section 10
- Section B.2 (previously 10.2) was updated and expanded to better reflect the American and European situation
- Various small refinements, corrections and additions were made throughout the RP

Benefits of GRIDSTOR for specific organisations

Utilities and grid service providers

- **Independent guideline documents**
- **Manual for all process phases/aspects**
- **Confidence in performance as specified**

Manufacturers/system integrators

- **Proof of quality, reliability, performance**
- **Distinction from competition**

Insurance companies

- **Reduced risks by independent and open guidelines based on industry experience**

Investors

- **Confidence in investment (reduced risks)**
- **Understanding of technologies and systems**

For all: up-to-date document, reflecting rapid and recent developments, accelerating the market

GRIDSTOR: real-life examples of mitigated risks

Feasibility risks

- **System dimensioned on minimum CAPEX instead of TCO**
- **Market saturation not taken into account**
- **Sub-optimal combination of technology and applications**

Performance risks

- **Cycle life data under different conditions (DoD, temperature, C-rate)**
- **Standby losses not taken into account**

Contract risks

- **Conditions warranty and guarantees unclear**
- **System boundary unclear – e.g. safety responsibility**

Regulation/certification risks

- **System specification not in line with market regulation / grid code**
- **Systems not meeting standardisation**

Commissioning risks

- **FAT / SAT testing inadequate**
- **Handover unclear**

Safety risks

- **Fire suppression for li-ion batteries**
- **No FMEA analysis, no adequate measures and training**
- **Cyber safety**

Thank you!

Martijn Huibers (Europe)
Martijn.huibers@dnvgl.com

Nick Warner (US)
Nicholas.warner@dnvgl.com

Davion Hill (US)
Davion.hill@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER

Data Sheet 5-33, *Electrical Energy Storage Systems*

Clinton Marshall
Sr. Staff Engineer

Who is FM Global

- We are an HPR, Mutual insurance company
- Our only focus is property insurance
- Our philosophy is “A majority of all loss is preventable”
- Our method, we utilize engineers to analyze and assess the risks to our client’s facilities, and provide cost effective loss prevention solutions to minimize or eliminate those risks

Who is FM Global

- FM Global has different business units, including:
 - Underwriting
 - Engineering,
 - Research,
 - FM Approvals,
 - Training,
 - Staff, etc.
- Engineering Standards

Why are we involved in Li-on ESS?

- Roughly 6 years ago, our clients began asking us for guidance on ESS
- ESS has become more cost effective, with more options for our clients
- We wanted to provide consistent guidance

What is Data Sheet 5-33?

- FM Global's loss prevention guidance for Li-Ion based energy storage systems
- Recommendations cover construction and location, fire protection, electrical system protection and design, operation and maintenance, training, human element, utilities, and contingency planning
- The intent is to ensure limited risk, with an appropriate level of protection, to minimize the impact of a loss on our clients' locations

Li-Ion ESS Timeline

- Late 2016 we started developing DS 5-33,
Electrical Energy Storage Systems
- Our initial focus was primarily on outdoor units
- Based on a risk assessment of ESS failure modes, to better quantify the risks

DS 5-33

- This document is free to the public at:
www.fmglobaldatasheets.com
- Register with name, email, organization, job title, and job function

ELECTRICAL ENERGY STORAGE SYSTEMS

Table of Contents

	Page
1.0 SCOPE	3
1.1 Hazards	3
1.1.1 Thermal Runaway	3
1.1.2 Electrical Fire	3
1.2 Changes	3
2.0 LOSS PREVENTION RECOMMENDATIONS	3
2.1 Introduction	3
2.2 Construction and Location	4
2.3 Protection	5
2.4 Equipment and Processes	5
2.4.1 Electrical System Protection	5
2.4.2 Equipment Protection	5
2.5 Operation and Maintenance	6
2.5.1 Operation	6
2.5.2 Equipment Maintenance	6
2.5.3 Emergency Power Disconnect	7
2.6 Training	7
2.7 Human Factors	7
2.7.1 Housekeeping	7
2.7.2 Emergency Response and Pre-Incident Planning	7
2.8 Utilities	8
2.9 Contingency Planning	8
3.0 SUPPORT FOR RECOMMENDATIONS	8
3.1 Construction and Location	8
3.1.1 Space Separation Between Exterior Enclosures	8
3.2 Fire Protection	8
3.3 Electrical	8
3.3.1 Battery and ESS Aging	8
4.0 REFERENCES	9
4.1 FM Global	9
4.2 Other	9
APPENDIX A GLOSSARY OF TERMS	9
APPENDIX B DOCUMENT REVISION HISTORY	11

What is next for DS 5-33?

- Revision process starting in 2018, including:
 - Increased focus on fire protection criteria
 - Expanded guidance for indoor installations
 - Guidance for evaluating features of the BMS/SOH
 - Address new technology trends
 - Other applicable issues not addressed previously

FCAC ESS Work Group Update Evolution of ESS Requirements

Beth Tubbs, FPE
International Code Council

Overview

- 2018 IFC
- 2021 IFC

2018 IFC

- New chapter 12 created – Energy systems
 - Sec. 1203 Emergency and standby power (moved from Chapter 6)
 - Sec. 1204 Solar Photovoltaic Power Systems (moved from chapter 6)
 - Sec. 1205 Stationary Fuel Cell Power Systems (NEW)
 - Sec. 1206 Electrical energy storage systems
 - Battery systems (Moved and heavily revised)
 - Capacitors (NEW)

2018 IFC

- Shift from standby power, emergency power, ups to also include needs for load shedding and load sharing.
- 2015 codes and earlier did not address newer technologies and evolving applications

2018 IFC

- Much of these new sections and revisions came from the work of the Fire Code Action Committee (FCAC)
- Worked with stakeholders such as
 - Telecommunication industry – typically lead acid
 - ESS companies such as Tesla

2018 IFC

- Provisions allow for modifications based on a HRA and full scale fire and fault condition testing
- Array size currently limited to 50 KWh
- Deals with separation requirements as these are no longer stand alone installations in all cases

2018 IFC

- Requirements to address new technologies and application

Hazard mitigation analysis Size/spacing/MAQ limits

UL 9540 Listing

BMS

Technology specific protection

Outdoor installation

Location in building

Exceptions for large scale fire/fault condition testing

2021 IFC

- Some concepts being explored for 2021

Mixed Occupancy Building

Outdoors Near Building

Rooftop Installations

Dedicated ESS Building

Outdoors Remote

2021 FCAC Code Change Focus Areas

- Being explored by the FCAC ESS work group

Installation scenarios

Review size/spacing/MAQs

Commissioning/
Decommissioning

Exhaust/deflagration
venting

Fire propagation
tests (UL 9540A)

BMS performance

Evaluate sprinkler effectiveness

Better categorize batteries

Mobile ESS operations

Used Li-ion battery storage

2021 IFC Code Proposal Direction

Reorganization of Section 1206 (ESS)

ALL ESS

- 1206.1 General requirements related to permits, construction documents, commissioning, etc.
- 1206.2 Installation and equipment requirements, general items such as listings, electrical connection/protection details, vehicle impact, combustible storage, etc.

Electrochemical ESS (EESS)

- 1206.3 EESS (i.e. battery and capacitor systems).
 - 1206.3.1 – Indoor installations.
 - 1206.3.2 - Outdoor installations.
 - 1206.3.3 – Special installations (Rooftop and open parking garages).
 - 1206.3.4 – Mobile EESS operations
 - (Requirements for these installations are in table format)
- 1206.4 EESS protection that can be provided in the various 1206.3 installations. Protection is selected by the 1206.3 tables. Mix and match!
- 1206.5 EESS technology specific requirements – Protection needed for individual EESS technologies, i.e. spill control not needed if batteries don't have liquid electrolyte.

2021 IFC

- Proposals submitted for IFC in Group A 2018
- These propsoals will be addressed during 2018 and will result in 2021 IFC.
- Schedule is posted on ICC website

Steps in process	Group A	Group B
Deadline for proposals	January 8 th (11 TH), 2018	January 7, 2019
Proposals Posted	February 28 th , 2019	March 4 th , 2019
Committee Action Hearing (CAH)	April 15-25, 2018 (Columbus, OH)	April 28-May 8 th , 2019 (Albuquerque, NM)
Online Assembly vote	Starts approx. two weeks after last day of the CAH. Open for 2 weeks	
Posting of Committee Action Hearing Results	May 30, 2018	June 11, 2019
Public Comment Deadline	July 16, 2018	July 24, 2019
Posting of Public Comments	August 31, 2018	September 4, 2019
Public Comment Hearings (PCH)	October 24 – 31, 2018 Richmond, VA	October 23-30, 2019 Clark County, NV
Online Governmental Consensus Vote (OGCV)	Starts approx. two weeks after last day of the PCH. Open for 2 weeks.	
Final Action posting	Following Validation Committee certification of OGCV and ICC Board confirmation	

2021 IFC

- Link to IFC Proposals

<https://media.iccsafe.org/codes/2018-2019/GroupA/CAH/IFC.pdf>

- Proposals of interest
 - F194-18 through F211-18

Whats next

- Group A schedule as discussed – Hearings in Columbus, Ohio in April and Richmond, Virginia In October
- FCAC will continue to meet and prepare for the hearings
 - March 13-14, 2018
 - June/July, 2018
 - September/October 2018

THANK YOU!

