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Sampling may be the key to (@)=
process large data sets

Sizes of the modern data sets redefine the
landscape for algorithmic research.
* Single pass through the data may be a
luxury.
* In many applications the speed of data is the
challenge.
e Sampling/streaming algorithms can identify
general trends in the data.
* but not find needle in a haystack.
* The goal of sampling is to provide
e good estimations with error/confidence

Source: http://www.greenbookblog.org/wp-content/ bou ndS,
Uploads/2012/03/big-data.Jpg * by looking at a small portion of the data.
e Sampling is not an alternative to parallelism.
 They get along well together.
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- - Take home lesson

—

* If you need the counts of small
patterns on a large graph,
use sampling.
* |f you need a list of patterns, and
* if the output size is small,
enumerate.
* If not, the list should be an input
to another process, and let’s talk
about the full process.
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Triangles are critical for graph analysis

Interpreted in many different

ways in social sciences.
— ldentifier for bridges between
communities.

Closed wedge,

. . . Open wedge
— Likelihood to go against norms p g (i.e., triangle)

Applied to spam detection
Used to compare graphs Cusan Coti

Clustering Coefficient

& ‘ ¢ ca-CondMal

Proposed as a guide for community 0 TR .
structure.

Stated as a core feature
for graph models [Vivar&Banks11]

Avg. Clustering Coefficien
Avg. Clustering Coefficien

— Cornerstone for Block Two-level
Erdos-Renyi (BTER) model

Rich set of algorithmic results

Degree Degree

— Algorithms, runtime analysis,
streaming algorithms, MapReduce, ...
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= _Algorithms for important metrics: transﬂmty@ Fre
large graphs

3

D-C-E is a closed wedge -F-G is an open wedge

Enumeration: Find every wedge. Check if each is closed.
Transitivity = C = # closed wedges / # wedges
= 3*#triangles/ # wedges

Sampling: Sample a few wedges (uniformly). Check if each is closed.
C = # closed sampled wedges / # sampled wedges

Seshadhri, P., Kolda, SIAM Intl. Conf. Data Mining 2013, Best Research Paper award
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Wedge sampling to compute ()i
- & -

=R transitivity

@D\@/G) Open
Open
@D,

@D\@/@D Closed

 C=3T/W = fraction of closed wedges
* Consider list of all wedges, indexed with open/closed
* Pick a uniform random wedge. X = 1 if wedge is closed. Else X =0
e Xis Bernoulli random variable

and E[X] = fraction of closed wedges = C = 3T/W
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- Repeat, repeat, repeat

* Perform k independent experiments. Let Y = (1/k) 3. X,
— Y is fraction of closed wedges in sample
— E[Y] =C.Y converges to C as k grows

* [Chernoff-Hoeffding]: Pr|Y — 7| > 2] < ek
— k=¢?log (1/6). With prob > 1- §, estimate is accurate within €
— With 38K samples, error < 0.01 with prob >0.999
— Number of samples independent of graph size
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We do not need to () ..
generate a wedge list

W, — (dz>
v=\ 9

e But list of wedges not possible to generate. So how to get random
wedge?
* Pick vertex v with probability W /W
* Pick two uniform random neighbors of v to get wedge (u,v,w)
— This is a uniform random wedge

* So simply repeat this many times to get a set of wedges. Output
fraction of closed wedges as estimate for C
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" Wedge sampling is effective in practice
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Beyond 3 vertices: how about 4?

L I

(1) 3-star (ii) 3-path

1 0
0 1
0 0

0 0
(vi) 4-clique 0 0

0 0

(ii1) tailed-triangle

(iv) 4-cycle (v) chordal-4-cycle

1

(0
(0
(0

0
0

(

2
6

l
1
1

)

* Much richer set of (connected) patterns

* |nduced vs. Non-induced
— (Vanilla) subgraph: take subset of edges

— Induced subgraph: take subset of vertices, take all edges in them

— Let C, is induced count of pattern i
* Getting vanilla counts not hard
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-~ Exact counting is not scalable

e Past art does not scale either
— MCMC methods, color coding,

) 3-star (i1) 3-path (ii1) tailed-triangle graph Spa rSiﬁCation

— No provable methods,
[I EI % accuracies at best ~10%, often
need computer clusters

