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Motivation

Princeton SERF
Early 2000’s, high sensitivity demonstrated magnetometer
with atomic magnetometers (AMs)

_ 0.5 fT/HZ""2 NIST Chip-Scale | |

— 1. K. Kominis, T. W. Kornack, J. C. Allred, and M. atomic Magnetometer !

V. Romalis. Nature 422, 596 (2003). -

Chip-scale atomic magnetometers | i ""

demonstrated. ‘
— Small size and low power
— 70 fT/HZ"2

— V. Shah, S. Knappe, P.D. Schwindt, and J.
Kitching, Nature Photonics 1, 649-652 (2007).

What should we do with these new high
sensitivity magnetometer?
Biomagnetic applications

— Magnetocardiography

— Magnetoencephalography

— Magnetic Nanoparticles
Geomagnetism

— Rock magnetometer

G. iso'f.';a‘i.' Optics Expré

904-909 (2003); Ap.“ed Physi



— Current Technology

Superconducting Quantum
Interference Devices (SQUIDs)

* Mature technology
— Highly sensitive, 2-3 fT / Hz!/2
— High bandwidth
— Whole head coverage (> 300 channels)

 Disadvantages
— Require cryogenic cooling
— Helium is expensive, sources unreliable
— Large, requires an expensive shielded

— Helmet size is fixed to accommodate largest
head size




Potential Improvements for MEG

Potential drawbacks

tomic Magnetometers for MEG

No cryogenic cooling
— AM needs to be heated
Much smaller sensor array size
— Leads to a smaller magnetic shield
— Transportable system
Reconfigurable array is possible
— Small sensor size
— Accommodate head sizes ranging from infants to adults
— Reconfigure for other applications: MCG

Trade-off between bandwidth and sensitivity
Opposite thermal problem
— Need to heat the cell to 150 C and maintain close sensor-to-head distance

Sensor position and sensitive axis is not fixed

— Source localization relies on knowing the location and orientation of the magnetic
sensor

Sensor gain varies from sensor to sensor and it can drift

@)
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Mimic SQUID MEG sensor

— Whole-head coverage: tailor sensor
design for arrays

— Adequate sensitivity/bandwidth (<10
fT/HZ'2/100 Hz)

— Small footprint ~ 30 mm square

— Eliminate free space beams (fiber
coupled sensors)

— Gradiometric 2D output Elekta Triple

Sensor Chip

Collaboration:

— Wright State University, Candoo
Systems, Cleveland Clinic, UNM
School of Medicine, MRN

— Design input from neuroscientists

— Strengthen ties to ultimate user
community
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*Two-color pump/probe scheme

Separate pumping and probing functions into two separate
beams

—  Circular polarization pumps, linear polarization for probing

—  Both beams are co-propagating

—  Utilize rubidium fine structure

— Modification of an elliptically polarized scheme: V. Shah and M. V. Romalis, PRA
80, 013416 (2009)

8’Rb Fine Structure
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1st Generation Sensor Design

« Single optical axis: compact, single fiber for pump/probe

— Use 8Rb (D1 795 nm, D2 780 nm)

* Retroreflecting mirror minimizes vapor-cell-to-head distance
« Modulate Bx/By for lock-in detection (choose sensitive axis)
« Gradiometry performed with quadrant photodiode

— 1/e? diameter of 20 mm: give a
gradiometer baseline of ~4-5 mm

Quadrant
Photodiode

Polarizing Beamsplitter\

Interference
\/ Filter (Pass D2)

Pump (D1) and
Probe (D2) Light

Polarization Maintaining
Fiber \

_ Waveplate: D1(D2)
Polarizer circularly(linearly) polarized

—-1.0

Distance between vapor cell center and head: ~3 cm jhsulation




= Magnetometer Hardware

* Vapor cell * Non-metallic materials: G-10

. ~600 Torr He, 30 Torr N2 %b()e&g!{gss, custom phototdiode

* Interior size: L = 7" X ¢=7" . 4/fnoise reduced by using optical
* Insulation: Microporous ceramic fibers and a vacuum enclosure

oven, vacuum enclosure

bt

WVapor cell (Installed
Ffinside oven)
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/Magnetometer Performance

MEG Sensor Sensitivity  Gradient measures
Intrinsic sensitivity
e <5fT/HZ"V2at 10 Hz

* Noise floor consistent with
magnetic shield noise

« Bandwidth = 17 Hz;
further temperature
Increase damages mirror

« Shot noise limited above
10 Hz; can be improved
with more probe power

* Further work needed to
—E{ori.zont:il (}1:3(1i911t |dent|fy IOW freq uency
= Vertical Gradient J noise SOUFCG, but already