Any questions please email
btubbs@iccsafe.org

National Electrical Contractors Association (NECA)

National Electrical Installation Standards (NEIS)

- NECA is the voice of the \$130 billion electrical construction industry that brings power, light, and communication technology to buildings and communities across the U.S.
- NECA contractors strive to be solution-providers for their customers, and their industry expertise benefits everyone working on an electrical construction project.
- NECA contractors set industry standards for traditional and integrated electrical systems and lead the industry in the practical application of new technologies.

National Electrical Installation Standards (NEIS)

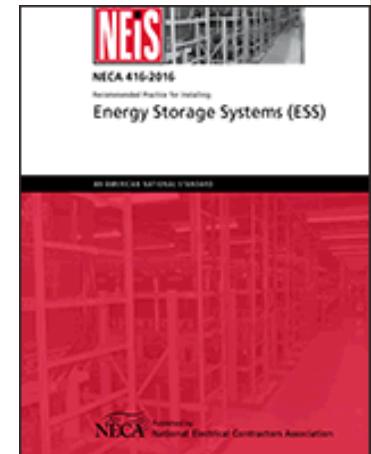
- National Electrical Installation Standards (NEIS) are a series of quality installation standards for electrical products and systems.
- NEIS extend beyond the minimum installation and safety requirements of the National Electrical Code® (NEC®).
- Address quality and performance aspects of electrical construction.

National Electrical Installation Standards (NEIS)

- National Electrical Installation Standards are the first quality standards for electrical construction.
- Developed by the National Electrical Contractors Association (NECA) to clearly define the actions needed to perform an installation in a “neat and workmanlike manner”, as often referenced in the National Electrical Code (NEC, NFPA-70).
- American National Standards Institute (ANSI) – accredited and developed by consensus with industry involvement, updated per ANSI Revision cycles.

National Electrical Installation Standards (NEIS)

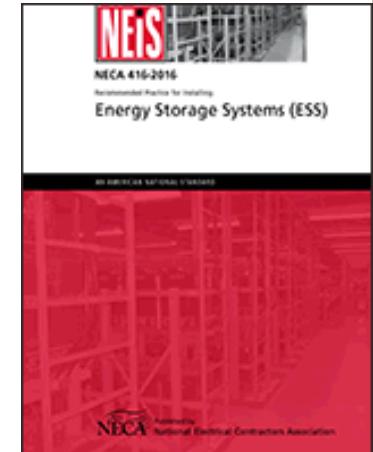
- National Electrical Installation Standards provide additional quality and training for electricians and contractors.
- NEIS are used by contractors, consulting engineers, facility managers and electrical inspectors.
- NECA Flagship NEIS Standard is NECA 1 – 2015, Standard for Good Workmanship in Electrical Construction



NECA 416-2016

Recommended Practice for Installing Energy Storage Systems (ESS)

- NECA 416-2016 is an ANSI-accredited National Electrical Installation Standard for Installing Energy Storage Systems.
- NECA 416-2016 describes methods and procedures used for installing multiple types energy storage systems.
- NECA 416-2016 also includes information about controlling and managing energy storage systems, in addition to commissioning and maintaining energy storage systems.



NECA 417-201X

Recommended Practice for Designing, Installing, Maintaining, and Operating Micro-grids

- NECA 417-201X will cover the design, installation, maintenance and operation of micro-grids.
- NECA 417-201X the intention would be to include appropriate checklists for installers and inspection jurisdictions for consistency.
- First draft was developed for industry review open for comment until February 2, 2018.
- NECA staff are compiling the comments received.
- Goal is to complete NECA 417-201X by mid-2018.

- Other Related NEIS Standards available from NECA
 - NECA 1-2015, Standard for Good Workmanship in Electrical Construction (ANSI)
 - NECA 90-2015, Recommended practice for Commissioning Building Electrical Systems (ANSI)
 - NECA 100-2013, Symbols for Electrical Construction Drawings (ANSI)
 - NECA 701-2013, Standard for Energy Management, Demand Response and Energy Solutions (ANSI)

Standards Update

Ryan Franks
Manager, Global Energy Storage
CSA Group

8501 E. Pleasant Valley Rd.
Independence, Ohio 44131

T 216 524 4990 x88141
C 202 807 9316

Ryan.franks@csagroup.org
www.csagroup.org

Power Conversion Equipment

CSA C22.2 No 107.1-2016, Power Conversion Equipment

- Applies to ac and dc type power conversion equipment, which can be associated with an ESS
- 4th Edition of the standard, last issued in 2016
- Under continuous maintenance and will be updated as warranted
- Bi-national via C

Energy Storage Systems

UL 9540, Standard for Energy Storage Systems and Equipment

- Bi-national in US and Canada
- Product certification and Field Evaluation/Special Inspection possible
- In Ontario, June 9th memo from Electrical Safety Authority (ESA) provides the following direction:
 - “Field evaluation agencies performing an inspection on an Energy Storage System shall refer to CAN/ANSI/UL 9540-16 and ensure that the additional requirements from this standard have been addressed and complied with during evaluation.”

Compliance by Market Segment

Residential

- Systems generally require a certification mark from a NRTL
- IEC developing international standards

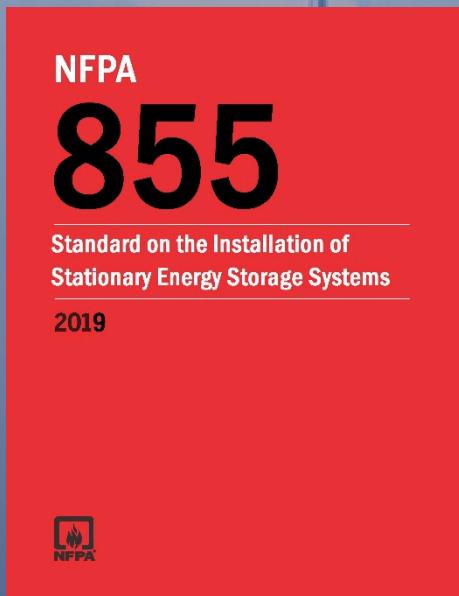
Commercial/ Industrial (C/I)

- Local AHJ dictates requirements
- Components certified
- Field evaluation programs are an option versus full certification

Utility/Community

- Compliance driven by internal safety procedures and AHJ
- Full system standards increasingly popular
- Field evaluation combined with component certification

Energy Storage Codes and Standards


National Fire Protection Association

February 7, 2018 | Brian O'Connor | Fire Protection Engineer

AGENDA

- NFPA 855, Standard on Energy Storage Systems
- NFPA 1, Fire Code
- NFPA 70, National Electrical Code

NFPA 855, Standard on the Installation of Energy Storage Systems

NFPA 855 – Development

- April 2016, Project Approved
- August 2016, Committee Formed
- Drafting Meetings
 - January 2017
 - April 2017
 - May 2017
- August 2017 Draft Approved
- First Draft Meetings Oct. 23 & Nov. 27, 2017

NFPA 855 – Schedule

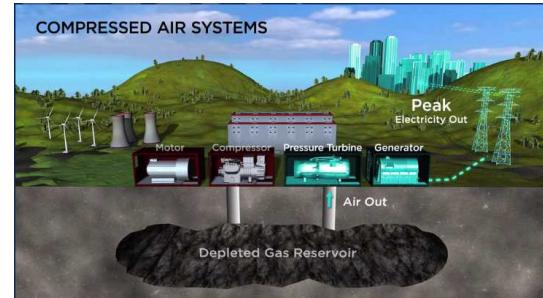
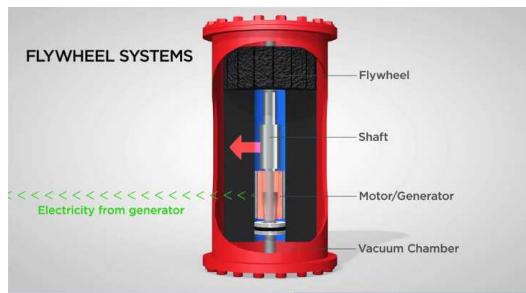
- Public Input Period 4/11/2018 through 6/20/2018
- Second Draft Meeting July 24th – 26th, 2018
 - Salt Lake City
- Publish Date with No NITMAMs - 4/03/2019
- Publish Date with NITMAMs - 8/07/2019

Full Schedule Available @ www.nfpa.org/855

NFPA 855 – Scope

- This standard applies to the:
 - Design
 - Construction
 - Installation
 - Commissioning
 - Operation
 - Maintenance
 - Decommissioning

...of stationary ESS.