(iv) 4-cycle (v) chordal-4-cycle (vi) 4-clique — NO results for (Say) 1OOM edges

m_mmm

Web-Berk 600K 400B 2 hrs
Flickr 1M 15M 7T 100M 1008 25B 60 hrs
Orkut 3M 200M 10T 1T 70B 3B 19 hrs
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‘New 3-path sampling algorithm is ()&,
~ fast and accurate
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Sampling gives provable accurate results

@3-star ®@3-path Otailed-triangle @C4 ®C4+chord OK4
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Percent Error

e Algorithm outputs hard error bounds for any desired confidence
— “With confidence > 99.9%, the output is within 3% of true answer.”

 No assumption on the graph; probability is over the randomness of
the algorithm.



The method

L I

(1) 3-star (i1) 3-path (ii1) tailed-triangle

1 X

(iv) 4-cycle (v) chordal-4-cycle (vi) 4-clique

e Except for 3-stars, each pattern contains a 3-path

e Sample set of uniform random 3-path, check the
vertices to see what pattern is induced

— We do not need to generate a full list.
* Extrapolate these counts to get estimates
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- K - The big picture |
VO
<

Path
sampler

* Use pattern counts from samples to estimate true count

 Not hard to argue that our output is unbiased estimator of
true count

* No assumption on graph, probability over randomness of
algorithm

* How many samples needed to get accurate estimates?
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E A

Limit Limit Limit Limit Limit Limit Limit Limit Limit Limited
Mem Mem Mem Mem Mem Mem Mem Mem Mem Memory

= Data streams important for
situational awareness
= Streaming algorithms also
useful for large data sets
= Algorithmically
= See each edge only once

= Ejther take action or lose that
piece of information forever

16

Triangles so far: @
Graph seen so far:
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Real-world messiness

NUONIONININININ N

Real-world streams are multigraphs: edges can be repeated

= Consider communication network. Obvious repeats

There is no true “graph”. It depends on how you aggregate

= Different time intervals give different graphs

Standard approaches

There are no repeats. Assume graph is simple
Aggregate every edge seen. The “window” is all of history
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Drawbacks of ignoring repeats

ANRNRNANA NN NN

= Assumptions useful for algorithmic progress, but avoids real-
world complexities

= Algorithms cannot be deployed in “wild”

= Removing repeated edges requires extra pass over edges

= Assumption of no repeats is expensive to enforce

= Not clear how to store information of various time-windows
simultaneously
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Our results

ANRNRNANA NN NN

= Algorithm for approximating triangle counts and transitivity in
graph stream with repeated edges

= No preprocessing. Works with raw stream

= Maintain information on multiple time windows with same data
structures

" Provable bounds on accuracy, excellent empirical behavior

= Based on methods in [Jha-Seshadhri-Pinar13], but needs new
ideas to overcome issues



Algorithm Sketch
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Edge stream

Hashing based
sampling

(add if h(e) < a)

Edge pool SIS NN (N (S
Hash sampling again
(add if h(w) < B)
V

Wedge pool V V V V V

» 1 (0[O f[1|1]0O Part of triangle?




Clustering coefficient

Streaming algorithm is effective il@laborawﬂes
practice

‘Exact ® Streaming

Experiments on public data sets

Sandia
National

Multiplicity

-0.00%

Edge pool size: 20K; Wedges pool size is: 20K
— Pool sizes are independent of the graph size.

The estimates are accurate.
The variance is small.

