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Planar Metamaterials: Strong Coupling &

Tuning

| Metal Me‘tal| - f{f 7\
MM resonators interact strongly with % ywl

thin layers underneath substrate
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e Strong Coupling to Intersubband Transitions
— Fundamentals
— Voltage Tuning
— Wavelength scaling

e Strong Coupling to Epsilon-near-zero modes
— Fundamentals

— Voltage Tuning

e Combining coupling to ENZ modes and Intersubband
Transitions
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electric field
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Frequency (THz)
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Electrically Tunable Stron
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Appl. Phys. Lett. 103, 263116 (2013)
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e Strong Coupling to Intersubband Transitions
— Fundamentals
— Voltage Tuning
— Wavelength scaling

e Strong Coupling to Epsilon-near-zero modes
— Fundamentals

— Voltage Tuning

e Combining coupling to ENZ modes and Intersubband
Transitions



Thin (<<A) layer —
where € crosses

0 (Drude,
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Berreman, Physical Review 130 (6), 2193 (1963).
McAlister and Stern, Physical Review 132, 1599 (1963).
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“Epsilon Near Zero” vs Berreman Modes
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MM Resonators Provide k-vectors to
Excite ENZ Modes

ENZ dispersion
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Aly ;GaAs 30nm

30 nm n+ GaAs (2-5e18)

Transmission

Nano Letters 13, 5391 (2013)

Strong Coupling to ENZ Mode: Theory vs. ()i
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Electrically Tuning the Coupling to the
ENZ Mode
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Fundamentally different than tuning just by changing a local permittivity!
Removal of carriers -> removal of ENZ mode

Nano Letters 13, 5391 (2013)
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Inverted Dogbone + ENZ
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e Strong Coupling to Intersubband Transitions
— Fundamentals
— Voltage Tuning
— Wavelength scaling

e Strong Coupling to Epsilon-near-zero modes
— Fundamentals

— Voltage Tuning

e Combining coupling to ENZ modes and Intersubband
Transitions
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Dipole Resonances + ENZ modes

L orentz model
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Strong Coupling: 2 Polariton Branches

Simulations e Experiments
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Let’s Separate the ENZ Layer and the
Dipole Resonance Layer

3 Interacting Systems

MM
Resonators

ENZ Mode
(Drude layer)

Dipole Transition
(ISTs in QWs)

18

Sandia
National
Laboratories



2 Different

Case 1: Different Frequencies for Dipole
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Case 2: Same Frequencies for Dipole
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Only 1 Polariton, larger Rabi Splitting!
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Experimental verification for 100 nm and
200 nm ENZ + QWs
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Combining ENZ Modes and Intersubband & .
Transitions for Stronger Coupling

e Field decays exponentially with
distance from MM resonators

e An ENZ thin layer acts as a
“transducer” of Ez field

[HI|? |Ez|?
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Electrically Tunable Strong
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Coupling
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How to Increase the Rabi Frequency: o %=
Metamaterial Nanocavity + Ground-plane

QW region (thinner)

Back-reflector
> Highly doped
semiconductor
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e Ground plane limits field penetration into the semiconductor
e Mode volume reduced from: 2.49x10-3 (A/n)3 to 1.34x10°3 (A\/n)3

Optics Express 21, 32572 (2013) 26



Reduced Mode Volume: Experiments

10.38

Frequency (THz)
Frequency (THz)

0.20 0
Bare cavity resonance (THz)

Bare cavity resonance (THz)

e Rabi frequency remains almost identical despite reduced QW-stack
thickness (factor 3.3) or reduced mode volume (factor 1.9)

e Conventional sample: 2.1 THz vs. Nanocavity: 2.5 THz

Optics Express 21, 32572 (2013) 27
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Rabi Frequency vs. Geometry
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e Larger capacitance leads to larger Rabi splitting
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*Scalabe (far IR to near
IR), Mature, Versatile

Opt. Express 20, 6584 (2012),
APL 98, 203103 (2011)

in Quantum Waells

Change levels using an electric field

-80 kV/cm

1.0

0.8

0.6

Energy (eV)

0.4

10

20

Groth direction (nm)

Wavelength (um)

29

10

12

14

16 -

18

Strong Coupling to Inter-subband Transitions
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Reverse Biasing Highly Doped QWs:
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e Applying reverse bias across QW-stack depletes well by well =>
no continuous tuning

e High doping concentration limits effect to first few wells only
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Allow a small forward bias current

400 -20 kV/cm
200 f J
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e Current flow through QW-stack
stabilizes internal electric field

e Alignment and miss-alignment of
subbands show up in IV curve
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Experimental Rabi Oscillations

(using a mid-IR Time-domain fsec system)

e Energy exchange

o
o

o
ol
T

. probed in time
— 33 fs oscillation
— 480 fs beating

e System strongly
coupled

e Splitting of 4.2 THz
measured

— 15 % of W,

1500

2600 | 2500
Time (fs)
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How to Increase the Rabi Frequency
Effect of QW-stack thickness

35

30

l0.85

10.55
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Frequency (THz)
N

Frequency (THz)

20 20 .
20 25 30 35 0.2 20 25 30 35

Bare cavity frequency (THz) Bare cavity frequency (THz)

0.25

e Thickness of the QW-stack influences the Rabi frequency
e Increased from 1.65 to 2.64 THz
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How to Increase the Rabi Frequency:

Metamaterial Nanocavity + Ground-plane

Opt. Express 21, 32572 (2013)
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Circuit Model for Strong Coupling

Near fields of “metasurface”

E,-IST coupling

Plane wave in substrate

2
ANyje f12
Egm* Wi, — w? + 2iwd

e Metamaterial modelled as simple RLC  &;57(w) = €pq0k +
harmonic oscillator

e Strong coupling represented by
dispersive capacitor

\/gback€IST(w) — Epack
Epack T 1

* No free fitting parameters for dispersive Crsr(w) = Crnm
capacitor
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]'1__ . .
1/ Accuracy of circuit model
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I 16} X
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20
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e FDTD simulations show clear anti-crossing as a function bare
cavity frequency
e Circuit model can recover full lineshape of reflectance (or

transmittance) spectra
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Resonator Geometries Analyzed

DeEgloeins 2 il e All metamaterial
High capacitance High capamtance ) ]
ave identica
bare cavity
e 'M | resonances but
v
¥ different RLC
¢ "th:.-r; values
e Metamaterial
_ defined by
Jerusalem Cross “Circular SRR electron-beam
Low damping = high-Q High inductance lithography
! i . o a’;-n\__:
> e Same QW-stack
used for all
samples
e Study only

geometry effect
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Circuit model accuracy
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Transmission map

Transmission map
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Modal analysis
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The layered medium can be modeled as a set of cascaded transmission lines

Free space Z, 1‘ Zyo
Medium 1 I D
Z, d, J'Zdown
v
Medium 2 A
v

Substrate
Z3

Select a reference plane, then compute the impedances looking up and looking dowr
accounting for the dispersion in each medium

Compute the (complex) modes as the zeroes 8f,+ Zyoun= 0
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Strong Coupling, Near IR
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Strong Coupling, Near IR
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Strong Coupling, Near IR

Wavelength (um)



0.8 =—Quadratic fit
* Experiment
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Appl. Phys. Lett. 104, 131104 (2014)
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