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Planar Metamaterials: Strong Coupling & 

Tuning

MM resonators interact strongly with 

thin layers underneath
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Outline

• Strong Coupling to Intersubband Transitions

– Fundamentals

– Voltage Tuning

– Wavelength scaling

•Strong Coupling to Epsilon-near-zero modes

– Fundamentals

– Voltage Tuning

•Combining coupling to ENZ modes and Intersubband

Transitions 
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Strong Coupling to Inter-subband Transitions 

in Quantum Wells

4

•Scalabe (far IR to near

IR), Mature, Versatile

4

z
Opt. Express 20, 6584 (2012), 

APL 98, 203103 (2011)
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•Also good for nonlinear optics



Strong Coupling Theory vs. Experiment
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Geometry factor

Plasma frequency

Ω� = ����/2

Nature Communications 4, (2013)
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Experiments

Simulations (FDTD)

“Dogbone” resonators

Rabi frequency depends on 

simple parameters



From Mid-IR to Near IR

6Nature Communications 4, (2013)

InGaAs QWs (mid IR)
GaN QWs (near IR)



Electrically Tunable Strong Coupling

Appl. Phys. Lett. 103, 263116 (2013)
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Transmission vs angle (p-pol):

A sharp dip is observed in 

transmission, where ε~0

Berreman, Physical Review 130 (6), 2193 (1963).

McAlister and Stern, Physical Review 132, 1599 (1963).

(“Berreman” dip)

“Epsilon Near Zero” Modes

Example: “Drude” layer



• Berreman mode (leaky mode), 

• ENZ mode (bound mode)

• ENZ mode is a special type of a plasmon polariton

t = 30 nm

t = 60 nm

t = 200 nm

Dispersion relation of the TM mode in a 3-
layer

Numerical solution in complex domain
(assuming complex freq, real k)

Light line

“Epsilon Near Zero” vs Berreman Modes
Berreman “ENZ”

tDrude

Substr.

Air

Greffet et al, PRL 109, 237401 (2012)
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MM Resonators Provide k-vectors to 

Excite ENZ Modes
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Superimpose dipole emission spectra on 

the ENZ dispersion

ENZ dispersion



Strong Coupling to ENZ Mode: Theory vs. 

Experiment
Numerical simulation (FDTD)
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FTIR transmission measurement
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ND = 2e18 cm-3

Electrically Tuning the Coupling to the 

ENZ Mode

Fundamentally different than tuning just by changing a local permittivity!

Removal of carriers -> removal of ENZ mode

13

Nano Letters 13, 5391 (2013)



Inverted Dogbone + ENZ
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•Strong Coupling to Epsilon-near-zero modes
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– Voltage Tuning

•Combining coupling to ENZ modes and Intersubband

Transitions 

15



Coupling of Metamaterial Resonators to 

Dipole Resonances + ENZ modes

16

Lorentz model

J. Appl. Phys., 48, 212 (1976).
Solid State Communications, 62, 645-647, (1987). 

Γ: Phonon damping constant
ωp: Plasma frequency
γ: Free carrier damping constant
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Strong Coupling: 2 Polariton Branches
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Let’s Separate the ENZ Layer and the 

Dipole Resonance Layer
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3 Interacting Systems



Case 1: Different Frequencies for Dipole 

Transition and ENZ
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Case 2: Same Frequencies for Dipole 

Transition and ENZ
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Experimental verification for 100 nm and 

200 nm ENZ + QWs
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100 nm 200 nm

1 µm5 µm



Combining ENZ Modes and Intersubband

Transitions for Stronger Coupling

•Field decays exponentially with 

distance from MM resonators

• An ENZ thin layer acts as a 

“transducer” of Ez field
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Strong coupling to 

Intersubband Transitions



SPARES
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Electrically Tunable Strong Coupling