Jha, Seshadhri, P. KDD 2013, Best Student Paper award

0 0.00% 0.01 0.015 0.0z

Error
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Case study: DBLP graph

2007 2008 2009 2010 2011 2012

—_—

= DBLP co-authorship graph: all paper records over 50 years gives
graph stream
= Naturally repeated edges. Colleagues work together for many papers
= Size =3600K, non-repeated edges = 254K
" For graph G[t:t+At], there is associated transitivity and triangle
count
= How does this vary with t and At?
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Triangle trends in DBLP graph

2002 2003 2004 2005 2006 2008 2009 2010 2011 2012
DBLP coauthorship network 5 10° DBLP coauthorship network
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= Size = 3600K, non-repeated edges = 254K
= Results obtained with storing 30K edges
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Triangle trends in Enron graph
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" Enron email network: stream size 1100K, non-repeated 300K
= Storage used = 8K
" Trends “opposite” to DBLP graph
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Streaming Algorithm Features
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DBLP window: [1992,2012]

Only two parameters a,

ol Ao
— No knowledge of graph Nl A
required 2 o2
Provable guarantee on =
expectation

-

Estimate |
True

— Provable variance bound
(though not useful in practice)

Space around 1% of total stream
Accuracy always within 5%

05

1.5

Space

2 2.5 3

x10°
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Conclusions and Future Work

If you need the counts of small
patterns on a large graph,
use sampling.

If you need a list of small patterns,
* if the output size is small, enumerate!

* If not, the list should be an input to another process, and let’s
talk about the full process.

Proposed the wedge sampling technique for triadic measures in
graphs

— Can compute various triadic measures
— Amenable to handling distributed data
— Extended to streaming analysis
Similar techniques can be used for larger patterns.
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Streaming algorlthm provides a (i)
running estimate
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007 T T T T T T T
;u,&%ﬂ\ 8 L T T T T T T
* Exact *ﬂeﬁg ~ ¥ Exact *
0.06f | X Run1 ;3?** d 7kl X Run1 |
Run2 9|2k*/\ Run2 .
N9V | 3? |
0.05 *,'P-X 6
X
K< €5 *
= >
£ 0.04 e 3 )
D X Q@ 4 S
é 0.03f A g %
= % |E 3 %
%
0.02} ¥ , £
0.01 % ; 4
7\ **
0 Rk N -
O RRERRRRERRRRES : SRRkl :
1960 1965 1970 1975 1980 1985 1990 1995 2000 1960 1965 1970 1975Tlm1§(§(%ar)1985 1990 1995 2000
Time(Year)

* Results on the patent citation network
— 3.8M vertices, 16.5M edges.
* The algorithm provides accurate running estimates.
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Next step: Streaming multigraphs

Many graphs are a stream of repeated edges. (Emails, data transfers, co-

authorship etc.)

Generalized our algorithm for multigraphs.

— Used random hashing to detect multiple instances.

— Devised an unbiasing technigue to avoid stream order sensitivity.

e aaabbbccc vs. abcabcabc
Processed the DBLP raw data
— |V]|=1.2M, |E|=5.1M,
9.0 repeated edges,
11.4M triangles transitivity= 0.174

— Estimate with 30K edges
and 30K wedges
11.3M triangles transitivity= 0.173

Jha, Seshadhri, P, arxiv 1310.7665

Estimated & Exact
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How about even bigger graphs?

Wedge sampling can be executed
when the data is distributed.

We proposed a Hadoop
implementation.

— Key to success: data movement is
minimal.

5 real-world networks

— Source: Laboratory for Web
Algorithms

— Largest: 132M nodes, 4.6B edges

Distributed Server: 32-Node Hadoop
Cluster

e 32 Intel 4-Core i7 930 2.8GHz CPU
* 32x12GB = 384GB memory

Count
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| Il amazon-2008

B ljournal-2008

- ___]hollywood-2011

| X twitter-2010
B .k-union

Nodes Edges WedgesTriangles
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Wedge Sampling for BIG Graphs

Timing Breakd
e 32-node Hadoop cluster results | ommeTese
using wedge sampl.mg to . 1500/ Coreintion —
compute degree wise clustering 00
coefficients 3000

— Logarithmic bins; 2000 samples 1200}
per bin

* Compare twitter times
— Sampling: 10 mins
on 32-node Hadoop cluster

— Enumeration: 483 mins
on 1636-node Hadoop cluster 600

e Suri & Vassilvitskii, 2011

— Enumeration: 180 mins 300l
on 32-core SGI, using 128GB RAM

* by Jon Berry, 2013

* No comparisons for uk-union due
to itS size amzn il hiwd twtr uk-un
Kolda, P., Plantenga, Seshadhri, Task, arXiv:1301.5886, 2013 to appear in SISC