NFPA 855 – Scope

ESS TECHNOLOGY	Aggregate CAPACITY ^a
BATTERY ESS	
Lead acid	70 KWh
Nickel cadmium	70 KWh
Lithium-Ion	20 KWh
Sodium	20 KWh
Flow batteries	20 KWh
Other battery technologies	10 KWh
Batteries in residential occupancies	1 KWh
CAPACITOR ESS	
Capacitors, all types	3 KWh
OTHER ESS	
All other ESS	70 KWh

Types of ESS

NFPA 855 Chapters

- 4. General
- 5. Systems Interconnections
- 6. Commissioning
- 7. Operation and Maintenance
- 8. Decommissioning
- 9. Electro Chemical ESS
- 10. Capacitors
- 11. Fuel Cell ESS
- 18 One & Two Family Dwellings

NFPA 855 Reserved Chapters

- Chapter 12 Superconducting Magnet ESS (Reserved)
- Chapter 13 Flywheel ESS (Reserved)
- Chapter 14 Humped Hydro ESS(Reserved)
- Chapter 15 Compressed Air ESS (Reserved)
- Chapter 16 Hydrogen ESS (Reserved)
- Chapter 17 Thermal ESS (Reserved)

NFPA 855 - Emergency Planning

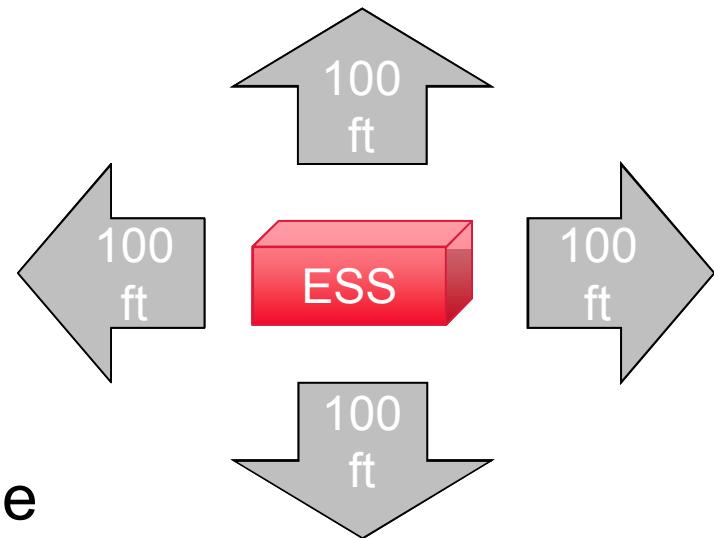
- Emergency Operations Plan
 - Safe shutdown
 - Emergency procedures
 - Response considerations (SDS)
 - Removal of damaged ESS
- Hazard Mitigation Analysis (HMA)
- Fire Mitigation Personnel

NFPA 855 – Equipment

- System listed to UL 9540
- Charge Controllers
- Inverters & Converters
- Energy Storage Management System
- Reused and Repurposed Equipment

NFPA 855 - Electrical Installations

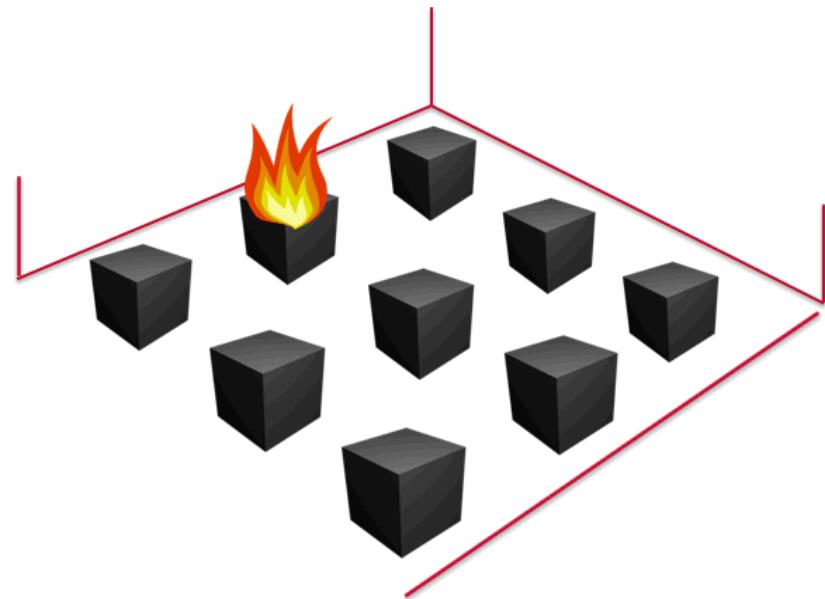
- NFPA 70 or IEEE C2
- ESS Signage
- Separation (Fire Rating)
- Impact Protection
- Security
- Elevation
- Open Rack


NFPA 855 – Location: Indoors

- Dedicated Use Buildings
- Non-dedicated Use Buildings
- Dwelling and Sleeping Units

NFPA 855 – Location: Outdoors

- Remote
- Near Exposures
- Rooftop & Open Parking Garage


NFPA 855 - Mobile ESS Equipment and Operations

- Charging and Storage
- Deployed

NFPA 855 - Size and Separation

- 250kWh groups
- Spaced 3ft from groups & walls
- Other arrangements based on large scale fire test
- Exempt: Remote Locations

NFPA 855 - Maximum Rated Energy

ESS Type	Maximum Rated Energy* (kWh)
Lead acid batteries, all types ^a	600
Nickel-cadmium batteries (Ni-Cd) ^a	600
Lithium-ion batteries, all types	600
Sodium batteries, all types	600
Flow batteries [†]	600
Capacitors	20
Other battery technologies	200

Exempt: Dedicated use buildings & remote locations

NFPA 855 - Ventilation and Detection

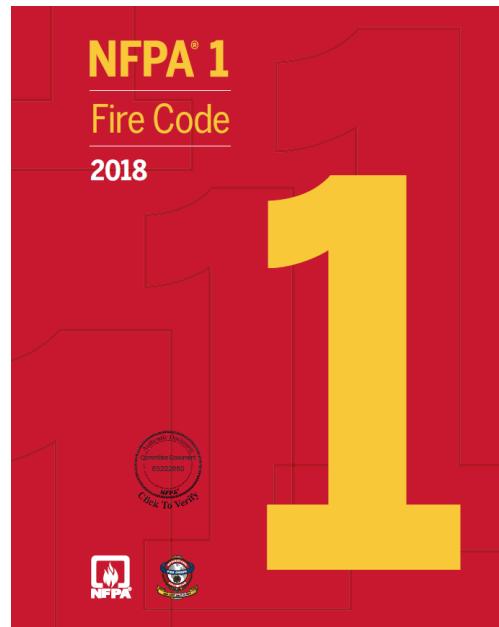
- Ventilation
 - $1\text{ft}^3/\text{min}/\text{ft}^2$
 - Designed to keep flammable gasses under 25% of LFL
 - Exhaust away from openings
 - Gas detection activates ventilation
- Smoke Detection
 - Smoke detection per NFPA 72

Fire Control & Suppression

- Sprinkler System 0.3gpm/ft² over 2,500 ft²
- Other Fire Protection Systems
 - Large Scale Fire Test
 - UL 9540A
- Explosion Control
 - ESS exceeds 25% LFL

NFPA 855 – Annexes(Informational)

Annex B, Energy Storage System Hazards


Annex C, Firefighting Considerations (Operations)

Annex D, Overview of Energy Storage System Technologies

Annex E, Permits, Inspections, Approvals and Connections

NFPA 1 Fire Code

- Chapter 52, Energy Storage Systems
- New to the 2015 edition
- Rewritten in the 2018 edition

