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About Solid State Lighting (SSL) 
Basis: III-Nitride (Al, Ga, In, N) Semiconductors

III-Nitride (AlGaInN) Properties

• Direct RT bandgaps: ~0.7-6.2 ev

• Solid alloy system (tunable bandgaps)

• High breakdown field, mobility, thermal 

conductivity, melting temperature

• Radiation resistant and chemically inert

• InGaN covers entire visible & bulk of solar 

spectrum (PV material?)

Nitronex GaN power transistor

• Used in LEDs, blue laser diodes, high power transistors, HEMTs

M. Schubert
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InGaN Quantum Dot (QD) Emitters

• Long wavelength visible emitters:
• Nanostructure (NWs, QDs) can incorporate more indium 
• High efficiency yellow, orange, and red emission
• RGB and RYGB emitters require high efficiency yellow to red emitters

• Visible QD diode lasers:
• Laser for lighting is gaining momentum
• Low threshold, high efficiency, better temperature performance
• Monodisperse QDs

Impact on device performance

As grown MOCVD
or MBE QDs have 
a very large size 
distribution

InGaN QDs with a 
very uniform 
distribution

Gain or PL 
spectrum

Monodisperse QD Distributions

InGaN QD laser:
• University of  Michigan
• Electrically injected
• 630 nm
• To = 236K

Frost et al., IEEE JQE,
49, 923 (2013).



Quantum confined structures: fabrication

1. Lithographical methods

Is difficult

2. S-K quantum dots
Strain-induced Stranski–Krastanov growth

?

Appl Phys A (2009) 96: 403–408

Random location
Broad size distribution

?



CdSe NPs in hexane

1.2 nm 

11.5 nm

3. Colloidal chemistries: simple and size-tunable 
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Cd/Se-ZnS core shell quantum dots

 Narrow size distribution
 Narrow PL peaks, ~50 nm above
 Passivation plays role

?   Always dependent on organic/inorganic coatings
?   No easy ways to integrate the dots into devices
?   No colloidal chemistry for InGaN dots

Quantum confined structures: fabrication



Eg’ > ɦc/λ

Eg’
InGaN thin film

Light absorption                      
PEC etching continues

Less light absorption           
PEC etching self-limiting

PEC etching

Eg < ɦc/λ

Eg
InGaN QDs

1. Photoelectrochemistry

2. Quantum size controlled nanofabrication

3. PEC Quantum dots characterization: AFM, TEM, PL

4. Conclusions
laser excitation

Contents

GaN substrate

Sapphire Sapphire

metal-organic vapor-
phase epitaxy (MOVPE)
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In0.13Ga0.87N

Laser linewidth
~ 1 nm



Photoelectrochemistry: a wide range of applications

Chemical fuels             Light                 Electricity 
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N-type semiconductor oxidation

Semiconductor process
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Fabrication of InGaN QDs via PEC etching

Quantum Size Control: Use size quantization to control QD size

big QD

2.7eV
pump

PEC etching
absorption

small QD

PEC etching stopped

2.7eV
pump

No absorption

Self-limiting PEC etch process:

• For QDs, band gap depends on size

• As etch proceeds, 
• QD size gets smaller, band gap goes up

• Etch terminated for Eg > Ephoton pump

• Self-terminating etch process

• QD size depends on PEC wavelength

• Extremely monodisperse QDs ?
G. Pellegrini, et al., Journal of Applied 
Physics 97, 073706 (2005).

Towards precision size control 



Self-terminated photoelectrochemical etching

Wavelength: 420 nm

50 mW

1 mW

2 mW

10 mW

20 mW

0.2 M H2SO4
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a

b

dc

Self-limited process
Light controlled
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MOCVD-grown InGaN QW samples

InGaN underlayer

Sapphire

n-GaN

InGaN QW

GaN cap

Uncapped singe InGaN QW

Capped singe InGaN QW

• Grown by MOCVD on sapphire substrates
• 3 to 20 nm InGaN quantum well (QW)

• No InGaN underlayer is used in this sample
• Uncapped single QW sample (14% In):

• Amenable to surface characterization of QDs
• TEM, AFM characterization
• Luminescence weaker than capped sample

• Grown by MOCVD on sapphire substrates
• 3 nm InGaN QW, 10 nm GaN cap

• InGaN underlayer (~2% In) used in this sample
• Capped single QW sample (14% In):

• AFM is not useful for capped samples
• Luminescence brighter than uncapped samples

• Etch is thought to proceed via pits, dislocations

Sapphire

n-GaN

InGaN QW
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Atomic Force Microscope (AFM) Measurements

PEC etch   = 445 nmPEC etch  = 420 nm

 = 445 nm

 = 420 nm

Uncapped InGaN QW • Samples etched for two hours at 420 nm and 445 nm
• Laser power density: ~ 3 mW/cm2

• High dot density: 1011/cm2

• Some big dots (10-20 nm) remain: due to dislocations?

• QD size depends on PEC etch wavelength

Sapphire

n-GaN

InGaN QW
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Transmission Electron Microscope (TEM) Images

Uncapped InGaN QW • High-angle annular dark-field (HAADF) TEM images
• Samples etched at 420 nm and 445 nm
• Energy dispersive x-ray mapping

• QDs on surface are InGaN

• Red = indium, green=gallium

• InGaN QDs are epitaxial to the underlying GaN
• No underlayer, no cap  PL is not very bright

20 nm

445 nm PEC etch

Sapphire

n-GaN

InGaN QW

445 nm PEC etch

420 nm445 nm445 nm
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Transmission Electron Microscope Images

Capped InGaN QW

InGaN underlayer

Sapphire

n-GaN

InGaN QW

GaN cap
• High-angle annular dark-field (HAADF) TEM images

• Sample etched at 420 nm

• EDX mapping shows that dots are InGaN

• InGaN QDs are epitaxial to the underlying GaN

• 2% InGaN underlayer + GaN cap  PL is much brighter

• GaN cap provides partial passivation

GaN cap

InGaN UL

InGaN QDBefore etch

InGaN QW



PEC etch of capped InGaN quantum wells
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PEC etch

420 nm laser
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Photoluminescence from fabricated InGaN QDs

As narrow as 6 nm FWHM is consistent with 
a narrowing of the QD size distribution

Capped InGaN QW

InGaN underlayer

Sapphire

n-GaN

InGaN QW

GaN cap

Photoluminescence (PL) data:
• 375 nm pump (ps pulsed)
• 10K PL data
• PL wavelength determined by 

PEC etch wavelength
• PL linewidth: 24 nm  6 nm
• Quantum size-controlled PEC 

etching works!
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Emission from single InGaN QDs

< 1 nm FWHM

Etched 
mesa
or
nanowire

InGaN
QW

InGaN
QD

PEC
etch

• Posts (150 – 200 nm) patterned with e-beam lithography

• Narrow PL emission (<1 nm FWHM) observed

• Fabricate InGaN QDs at deterministic locations

• InGaN QD single photon source

Capped InGaN QW

InGaN underlayer

Sapphire

n-GaN

InGaN QW

GaN cap

Deterministic locations
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Summary/Conclusions

 Demonstrated fabricated InGaN QDs using PEC etching

 AFM data indicates 1011 QDs per cm2

 TEM EDX mapping shows we have epitaxial InGaN QDs

 Quantum size-controlled etching of InGaN QDs

 QD size and emission  determined by PEC wavelength

 PL linewidth reduced from 35 nm to less than 6 nm

 Shows an improved QD size distribution

 Demonstrated emission from single InGaN QDs

 Working towards deterministic placement of InGaN QDs
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