=

y=0.33x+225

2000

Time (sec)

1000

(o}
o
o
o

5000 10000
Edges (millions)

Time (sec)




Sandia
National
Laboratories

Counting 4-vertex patterns

* Our sampling approach can be
generalized to count 4- vertex
patterns.

e Algorithm
— Count the number of 3-paths

— Sample 3-paths and count how
many of them other patterns

o———— 0

—> —> —>

o————— O

* Experiments show >1K speedups,
with <%1 error using 160K
samples.

i
|
N

EGERN

Jha, Seshadhri, P.,, coming soon
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Wedge sampling in a streaming woﬁ?j

Keep a random sample of
the edges using the reservoir

sampling. \ \ _______________________

Keep a random sample of the ‘
wedges generated by the Graph induced
edges in the edge reservoir. by the edge pool

Edge Reservoir

Track whether the wedges are
closed or not.

The clustering coefficient is w v ““““““““““““

* .
3*ratio of closed wedges. IsClosed
oI I ——

Wedge Reservoir

Jha, Seshadhri, P,, KDD 2013, Best Student Paper award
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Birthday paradox to the rescue

Edge reservoir

A E—

P
<

v

Wedge Reservoir

R —

A wedge is formed by two edge with the same birthday.
Birthday paradox: O(Vn) edges are sufficient to generate a wedge.
— 0O(kvn) edges will produce O(k?)wedges.
|dealized algorithm: Maintain a separate edge reservoir for each wedge
— Needs O(|S|Vn)storage for |S| samples.
— Has provable bounds; but not as effective in practice.
Practical algorithm: Maintain a single and slightly bigger edge pool
— Needs O(V(|S|n) storage

— Wedge samples are biased, but in practice so enough wedges are generated to unbias
the sample.

— Effective in practice
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Making up for wedges closed by@laborawﬂes
earlier edges

Each triangle comprises of 3
wedges.

In the original wedge
sampling, we were able to

15 ’fz
3
detect any wedge as closed.
In the streaming algorithm, VAR 1{ Ez
we can only detect 1 of the 3 - -

as closed.

Since wedges are selected
randomly, the expected
closure rate is 3* the closure
rate of the wedge pool.
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 C=3T/W = fraction of closed wedges
* Consider list of all wedges, indexed with open/closed
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Induced vs non-induced

L I

(1) 3-star

(ii) 3-path

(ii1) tailed-triangle

1 X

(iv) 4-cycle

(v) chordal-4-cycle

(vi) 4-clique
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[E—y

0
0
0
0
0

0

0
0
0
0

(Vanilla) subgraph: take subset of edges
* Induced subgraph: take subset of vertices, take all edges

in them

* Let C isinduced count of pattern i
— Getting vanilla counts not hard

1
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Past art does not scale either

L A

(1) 3-star (1) 3-path (111) tailed-triangle

1 A KX

(iv) 4-cycle (v) chordal-4-cycle (vi) 4-clique

MCMC methods, color coding, graph sparsification

No provable methods, accuracies at best ~10%,
often need computer clusters

Nothing tailored for 4 vertices
No results for (say) 100M edges



Sampling random 3-paths

First set for all edges, W, , = (d, —1)(d, — 1).
Pick edge e = (u,v) with probability prop. to W, ,
Pick uniform random neighbor of u and of v

f output is 3-path, guaranteed to be uniform
random




The devilish details

D0
S QQ

* Works, but (provable) accuracy is not great
* Design methods to reduce samples

* Can give provable bounds: “for s samples,
with 99.9% confidence, the true count is
within 1% of answer”
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What if we observe the data (i) i
as a stream of edges?

Many data analysis
data streams.
— Situational awareness requires

real time analysis.

Streaming algorithms are also Small Monitor
used to analyze large data sets storage
with limited memory.

— Multiple passes may be feasible.

Algorithmically
— We see each data point only once.
— We either take action, or forever hold our peace.
Not all problems are amenable to streaming analysis.
— We cannot find needle in a haystack
— But we can count frequent items, such as triangles

8/30/2014 Pinar - GraphEx14 42