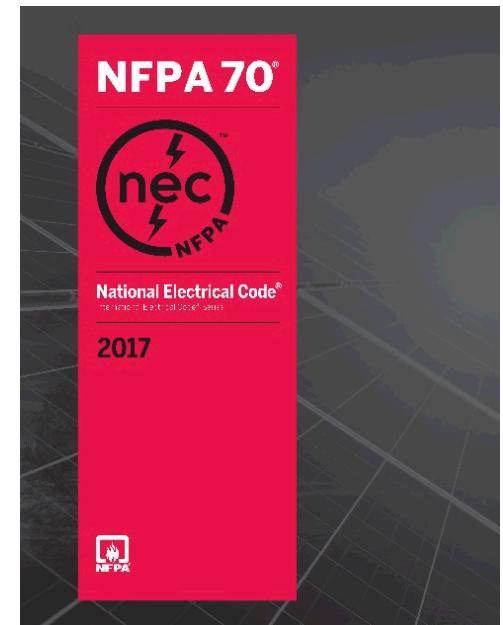
NFPA 1, Fire Code (2018) Chapter 52

- Lead Acid & Nickel-Cadmium

▲ Table 52.2.1 Battery Requirements

Requirement	Nonrecombinant Batteries		Recombinant Batteries
	Flooded Lead-Acid	Flooded Nickel-Cadmium (Ni-Cd)	Valve-Regulated Lead-Acid (VRLA)
Safety caps	Venting caps	Venting caps	Self-resealing flame-arresting caps
Thermal runaway management	Not required	Not required	Required
Spill control	Required	Required	Not required
Neutralization	Required	Required	Required
Ventilation	Required	Required	Required
Signage	Required	Required	Required
Seismic control	Required	Required	Required
Fire detection	Required	Required	Required

NFPA 1, Fire Code (2018) Chapter 52


- Location
 - Not above 75ft
 - Not below 30ft
 - Separation from exposures outside
 - Separation by fire walls inside
- Arrays grouped & spaced
- Hazard Mitigation Analysis (HMA)
- Maximum Allowable Quantities (MAQ)

NFPA 1, Fire Code (2018) Chapter 52

- Fire Suppression
 - Per NFPA 13 or
 - Large Scale Testing
- Smoke Detection
 - Per NFPA 72
- Ventilation
 - $1\text{ft}^3/\text{min}/\text{ft}^2$ or
 - 25% LFL

NFPA 70 Article 706

- Circuit Requirements
 - Overcharge protection
 - Charge Control
- Equipment need to be listed
- Disconnecting means
- Connection to other energy sources
- Location & Ventilation

Questions?

More Information:

www.NFPA.org/855

Brian O'Connor:

BOConnor@NFPA.org

DOE OE Energy Storage Program - Codes
and Standards Update

UPDATE ON UL STANDARD ACTIVITY RELATED TO ENERGY STORAGE SYSTEMS

Laurie Florence
March 13, 2018

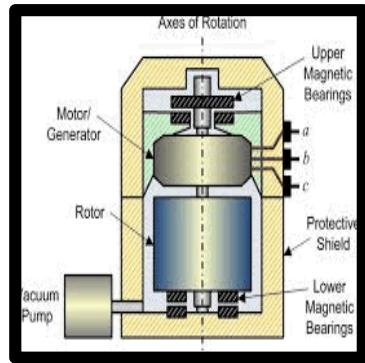
AGENDA

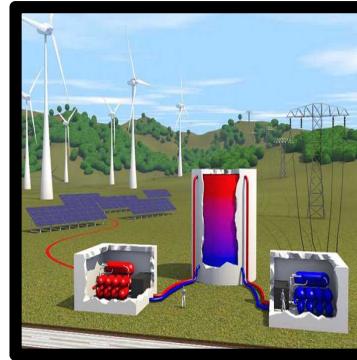
UL Standards Activity:

- UL 9540
- UL 1973
- UL 1974
- UL 1741
- UL 9540A
- Other UL Related Standards

UL 9540 OVERVIEW

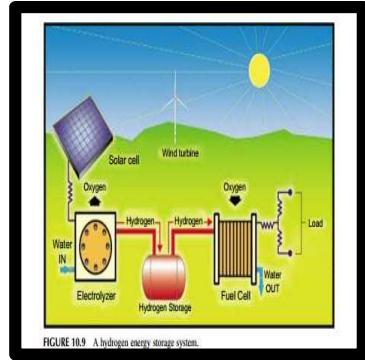
Energy Storage Systems and Equipment


- Safety Standard
- Includes energy storage systems that are
 - Standalone to provide energy for local loads;
 - In parallel with an electric power system, electric utility grid; or
 - Able to perform multiple operations
 - For use in utility-interactive applications, compliance with IEEE 1547.1 or
 - Other applications including support functionality
 - May include balance of plant and other ancillary equipment of the system


UL 9540 OVERVIEW

Types of Energy Storage Technologies within Scope of UL 9540

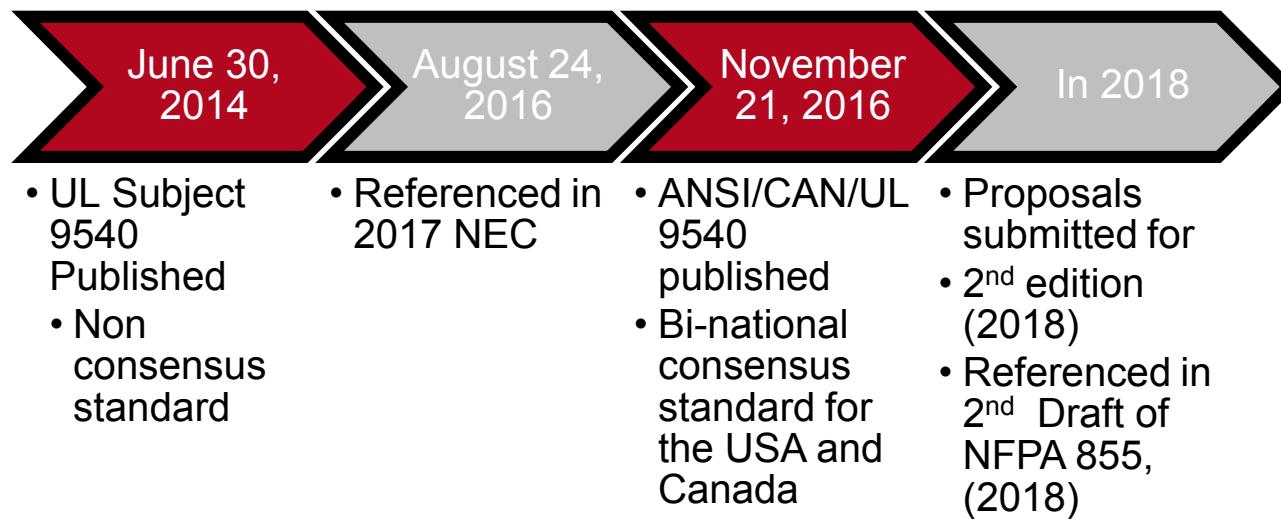
Mechanical


Thermal

Electrochemical

Chemical

UL 9540 OVERVIEW


Some Proposed changes:

From 1 year of use and updates/developments in codes

- Clarification of scope
- Clarification of mechanical test methods
- Modification of ISO containers/impact on strength
- Addition of grounding connections details
- Reference to new fire code criteria with regard to fire detection and suppression

UL 9540 OVERVIEW

Significant Dates in The UL 9540 Timeline

UL 1973 OVERVIEW

UL 1973, Batteries for use in Light Electric Rail (LER) and Stationary Applications

Scope

- Safety standard for Cells, Modules and Battery Systems
- Non technology specific and includes specific criteria for
 - Lithium ion
 - Nickel
 - Lead Acid
 - Sodium Beta
 - Flow Batteries
 - Electrochemical Capacitors (*ultracapacitors*)
- Construction & Testing (type and routine) Criteria

UL 1973 OVERVIEW

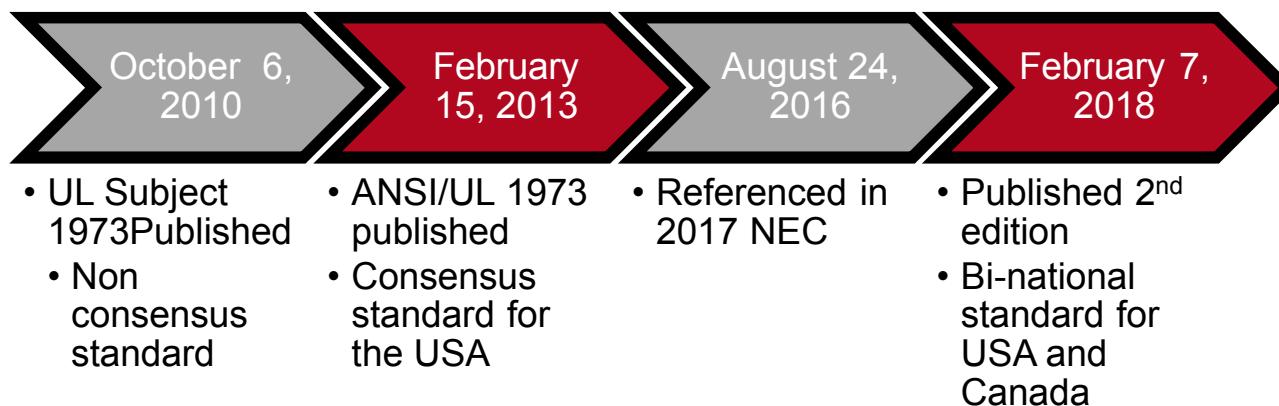
Revisions within 2nd edition of UL 1973

Include Canadian requirements (for bi-national standard)