•Metamaterial spectral response tuned 

by voltage

•Upper polariton shifted by 2.5 THz (=8% 

of center frequency or one full 

intersubband linewidth)
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How to Increase the Rabi Frequency: 
Metamaterial Nanocavity + Ground-plane

•Ground plane limits field penetration into the semiconductor

•Mode volume reduced from: 2.49×10-3 (λ/n)3 to 1.34×10-3 (λ/n)3

26

QW region (thinner)

Back-reflector

Highly doped 

semiconductor

Optics Express 21, 32572 (2013)



Reduced Mode Volume: Experiments

• Rabi frequency remains almost identical despite reduced QW-stack 

thickness (factor 3.3) or reduced mode volume (factor 1.9)

• Conventional sample: 2.1 THz vs. Nanocavity: 2.5 THz

27
Optics Express 21, 32572 (2013)



Rabi Frequency vs. Geometry

•Larger capacitance leads to larger Rabi splitting
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Dogbone
High 
capacitance

Dumbbell
High 
capacitance

Jerusalem Cross
Low damping = high-Q

Circular SRR
High 
inductance

Physical Review B89, 165133 (2014)



Strong Coupling to Inter-subband Transitions 

in Quantum Wells

29

•Scalabe (far IR to near

IR), Mature, Versatile
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z
Opt. Express 20, 6584 (2012), 

APL 98, 203103 (2011)
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Reverse Biasing Highly Doped QWs: 

Problem!

•Applying reverse bias across QW-stack depletes well by well => 

no continuous tuning

•High doping concentration limits effect to first few wells only
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Stabilizing Internal Electric Field
Allow a small forward bias current

•Current flow through QW-stack 

stabilizes internal electric field

•Alignment and miss-alignment of 

subbands show up in IV curve
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Experimental Rabi Oscillations
(using a mid-IR Time-domain fsec system)

•Energy exchange 

probed in time

– 33 fs oscillation

– 480 fs beating

•System strongly 

coupled

•Splitting of 4.2 THz 

measured

– 15 % of ω12
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How to Increase the Rabi Frequency 
Effect of QW-stack thickness

•Thickness of the QW-stack influences the Rabi frequency

•Increased from 1.65 to 2.64 THz

50 nm 650 
nm

33



How to Increase the Rabi Frequency: 

Metamaterial Nanocavity + Ground-plane

Opt. Express 21, 32572 (2013) 19.65 39.30 58.95
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Circuit Model for Strong Coupling

• Metamaterial modelled as simple RLC 

harmonic oscillator

• Strong coupling represented by 

dispersive capacitor

• No free fitting parameters for dispersive 

capacitor
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Accuracy of circuit model

•FDTD simulations show clear anti-crossing as a function bare 

cavity frequency

•Circuit model can recover full lineshape of reflectance (or 

transmittance) spectra
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Resonator Geometries Analyzed

• All metamaterial 

have identical 

bare cavity 

resonances but 

different RLC 

values

• Metamaterial 

defined by 

electron-beam 

lithography

• Same QW-stack 

used for all 

samples

• Study only 

geometry effect

Dogbone
High capacitance

Dumbbell
High capacitance

Jerusalem Cross
Low damping = high-Q

Circular SRR
High inductance

1um
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Circuit model accuracy

• RLC model 

describes strong 

coupling 

accurately 

despite the exact 

geometry

• Only cold cavity 

requires fitting
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Modal analysis

Medium 1

Medium 2

Substrate

Free space

The layered medium can be modeled as a set of cascaded transmission lines

d1

d2

d1

d2

Z0

Z1

Z2

Z3

Select a reference plane, then compute the impedances looking up and looking down by 
accounting for the dispersion in each medium

Zup

Zdown

Compute the (complex) modes as the zeroes ofZup+ Zdown= 0
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Strong Coupling, Near IR
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Dogbone Resonators, Near IR

44



Strong Coupling, Near IR
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Strong Coupling, Near IR
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SHG
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Appl. Phys. Lett. 104, 131104 (2014)
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