= Single Channel Magnetometer

e below 10 fT/Hz'? at 1 Hz

|  Sufficient for initial MEG
Frequency (Hz) demonstration

——Single Channel Technical Noise




stallation in the shielded room

18-coil field cancellation Median nerve stimulator: SQUID MEG
system for reducing the field 8 mA for 100 us machine

from ~100 nTto <1 nT

@



wo Sensor MEG Measurements

* Three subjects measured with auditory stimuli
« Two subjects measured with somatosensory stimuli

Horizontal
AXxis




//Comparison of a Single 4-Channel
Atomic Magnetometer to the SQUIDs

Auditory Stimulation

Atomic Magnetometer Elekta Magnetometers

320 stimuli stimuli

\ A

(T k"

100 200 300 400 i 100 200 300
Time (ms) Time (ms)
« Present 1000 Hz tones in both ears, measure evoked response in
auditory cortex

« Expected signal at ~100 ms is present in AM and SQUID data

Cort Johnson, Peter D. D. Schwindt, and Michael Weisend, Appl. Phys. Lett. 97, 243703 (2010)
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SQUID and AM signals are not identical. \Why?

SQUIDs measure fields
perpendicular to scalp
(coils are parallel to scalp)

AMs measure fields parallel to scalp
(optical axis perpendicular to scalp)

|
i<7 Optical axis

 Magnetometer channel separation: ~5mm
 SQUID channel separation: ~30 mm
 Different bandwidth (AM: ~20 Hz, SQUID: ~ kHz)



- 1000 Hz auditory Auditory evoked response: Vertical component
stimulus applied to both Raw data

ears _ H Sensor over left ear
Recordings from Sensor over right ear

left/right sensors z :
measured : N 2R AR
simultaneously ' IATYE
Recordings of vertical

component

Bandpass filter: 2-55 -100 100 200 300 400 500 600 700
Hz, Trials averaged: time (ms)

330 : Data from Left Hemisphere Data from Right Hemisphere
Use a signal space Raw vs. SSP Raw vs. SSP

projection technique to
cancel noise.

With noise projected
out, a clear M100
response is observed.

Kb) - Raw data
=~ M100 — Data after SSP

Flux (fT)
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s [ata after SSP
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= Auditory Stimuli with Two Field

v =

omponents Measured

| 4 —__Lomponents iieasured ===

* Recordings of
vertical/horizontal
axes measured
subsequently

*M100 peak clearly
visible on both
sensors, vertical
axis

Vertical field
measured over left ear

(a)|

i M100

i\

time (ms)

Horizontal field
measured over left ear

time (ms)

Flux (fT)

n
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n
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Vertical field
measured over right ear

=

Y- M100
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time (ms)

Horizontal field
measured over right ear

time (ms)
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ﬂ/// Towards a Complete
e MEG System

| 4

« 36 channel AM array, reconfigurable (position, head size)
 Human-sized shield, cheaper/smaller installation
« Compare AM and SQUID recordings of human subijects

Multi-layer
Magnetic Shield
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;ﬂ/ NIH Project: Major Tasks

1. Redesign, miniaturize sensor (4 cm X 4 cm)
« <10 fT/HZ"2, >100 Hz bandwidth

2. Carefully model human-sized shield performance

3. Design/model array for minimum interference
 Modulation coil fields are seen by neighboring sensors

4. Adapt Atomic geometry

Magnetometer

 Brai odeling
5. Constig 9 phantom
« Ho d know
preg ured?
6. Auditc uman

Parallel optical axes Optical axes
perpendicular to
the skull



 Previous single-beam design was very difficult to align
and had a short gradiometer baseline, ~5 mm

e Switch to four beams, 18 mm baseline, 2.5 mm FWHM
beam diameter

 Vapor cell:
Previous: 10 mm long, 600 Torr He, 30 Torr N,
Current: 4 mm long, 600 Torr N,

* Minimize distance from the head to the vapor cell: 9
mm

Signal out 4-CH balanced PD Polar|z|ng Beam Colllmatlng

PM fiber for Lens
795 nm &
780 nm lasers A/2:780 nm
AJ4: 795 nm

filter: Pass 780 nm

Polarizer Diffractive optical element Polyimide Insulation



-

&N"2nd Generation Sensor Design




Collimation
Lens Mount

Detection Optical
Assembly

Input Optical
Assembly




Prototype Performance:
4 Channels
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Normalized Frequency Response
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Frequency (Hz) Frequency (Hz)