Revisions to the internal fire test

- Renamed to single cell failure tolerance test

Include arc flash calculation information in instructions


Short circuit current rating and check value during short circuit test

Change terminology throughout standard (change from “energy storage system” to “battery system”)

Add production quality control

UL 1973 OVERVIEW

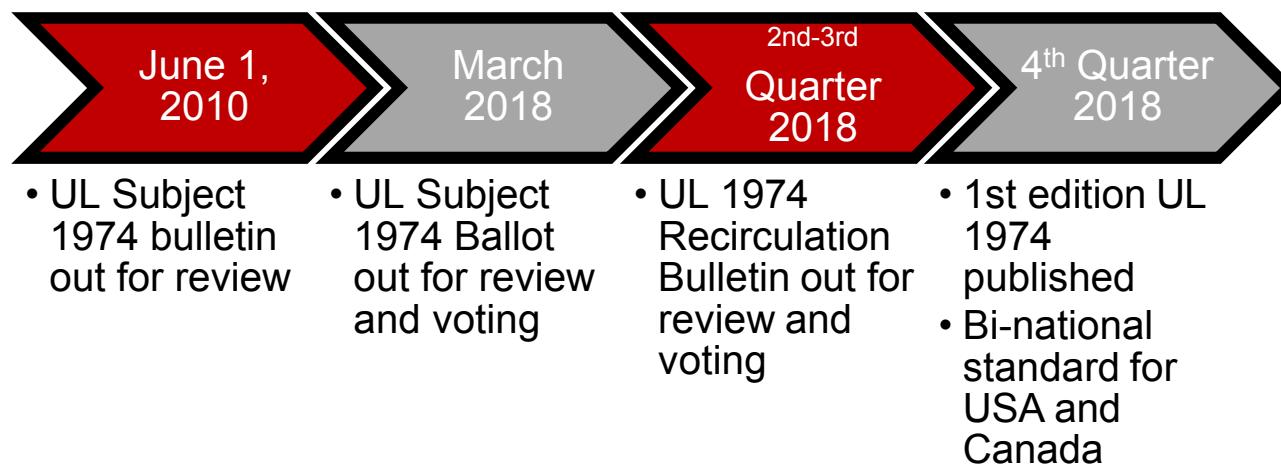
Significant Dates in The UL 1973 Timeline

UL 1974 OVERVIEW

UL 1974, Standard for Evaluation for Repurposing Batteries

Scope:

- covers the sorting and grading process of battery packs, modules and cells that were originally configured and used for other purposes, such as electric vehicle propulsion, and that are intended for a repurposed use application, such as for use in stationary energy storage and other applications.
- The process of sorting and grading these devices is essentially determining the state of health and other parameters to identify continued viability and the rating mechanisms the manufacturer may use for those that are determined suitable for continued use.


UL 1974 OVERVIEW

- UL 1974 is a “manufacturing process” standard that looks at the methods used to determine safety and performance of batteries, modules and cells from used EV battery systems (i.e. repurposing process)
- Assembled batteries need to meet the end product when re-assembled into a 2nd use battery
 - UL 1973 for stationary batteries

UL 1974 OVERVIEW

Significant Dates in The UL 1974 Timeline

UL 9540A, LARGE SCALE FIRE TEST METHOD

UL 9540A, Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems

Developed to address requirements in codes (e.g. ICC IFR and NFPA 855) for large scale fire testing

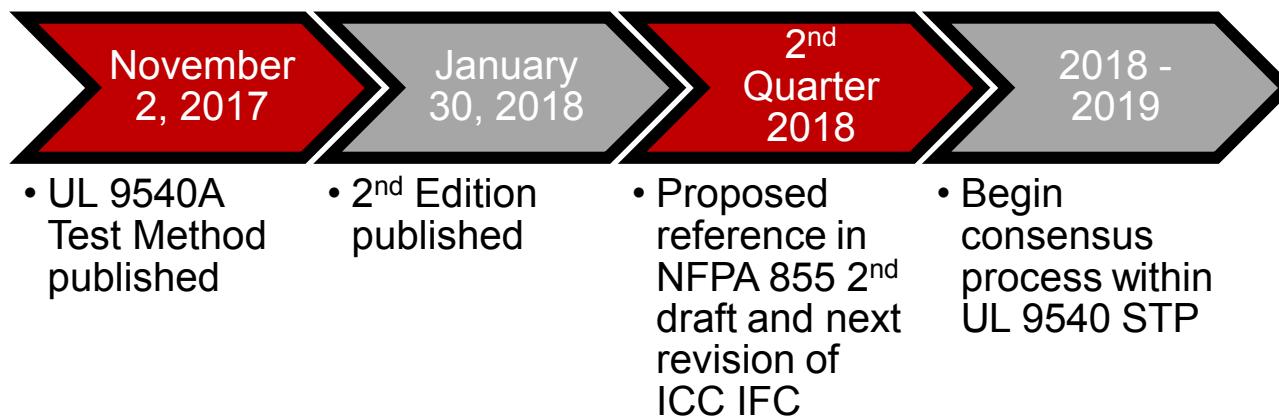
- Required for various indoor and other installations to avoid limitations on size of battery energy storage systems, reduce spacings between individual systems and walls, lower sprinkler density, etc.
 - Multiple parts:
 - Cell Level
 - Module Level
 - Unit Level
 - Installation Level

UL 9540A, LARGE SCALE FIRE TEST METHOD

Several Levels of Testing:

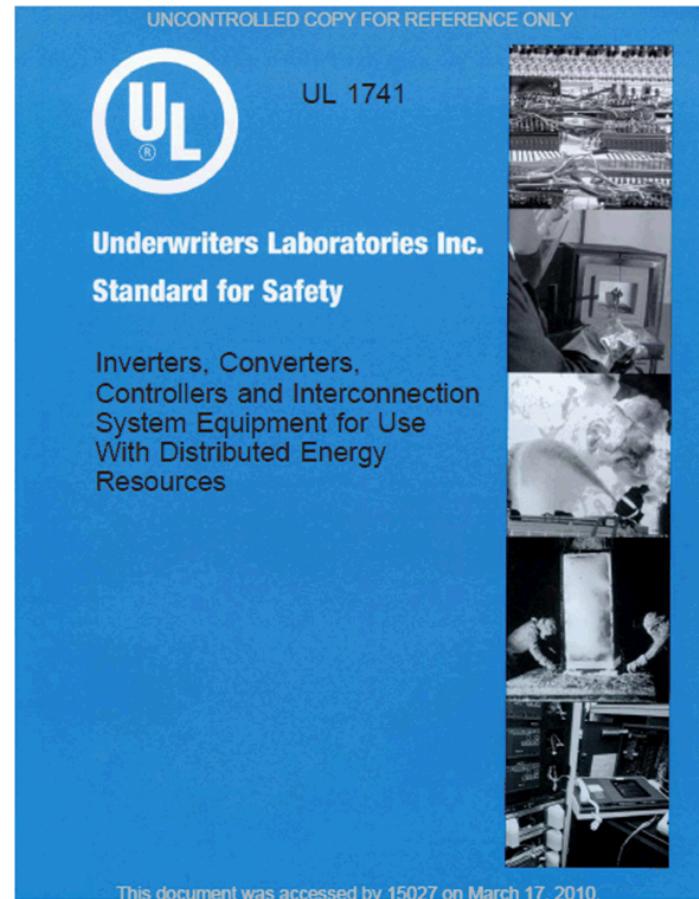
Cell Level – fail cells through various methods & gather information

Module Level – fail cells in modules and gather information


Unit Level – Conduct testing at unit level with repeat of cell failure in one of the modules in initiating unit and surround with target units

Installation Level – Repeat of Unit level test within test room with sprinkler systems or other protection mechanisms and overhead cabling

UL 9540A OVERVIEW


Significant Dates in The UL 9540A Timeline

UL 1741 OVERVIEW

UL 1741 Covers Power Conversion and Protection Equipment for the Following Types of DR products:

