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AM Can Produce Extreme Properties ) e,
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High Thermal Gradients Produce High
Residual Stresses
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316L Stainless Steel Powder Bed
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AM Materials Exhibit Higher Dislocation e
Density

Brown et al. 2017, Met Trans A

Table III. Microstructural Parameters Determined from DLPA

Sample T/C geometry Applied Strain Xa (nm) p x10' (1/m?) M
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o Can we predict the higher yield |
x1  caused by increased dislocation |1
] density? o

Smith et al. 2018, JOM
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Thermal Approach ) i,
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Solid Mechanics Approach e
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BCJ Material Model )

= Temperature and history-dependent viscoplastic internal state variable model
= Stress is dependent on damage ¢ and evolves according to

. _(E_ ¢ y
a=<E—1_¢>a+E(1—¢)(e—ep)

= Flow rule includes yield stress and internal state variables for hardening and damage

Je _ _ .
&, = fsinh™ (% — 1)

= Statistically stored dislocations are represented by isotropic hardening variable k

— — o kl kZ — .
K = Céssdsbﬂ(e)\/ Pssds Pssds = [L_ + I Ry (e)pssds] €p
s Lg

= The isotropic hardening variable k evolves in a hardening minus recovery form.

= Kg + (H(8) — Ra(0)K)é,

(Bammann et al. 1993, Brown and Bammann 2012) 8




Incorporating porosity as initial = ..

Void Growth

Pre-existing voids captured by void growth
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¢ = 3 (1—¢)™ sinh 2m+1 o,

T

EHT =10.00 kV WD =18.8 mm Signal A =SE2 Width = 670.9 g

Void Nucleation

Fine scale voids (< 1um) indicate nucleation
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*Fractography taken from 34 Sandia Fracture Challenge

EHT=1000kV  WD=188mm  Signal A= SE2 Wiclth = 57.08 pm 9
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LPBF High Throughput Dogbone Example

Process Structure Property Performance

behavior using as-
built properties,

Structural Model

Thermal and ‘
(Scan path, laser density, defects

Component
Initial dislocation ‘ Residual Stress, ‘

Higher yield,

power, laser speed) UTS residual stress, and
porosity

* Laser diameter = 120 um

» Laser Speed = 1400 mm/s

« Layer Thickness = 0.03 mm
 Laser Power =120 W

» Hatch Spacing = 60 um

« Material model calibrated to wrough




Thermal and Structural Results
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Significant Tensile and Compressive .
Residual Stresses Remain
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Model Captures Higher Yield but Over e
Predicts Stress
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 Model with no residual stress was also simulated, but results

were similar 1




Porosity Distribution is Directly Mapped @ =
to Mesh

et
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» Total Porosity: 2%
« Sample distribution taken from
3rd Sandia Fracture Challenge



Tensile Results with Porosity =,
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Future Work — Property Prediction @&

= |nitial yield prediction is high
= Refine material model at high

temperatures with near melt
Gleeble test data (Jeff Rodelas)

= Run more realizations of
porosity for UQ (only 1 shown)

= Simulate full dogbone
= Simulate heat treatments

= Predict microstructure for
crystal plasticity prediction

Johnson et al. 2017, Computational Mechanics
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Performance: Higher Yield Captured in 5 e
304L SS Upon Reloading
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k= [H(®) — Rq(O)K]é,
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Kappa

150 Kappa does not return
to zero on unload
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« Example: One element 304L SS loaded to 3 % strain, followed by unload and
reload
* Model accurately captures loading history with kappa ISV




SNL Modeling Work )
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Process Setting Effects on Properties (Laura )
Swiler)

Main Effects Plot for Density Main Effects Plot for Max Temp
Data Means Data Means
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Thermal Modeling in Aria 0}-=N

Volumetric
T Gaussian Laser
pCp—— + pCpv-VT1T'= -V-q+ Hy Heat Source
P ot —
Radiation and
Convection Conduction
q=co(T* —T,) q=—kVT
q = h(T — Tm) K Value
Element Status (W /(m % K))
Inactive LENS 0
Inactive Powder | Powder Property
Bed (<1)
Active Bulk Property
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Material Addition in Aria )

Pre-meshed Part Part During Process
Active
Surface
pdd \
Elements ahead of laser are  Convection and radiation are
inactive applied to active surface as it
evolves
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BCJ - Elasticity and Flow Rule UL

= Linear elasticity assumption
& = Ar(D) + 2D
= The Cauchy stress is convected with the elastic spin as
c;' =adW°oc+oW°
= The elastic stretching and spin tensors are written as:
D*=D-D”-D"

We=w-w?
= The plastic flow rule needed in the above equation is written as
D? = . ‘5‘_’(_1/(0) '
= f(@)sinh[—————] =

re) g

=  Where 0 is the temperature, Kk is the isotropic hardening variable, ¢ is the difference
between the deviatoric Cauchy stress ¢’ and the tensor variable o’
é:': o'—a'

= The temperature dependence of the shear modulus is written as:

- _0
H(0) = p,[1—( 7 )exp[6, (1 L

m m

= The temperature change due to plastic dissipation is:

g 0.9 (c-D")
pC 24

v