« Current sensitivity: 10-20 fT/Hz'2 over 5-200 Hz
« Limited by noise in the shield and technical laser noise

Ch1 Ch 2 Ch3 Ch4
DC Gain 19.5V/nT 18.0 V/nT 18.7 V/nT 19.7 VInT
3 dB Bandwidth 81 Hz 88 Hz 88 Hz 80 Hz




Magnetometer
Gradiometer
Photon Shot Noise
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Gradiometer: Channel 1 — Channel 3
Noise floor below 10 fT/Hz'2 from 5-100 Hz
Need to work on the technical noise sources




Sensor field maps

AM Transverse Horizontal AM Transverse Vertical

Source

(\5
I

SQUID Axial Magnetometer

SQUID planar gradiometer 1 SQUID planar gradiometer 2



AM Localization Performance
Similar to SQUID sensors
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AM & SQUID sensor array localization performance
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Senszor gap for SQUIDs 10 mm greater than for AMs
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| |
Angle -0.25 -0.15 0 0.15 0.25-0.25-0.15 0 0.15 0.25-0.25 -0.15 0 0.15 0.25-0.25-0.15 0 0.15 0.25

Each point is an average of the 4 source orientations at 1 sensor array position



Conclusion

» 18t generation 4-channel sensor
— <5 fT/HZ"? sensitivity

« Successfully measured MEG signals
using transverse fields and multiple
sensors

 Constructed our first 2"d generation
sensor

* 18 mm channel separation
« <5 fT/HZz'? sensitivity
* Three-layer shield design

* Work toward building up the 36-
channel array
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" Noise in the Shielded Room

Sensor 1, Veritcal
Sensor 1, Horizontal
Sensor 2, Veritcal
Sensor 2, Horizontal
Sensor 2, Gradient
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« Both sensors measure same noise spectra
» Vertical/Horizontal sensitivities now quite similar




Comparison of the Atomic
Magnetometer to the SQUIDs

Median Nerve Stimulation

Atcemic Magnetometer Elekta Magnetometers

368 stimuli ([ | 313 stimuli

0 100 200 200 Moo 0 100 200 300 400

Time {ms) Time (ms)
Stimulate Median Nerve, measure evoked response in somatosensory cortex

Cort Johnson, Peter D. D. Schwindt, and Michael Weisend,
Appl. Phys. Lett. 97, 243703 (2010)




” AM Localization Performance

vs Source Depth and Array Offset
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AM 72 chan arrays

%0
Source depth (mm)

AM 72 chan arrays

Source angle {rad)

Error proportional to d*(2-3)

Average of 20 mm & 14 mm sensor
spacing options, 20 source
locations, and 4 sensor gaps

Error indep. of source elevation
angle in this range, but convergence
rate decreases sharply at >0.25 rad



" AM Sensor module separation
4 =7 does not change localization error much

Fit error vs. Module Separation with Aht 36h chan array Fit error vs. Module Separation with Ahd 36v chan array
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gnetoencephalography (MEG)

» Detects magnetic fields produced by
neural currents in the brain.

— Non-invasive
— 100 fT signals, <100 Hz
* Sub-cm spatial; msec temporal resolution
— Functional MRI (poor temporal resolution)
— EEG (poor spatial resolution)
» Uses:
— Localize a pathology (epilepsy)
— Understand spatial/temporal brain function.
— Study psychological/neurological disorders
 Potential applications

— Study/monitor behavior in high stress
environments

— Augment human data processing
— Improved human-machine interfaces
— Diagnose traumatic brain injury/PTSD

electric —, magnetic
field intracellular

current -
: current
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Atomic Magnetometer Basics

Alkali Vapor Cell

a

/
Randomly oriented
atomic spins

Apply Small Magnetic Field

i

B O
Out of plane

Spins precess due to
magnetic field

Circular Optical pumping
(or linear™)
polarization

i

Pump

beam Spins align with the

pump beam *D. Budker, et al. Phys.
Rev. A 62, 043403 (2000).

Detect with probe beam
Probe beam

I

N
50

N |
Absorptive Polarization
Rotation
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*" Channel 1 Performance
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Magnetometer
Quadrature
Pump Blocked
Electronic
—— Photon Shot Noise
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Gradiometer:
Channel 1 — Channel 3

Magnetometer
Quadrature

Pump Blocked
Electronic

Photon Shot Noise
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