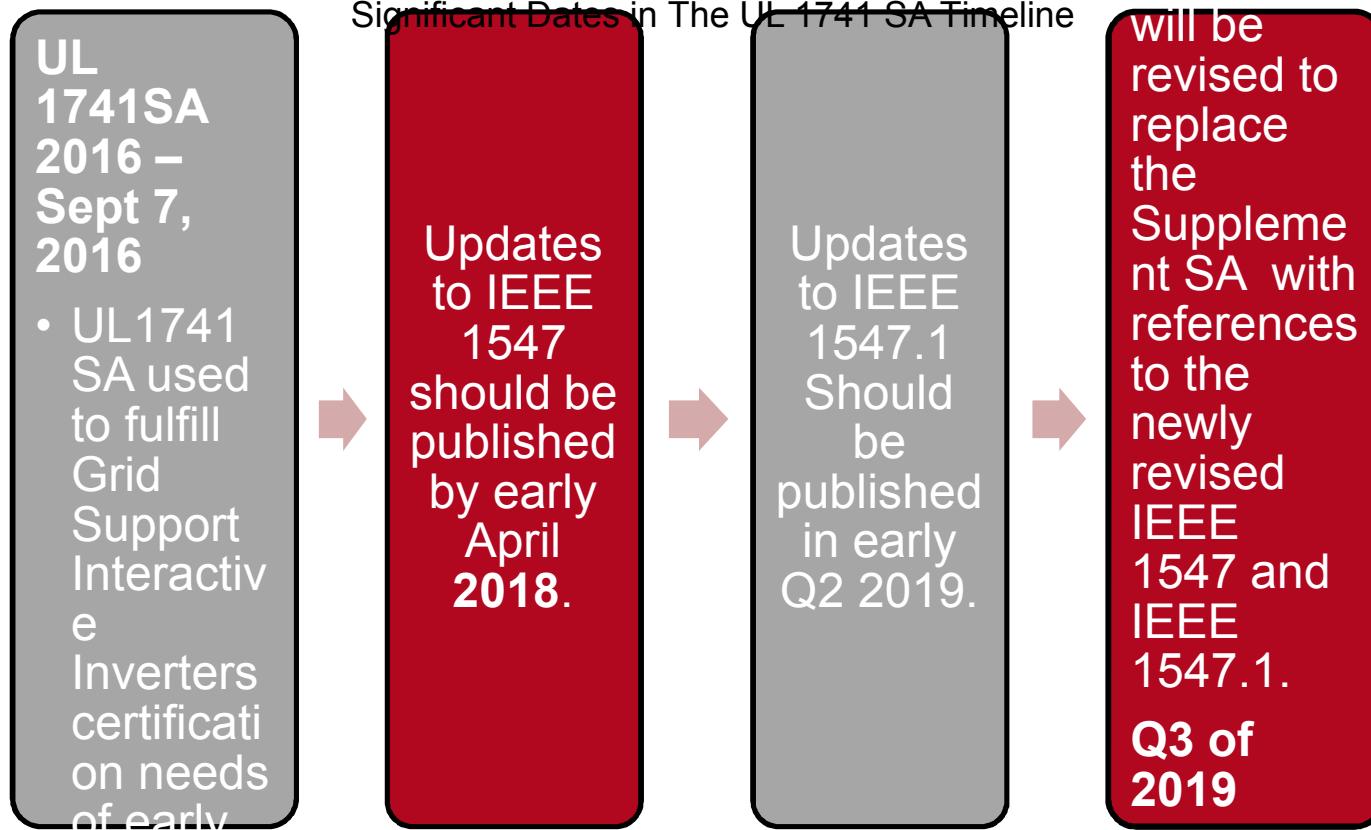
- Photovoltaics, PV
- Fuel Cells
- Micro-turbines
- Wind and Hydro Turbines
- Engine Generator Set
- Utility Interactive Inverters
- Grid Support Interactive /Smart Inverters
- Grid Interconnection Systems
- Equipment
 - Stand Alone Inverters
 - Multi-Mode Inverters
 - AC Modules
 - Charge Controllers
 - PV Balance of Systems,
 - PV Rapid Shutdown equipment
 - Combiner Boxes, GFDIs, etc

UL 1741 OVERVIEW

UL1741 SA - Grid Support Utility Interactive Supplement to "bridge the gap" until the new IEEE 1547 and IEEE 1547.1 Grid Support revisions are completed.

Utility-Interactive and Multi-Mode Inverters with Capability to Actively Need to specify functionality, characteristics and operational parameters.

- Actively limited output real power commanded or scheduled.
- Communications protocol, means and response characteristics.
- Time schedule with specified response characteristics.
- Power output changes with respect to generation limits.
- Power output changes in response to abnormal



Need to Differentiate Utility Interactive Products

Utility Interactive	Grid Support Utility Interactive	Special Purpose Utility Interactive
Traditional UL1741 IEEE 1547 & 1547.1 Interconnection Requirements	UL 1741 SA Grid Support Functions	Specific Mfr / Utility Defined UL Verified Compliance

- The above categories clearly define product functions and ratings per the product's markings, ratings, manual, and certification documentation.

UL 1741 OVERVIEW

OTHER UL STANDARDS DEVELOPMENT

UL 3001, Distributed Energy Generation and Storage Systems

- Scope: Safety of a distributed generation system with storage
- Status:
 - STP established
 - First edition bulletin under development

UL 9540A, Thermal Runaway Fire Propagation within Battery Energy Storage Systems

- provide fire test data and acceptance thresholds
 - to meet fire safety objectives included in the model fire and other codes (*large scale fault and fire testing*).

FIND US ON...

Energy Storage Section Updates and IEC Technical Committee Support

March 13, 2018

NEMA ESS Section Scope

✓ Includes

- Storage device/medium
- Power conversion systems
- Control & management systems
- Up to point of common coupling with a grid or premise

✓ Grid connected or independent of the grid

✓ Operator (utility) side or consumer side of the electric power system

NEMA ESS Section Activities

- ✓ Lead ANSI Energy Storage Systems Accredited Standards Committee and publish PNNL Protocol as an ANSI/NEMA standard
- ✓ Serve as secretariat for IEC TC 120
- ✓ Lead NEMA member public inputs on related ES codes and standards
 - ✓ NEC 706
 - ✓ NFPA 855
 - ✓ International Code Council proposals to 2021 Group A codes

ANSI/NEMA Standard on ESS

- ✓ Initiated ANSI/NEMA process to develop a ESS standard based on the PNNL/SNL protocol.
- ✓ Focus is on electrical energy storage systems
- ✓ Developed a consensus body with appropriate balance
- ✓ Provides a set of “best practices” for characterizing ESS and measuring and reporting their performance
- ✓ Serves as a basis for assessing how an ESS will perform with respect to key performance attributes relevant to different applications
- ✓ Provides a valid and accurate basis for the comparison of different ESSs
- ✓ Enables more informed decision-making in the selection of ESSs for various stationary applications

Canvass Process

IEC Technical Committee 120

- ⚡ Standardization in the field of grid integrated EES systems.
Focuses on:
 - Energy storage systems rather than devices.
 - Interaction between EES Systems and electric power systems
 - system aspects and the need for new standards for EES systems.
- ⚡ Safety requirements for grid integrated EES systems
electrochemical based systems
- ⚡ The US Technical Advisory Group welcomes new
members!

Examples of IEC TC 120 Standards

IEC number	Description	Status
62932-2-2	Flow battery systems for stationary applications- Part 2-2: Safety requirements	Committee Draft for Vote due 3/16/18
62933-5-1	EES systems – Part 5-1: Safety considerations related to grid integrated EES systems	Published
62933-5-2	EES systems - Part 5-2: Safety considerations related to grid integrated EES systems - batteries	Committee Draft comments due 3/30/18
62984-3-1	High Temperature Secondary Batteries, Part 3 Sodium-based batteries, Section 1 Safety requirements and tests	Committee Draft released 12/8/17
62485-5	Safety requirements for secondary batteries and battery installations - Part - 5: Lithium-ion batteries for stationary applications	Committee Draft released 1/5/18

IEC 62933-5-2 (Batteries)

- ✓ BESS can be integrated in virtually all types of grids
- ✓ The safety culture of stakeholders (integrators, operators and end-users) of such systems may vary from a high level to nearly full ignorance
- ✓ BESS are complex at the systems level due to the variety of potential battery options and configurations including the combining subsystems
- ✓ Compliance with standards and related material produced specifically for the safety of subsystems does not ensure absolute intrinsic safety of the overall system
- ✓ BESS may have additional safety hazards due to chemicals, for example

IEC 62933-5-2 Battery Chemistry Categories

Group A	BESS using non-aqueous electrolyte battery (e.g. Li-based)
Group B	BESS using aqueous electrolyte battery (e.g. Lead acid, Ni-based)
Group C	BESS using high temperature battery (e.g. NaS, NaNiCl)
Group D	BESS using flow battery
Group E	Others (ex: chemical based supercapacitors)

Thank you.

