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Outline

• Efficiency comparison and projections for 
blue LEDs and laser diodes (LDs).

• White light from LDs.

• LD System benefits.

• Economic comparison for LEDs and LDs.
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Efficiency comparison and projections 
of LEDs and LDs
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III-nitride blue LEDs vs. LDs

MQWs
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MQWs core
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GaN substrate
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Blue LD: edge-emitter
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450 nm
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• After threshold LDs are not affected by 
efficiency droop.

• LDs are more efficient at higher input 
power densities. 

J. J. Wierer, Jr., D. S. Sizov, and J. Y. Tsao, “Comparison 
between Blue Laser and Light-Emitting Diodes for Future 
Solid-State Lighting”, Laser and Photonics Review (2013).
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State-of-the-art blue LED
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• Injection efficiency: inj

• Function of the 
bandstruture, carrier 
lifetimes, and internal 
and external fields.



Projection of LED improvements
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• Increased active layer thickness:

MQWs MQWs
p-GaN

p-GaN

n-GaN n-GaN

• Reduced series resistance:

MQWs
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• Increased extraction efficiency:

• Change crystal orientations:

c-plane



Crystal orientation
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c-plane

W. G. Scheibenzuber et al. PRB, 90, 115320 (2009).
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• Can make similar arguments for A and C.



Crystal orientation
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• Efficiency curve is “wider”.

• The increase in A and C limit the peak efficiency improvement.

• Efficiency droop is not fixed but improved.

• At 1kW/cm2 PCE ~ 38% c-plane

PCE ~ 48% for m-plane



State-of-the-art blue LD
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• Injection efficiency: inj

• Function of the 
bandstruture, carrier 
lifetimes, and internal 
and external fields.



Projection of LD improvements
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Decreasing optical loss:
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n-AlGaN clad

p-AlGaN clad

GaN substrate

contact
p-GaN

contact

Reduced series resistance:
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Increasing modal gain:
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Change crystal orientations:

c-plane



Projection of efficiency improvements
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Internal loss 6/cm 1.5/cm
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LD

 Blue LD has the potential to have similar peak efficiencies as LEDs, 
but at much higher output powers. 



White light from LDs
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• UV LED + RGB phosphors

• White determined by phosphors

• Excellent color rendering

• Stokes-shift  UV  visible colors

• Blue LED + yellow phosphor

• Simple

• Decent color rendering (Ra ~ 75)

• Stokes-shift loss - blue  yellow

• Direct – RGB LEDs

• Potentially highest efficacy 

• Very large color range

• Most efficient – tunable white

White LEDs
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Phosphor converted LD (PC-LD) white

 Commercial blue LD + ceramic phosphor.

 Color temperature and rendering are 
comparable to PC-LED.

 Blue LDs can be used to produce white 
light.
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Violet pumped PC-LD

 Simulation of 415nm LD pumping 3 phosphors
 450 nm, 518 nm, and 637 nm

 Just like violet PC-LED solution, the violet PC-LD could also 
produce high color rending white light.
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Direct emitters to produce white
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Krames, et al., IEEE J. Display Tech., June 2007
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 Both LEDs and LDs suffer from the “green gap” problem.

 This limits the progress in white sources produced from direct 
emitters. 



Managing human circadian rhythms 
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 Circadian rhythms: physical, metal, and 
behavioral changes on a 24 hr. cycle.

 Circadian rhythms can influence sleep-
wake cycles, hormone release, body 
temperature, and other important body 
cycles.

 Smart lighting will include chromaticity 
tuning to change color temperature during 
the day and ensure normal rhythms. Recorded on Mt. Hamilton, CA at Lick Observatory–

courtesy S. Paolini, CTO, Telelumen



Market waves of LED lighting
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LD system benefits
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Luminance of PC-LEDs and PC-LDs
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PC-LED PC-LD

Power (lm) 325 500

Phosphor emitting area (cm2) 0.09 0.01

Emitting half angle (°) 45 45

Luminous intensity, Iv,  (lm/sr) 180 270

Illuminance, Ev,  (lm/cm2) 3600 50000

Luminance, Lv (lm/sr/cm2) 1900 27000

 PC-LD benefits:
 Beam can be focused and a much 

smaller phosphor volume can be used.
 Smaller phosphor leads to higher 

luminance.
 Smaller luminaires.

LED LD

PC-LED

Blue LED

Reflector 
cup

Phosphor

PC-LD

Blue 
LD

lens

Phosphor
aperture



Laser diode micro-projectors
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High luminance laser headlights
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 Can deliver white light over longer 
distances.

 Example is BMWs laser headlights. 



Economic comparison of LEDs and LDs
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Economics of LEDs and LDs
P

o
w

e
r 

C
o

n
v
e

rs
io

n
 E

ff
ic

ie
n

c
y
 

0.50

0.25

0

1.00

0.75

101 102 103100

Input Power Density (kW/cm2)

10-3 10-2 10-110-410-5

• Assume a simple heat sink 
geometry.

• Assume operation is at peak 
efficiency.

• Input power density is different for 
LEDs and LDs.

• Two different input powers will drive 
different chip size and cost.



Economics of LEDs and LDs
A

ll
o

w
a

b
le

 A
re

a
l 

C
o

s
t 

($
/c

m
2
)

101 102 103100

Input Power Density (kW/cm2)

10-3 10-2 10-110-410-5

103

100

10-3

• Calculate the allowable areal cost.
• Includes heat sink limited area and flux, 

and the capital and operating cost of 
light.

• Two vastly different areal costs.
• LED: ~$10/cm2

• LD: ~$2000/cm2

• IR LDs are at ~$150/cm2

106



Conclusion
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• LDs are not affected by efficiency droop after threshold.

• LDs have higher efficiencies at higher input powers.

• Modeling suggests LD peak efficiency could match LEDs.

• PC-LDs produce white light with color rendering and temperature similar to 
LEDs.

• LDs white sources have higher illuminance.

• Smaller sources that can be projected farther.

• LDs small areas and higher output powers make them economically viable. 



Economics of LEDs and LDs
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• Assume a simple heat sink geometry.

• Single light-emitting device.

• Calculate the heat-sink-limited area.
• Maximum chip area compatible with a 

particular input power density, power-
conversion efficiency and maximum 
allowable temperature rise103
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10-3

10-6

LD~1.6x10-4 cm2 = 16um x 1mm stripe 

LED~0.14 cm2 = 0.37cm x 0.37cm



High Luminous efficacies of radiation

 Spiky sources give highest luminous efficacies of radiation (lm/W)

 Red/yellow power varied to give CCT=3800, Ra=85
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FWHM=100nmFWHM=50nmFWHM=10nmFWHM=2nm