Contact Info:

Steve.Griffith@nema.org

Brian.Marchionini@nema.org

The Role of IEEE in Safety Codes and Standards Efforts

[This Photo](#) by Unknown Author is licensed under [CC BY-NC-ND](#)

Background on IEEE

- IEEE is made up of a number of Societies with over 423,000 members in over 160 countries.
- The Power and Energy Society is now the largest society with > 40,000 members.
- Its emphasis is on several areas of technical focus:
 1. Development of technical standards that are considered best practices, guides and background for many commercial standards.
 2. Highly cited publications
 3. Technical conferences around the world
 4. Professional and Educational activities
- Recognized as the trusted voice for engineering, computing and technology information.

IEEE SCC18 & ESSB Committee Safety Code Efforts

Christel Hunter, SCC18 Chair

Chris Searles, IEEE Energy Storage & Stationary Battery
(ESSB) Committee Chair

Bill Cantor, ESSB Safety Codes & Standards WG Chair

Who are IEEE SCC 18 and IEEE ESSB and What do they do?

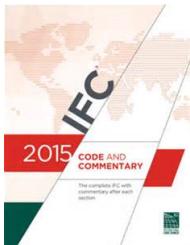
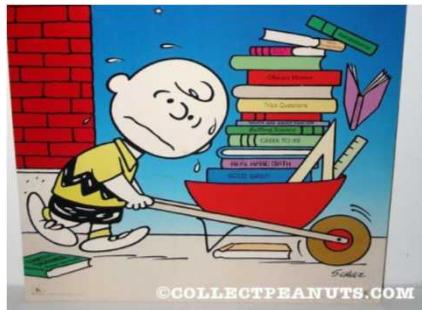
- **IEEE SCC 18** is responsible for coordinating and establishing the IEEE position on certain National Fire Protection Association (NFPA) technical committees.
- **IEEE ESSB** represents the IEEE on various National Fire Protection Association (NFPA) Technical Committees but is not restricted to just NFPA issues:
 - **NFPA 70 – National Electrical Code**
 - ✓ *Bill Cantor – ESSB WG Chair/NEC 70-CMP 13 [Batteries]*
 - **NFPA 70B – Recommended Practice for Electrical Equipment Maintenance**
 - ✓ *Bill Cantor – ESSBWG Chair/Primary Rep [Electrical Maintenance]*
 - **NFPA 855 – Standard for the Installation of Stationary Energy Storage Systems**
 - ✓ *Bill Cantor – ESSBWG Chair/Nominated as IEEE Representative*

- **SCC 18** Membership is open to those who are:
 - IEEE members above student grade, and
 - Standards Association (SA) members, and
 - Sponsored by an IEEE society, department, committee or subcommittee
- **SCC18** members come from...
 - Electrical Safety Committee: 2
 - Industrial & Commercial Power Systems Dept.: 13
 - Petroleum & Chemical Industry Committee: 8
 - Power & Energy Society: 4
 - Computer Engineering Society: 2

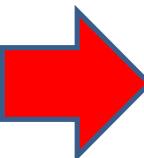
- **Name: Standards Coordinating Committee 18**
- Reports to: IEEE Standards Association
- Type of Committee: 1 (does not write standards)
- Leadership:
 - Chris Hunter, Chair
 - Dennis Nielsen, Vice Chair
 - Paul Myers, Secretary/Treasurer
 - Arthur Smith, Elections Officer
 - Bill McCoy, Membership Officer
 - Mario Spina, Webmaster
 - Ed Larsen, Past Chair
- **Staff liaison: Pat Roder**

- Name: IEEE Energy Storage & Stationary Battery Committee
- Reports to: IEEE Power and Energy Society Technical Committee
- Type: 2 (does write standards)
- Leadership:
 - Chris Searles, Chair
 - Curtis Ashton, Vice Chair
 - Babu Chalamala, Secretary
 - Tom Carpenter, Treasurer
 - Jim McDowall, Standards Coordinator
 - Paul Hectors, Webmaster
 - Rick Tressler, Past Chair
 - Kurt Uhlir, SBEE Subcommittee
 - Steve Vechy, DCRS Subcommittee
 - Staff liaison: Michael Kipness

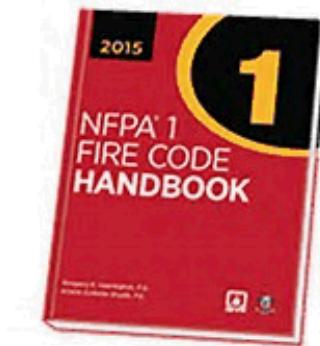
What is the IEEE ESSB Safety Codes and Working Group Attempting to do?

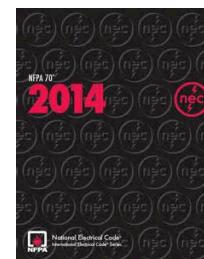
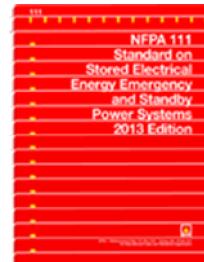
CURRENT ESSB COMMITTEE STANDARDS ADDRESSING SAFETY ISSUES/CONCERNS


Standard	Description	Standard	Description
IEEE 450	Maintenance & Testing VLA's	IEEE 1657	Qualifications for Installation/ Maintenance Technicians
IEEE 1188	Maintenance & Testing VRLA's	IEEE 1679	Characterization/Evaluation of Emerging Technologies
IEEE 1375	Protection of Stationary Batteries	IEEE 1679.1	Characterization & Evaluation of Lithium-Based Batteries
IEEE 1578	Spill Containment & Management	IEEE 1679.2	Characterization & Evaluation of Sodium-Based Batteries
IEEE 1635	Ventilation & Thermal Management of SB's	To be Proposed	Characterization & Evaluation of Flow-Based Batteries

Major Fire/Building Codes that Include Stationary Battery Regulations



New
Battery
Section in
2018
Edition

2021 Battery
Section Already
Drafted! - FCAC

New!
NFPA 855
1st DRAFT
DONE
2nd DRAFT

New
Battery
Section in
2018
Edition

Driver for Fire Code Battery Section Changes

Unknown (or unfamiliar with) hazards with new technology battery systems.

New deployment applications such as micro-grids

Density of energy storage in residential complexes and high rise buildings!

Parallel Code Development Tracks

NFPA-1 2021

- **TO:** Technical Committee on Fire Code
- **FROM:** Kristin Bigda, Staff Liaison
- **DATE:** January 12, 2018
- **SUBJECT:** SAVE THE DATE - NFPA 1 Pre-First Draft TC Meeting (A2020)
- **Date:** May 30-31, 2018
- **Meeting Location:** To be determined

Process Stage	Process Step	Date	Year
Pre-First Draft	Technical Committee Meeting	30-31-May	2018
First Draft	Public Input Closing Date	27-Jun	2018
	First Draft Report Posting Date	27-Feb	2019
Second Draft	Public Comment Closing Date	8-May	2019
	Second Draft Report Posting Date	22-Jan	2020
Motions Committee Report (NITMAM)	NITMAM Closing Date	19-Feb	2020

NFPA-855-2020

Process Stage	Process Step	Date	Year
First Draft	First Draft Posting and Technical Committee Ballot	24-Jan	2018
	Final Date for Receipt of Technical Committee First Draft Ballot	7-Feb	2018
	Final Date for Receipt of Technical Committee First Draft Ballot - Recirculated	14-Feb	2018
	First Draft Report Posting Date for Public Comment	11-Apr	2018
	Public Comment Closing Date	20-Jun	2018
Second Draft	Second Draft Technical Committee Meeting	15-Aug	2018
	Second Draft Report Posting and Technical Committee Ballot	10-Oct	2018
	Final Date Receipt of Technical Committee Ballot	24-Oct	2018
	Posting of Second Draft	TBD	TBD
	Second Draft Meeting	TBD	TBD
	Second Draft Ballot	TBD	TBD
Motions Committee Report (NITMAM)	Post Second Draft for NITMAM Review	3-Jan	2019
	NITMAM Closing Date	31-Jan	2019
	Posting of NITMAM CAM	3-Apr	2019
	Appeal Closing Date for Consent Standards	18-Apr	2019
	Appeal Closing Date for Standards with CAMS	10-Jul	2019

IFC-2021

Process Step	Date	Year
Deadline for CDP Access Online Receipt of Code Change Proposals	12-Jan	2018
Web Posting of Proposed Changes to the I-Codes	28-Feb	2018
Committee Action Hearing (CAH) in Columbus Ohio	15-Apr - 25-Apr	2018
Committee Action Committee Online Vote for CAH Floor Motions	15-May	2018
Web Posting of Report of CAH	30-May	2018
Deadline for CDP Access Public Comments for CAH Report	16-Jul	2018
Web Posting of Public Comment Agenda	31-Aug	2018
Public Comment Hearing (PCH)	24-Oct - 31-Oct	2018
Online Government Consensus Vote	15-Nov	2018
Web Posting of Final Action	30-Nov	TBD

Code Meeting Schedule

Code	Title	Current Edition	Next Edition
NFPA-1	Fire Code	2018	2021
IFC	International Fire Code	2018	2021 (2021 input was due 12-January 2018)
NFPA-855	Energy Storage Standard “New”	New	2020 (First Draft Posting April 11, 2018)
NFPA-70	National Electrical Code	2017	2020 (First Draft Posting July 6, 2018)
NFPA-101	Life Safety Code	2015	2021
IBC	International Building Code	2018	2021
IMC	International Mechanical Code	2018	2021
NFPA-110/111	Standard on Stored Electrical Energy Emergency and Standby Power Systems	2016	2019 (Jan 24, 2018 Second Draft Posting, Feb 21, 2018 NITMAM deadline)

2018 IFC and NFPA-1 Threshold Quantities

Figure 1. Battery Capacity Threshold Covered by Codes

Technology	Capacity Threshold (kilowatt hours)
Lead Acid (all types)	70 KWh (252 Mega joules)
Nickel Cadmium (Ni-Cd)	70 KWh (252 Mega joules)
Lithium (all types)	20 KWh (72 Mega joules)
Sodium (all types)	20 KWh (72 Mega joules)
Flow Batteries	20 KWh (72 Mega joules)
Other Battery Technologies	10 KWh (36 Mega joules)

NFPA-855 Threshold 1 KWh for
Residential Battery !!!

Kilowatt-hours for a single string (array): rated amp-hours (at an 8-hour rate) multiplied by the battery string voltage and divided by 1000. As an example of a system that is covered by the code, the photograph below shows strings of VLA batteries that are rated at approximately 4000 amp-hours. So even a single string would be subject to the codes. $48V \times 4000 \text{ amp-hours} / 1000 = 192 \text{ KWh}$.

NFPA-111 Standard on Stored Electrical Energy Emergency and Stand-by Power Systems

Guidelines for safe deployment and operation of stationary battery systems in stand-by applications.

The emergency power systems that operate at less than 24 volts and/or less than 500 VA are not subjected to these requirements.

Not used as basis for existing code enforcement.

Industry best practices for power sources, controls, converters, transfer equipment, and accessory equipment including:

Installation

Maintenance

Operation

Testing

A sister document NFPA-110 focuses more on generators and associated back-up power.

Proposed 2021 IFC Additions

- Standby power for ventilation
- Operational permits
- More construction documentation
- Decommissioning
- Limit array size to 50 KWh
- Align with NFPA-855
- Residential Battery Code (Chapter 18)
- More full scale fire testing
- Listing to UL9540
- Larger outdoor separation distances

2018 Stationary Battery Section Changes

IFC & NFPA 1

- ✓ New table outlining the kW-Hours for different technologies subject to the code
- ✓ Maximum allowable quantities (MAQ)
- ✓ Maximum array (string) sizing
- ✓ Required physical separation distances
- ✓ Location parameters within buildings (and outside)
- ✓ Hazard mitigation analysis criteria
- ✓ Energy management systems
- ✓ Automatic charger disconnect
- ✓ Signage criteria
- ✓ Ventilation & gas detection
- ✓ Operational Permit added to IFC

NFPA-855

- New Technical Committee developing a comprehensive energy storage system standard
- First Meeting Was January 2017
- First Draft Posting April 11, 2018
- Covers all stationary storage applications
 - ✓ Fire protection
 - ✓ Placement and Siting
 - ✓ Thermal Management & Ventilation
 - ✓ Interconnection
 - ✓ General Battery Requirements

IEEE 1547 Standards Example Use in USA

IEEE 1547

Interconnection System and Test Requirements

- Voltage Regulation
- Grounding
- Disconnects
- Monitoring
- Islanding
- etc.

IEEE 1547.1

Interconnection System Testing

- O/U Voltage and Frequency
- Synchronization
- EMI
- Surge Withstand
- DC injection
- Harmonics
- Islanding
- Reconnection

UL 1741*

Interconnection Equipment

- 1547.1 Tests
- Construction
- Protection against risks of injury to persons
- Rating, Marking
- Specific DR Tests for various technologies

NEC **

Article 690 PV Systems;

Article 705: interconnection systems (shall be suitable per intended use per UL1741)

PJM Interconnection, Inc.
Small Generator
Interconnection Standards
FERC approved

(0-to-<10MW and 10-to-20 MW;
incorporate 1547 and 1547.1)

* UL 1741 supplements and is to be used in conjunction with 1547 and 1547.1

** Articles: 480 Storage Batteries ;
692 Fuel Cell Systems;
694 Wind Electric Systems
(NEC info. based on NEC 2011)

SCC 21, a Level 2 Coordinating Committee within the IEEE Standards Association is also at work writing standards that deal with Interconnection of REN & ESS to the Grid (1547 series) , along with a group of Smart Grid standards (2030 series)

IEEE 1547 Latest Revision In PAR Process

Performance categories

Gives flexibility to accommodate different DER futures

More coordinated operation under normal conditions

Section 5 – many details on reactive power capabilities and voltage/power control requirements (not just allowance)

Grid support under abnormal conditions

Maintains distribution grid safety (cease to energize, trip on voltage or frequency when necessary)

Maintains bulk power system reliability (rides through voltage and frequency disturbances)

New guidance for interoperability

Starts us on the path to more open communications

Seeks to strike a balance between varying topologies & needs

New guidance for intentional islands

Much needed and immediate relevance

Testing requirements completely revised to address new capabilities

Strikes a balance between needs for large and small installs

Summary

- Newer battery technologies and large quantities of traditional batteries are an area of concern for public safety officials, fire departments, and building inspectors.
- These concerns have led to increasing regulations and criteria as proposed and developed in the 2018 IFC and 2018 NFPA 1. More changes for 2020 NFPA-855 and 2021 IFC.
- Battery manufacturers should be aware of the increased interest in requests for test data, fault data, and fire simulation work to satisfy code officials and meet the new code additions.
- End users should have a thorough understanding of these codes to determine types of technologies that can be readily deployed in existing structures, and installation and design issues for newer installations and facilities.
- Battery users, manufacturers, and researchers participation in the various code development bodies is encouraged.

IEEE ESSB and SCC 18 Opportunities

- There are currently several open positions on NFPA TCs or CMPs that need to be filled -
 - If you are interested or want to learn more, contact Chris Hunter or visit the SCC 18 web page:
<http://sites.ieee.org/scc18/home/about/>.
- Does belonging to SCC 18 mean I can be on an NFPA TC?
 - An IEEE SA and NFPA application process is required
 - The NFPA requires IEEE representatives to be users, or be able to represent users (consultants)
 - Employees of producers (manufacturers) are not eligible

- **IEEE ESSB** is open to all who have the following interests:
 - Have an interest in developing a technical understanding of the technologies related to energy storage, stationary batteries and related dc power systems.
 - Wish to help in the writing of standards (Best Practices and Guides) that ensure the safety, performance and reliability for the industry.
 - Willing to share SME knowledge thru technical symposiums, tutorials, etc.
- **IEEE ESSB** membership is made up of
 - Electrical, Chemical, Mechanical and other Engineers
 - Project, Test and Maintenance Engineers, Technicians
 - Installation and Testing Experts
 - Academia and R&D Scientists
 - Government Regulatory Engineers

Questions?

Next Actions

- ▶ Codes and standards reports to continue on a monthly basis
- ▶ Send questions to david.conover@pnnl.gov and we will have them answered
- ▶ The PPT used today with Q/A appended will be sent out and serve as the March 2018 C/S Report
- ▶ The next webinar date will be in September 2018
- ▶ Details on next webinar to be sent and will follow the same format as this webinar with advance materials forwarded via e-mail
- ▶ If there is something we should be covering in the monthly codes and standards report that we are not covering please let us know

THANK YOU

For more information on ESS safety related efforts....

david.conover@pnnl.gov

pam.cole@pnnl.gov

<http://www.sandia.gov/energystoragesafety/>

Proudly Operated by **Battelle** Since 1965

Acknowledgment

Dr. Imre Gyuk

DOE-Office of Electricity Delivery and Energy Reliability

PNNL-SA-#####/SAND2018-#####