

# Modeling the Life Cycle of High Throughput Tensile Specimens Produced by Laser Powder Bed Fusion: From Fabrication to Performance

Kyle Johnson, Kurtis Ford, Joe Bishop, John Emery, Bradley Jared, Jon Madison, Carl Jacques, and Burke Kernen

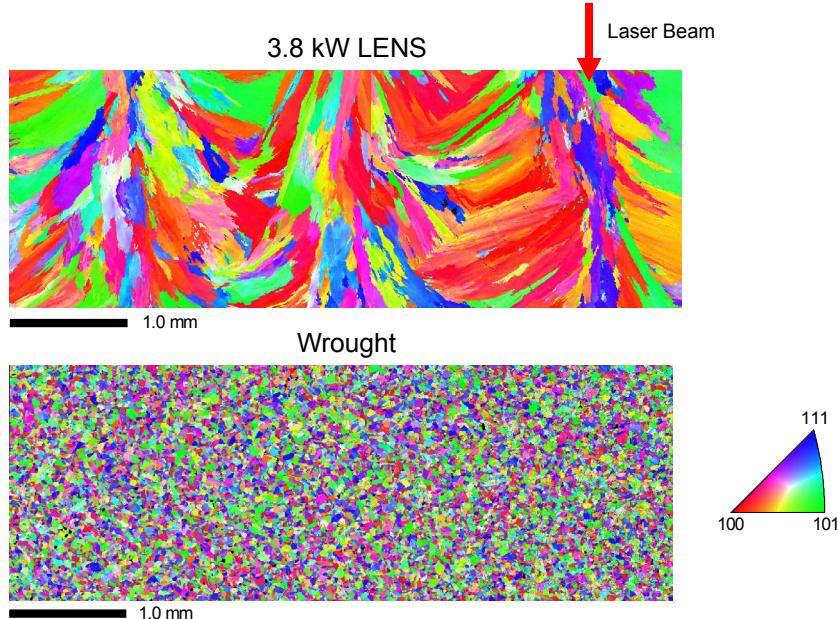


Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

# Outline

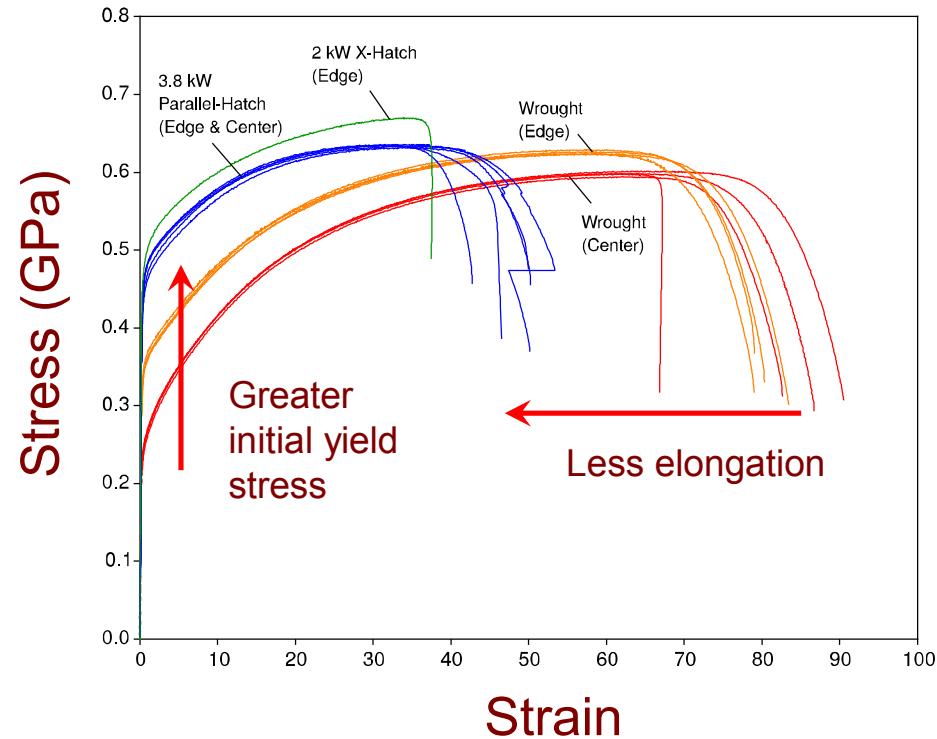
- Background
- Thermal Modeling and Solid Mechanics Modeling in Sierra
- Dogbone Gage Section Models
- Mechanical Property Predictions
- Future Work

# AM Can Produce Extreme Properties



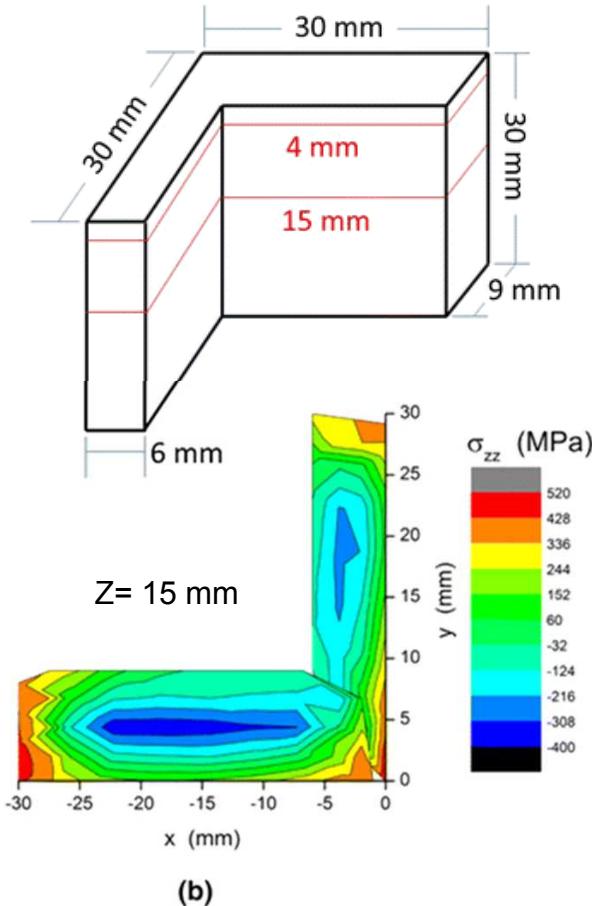
(J. Michael, SNL)

- 304L Stainless Steel



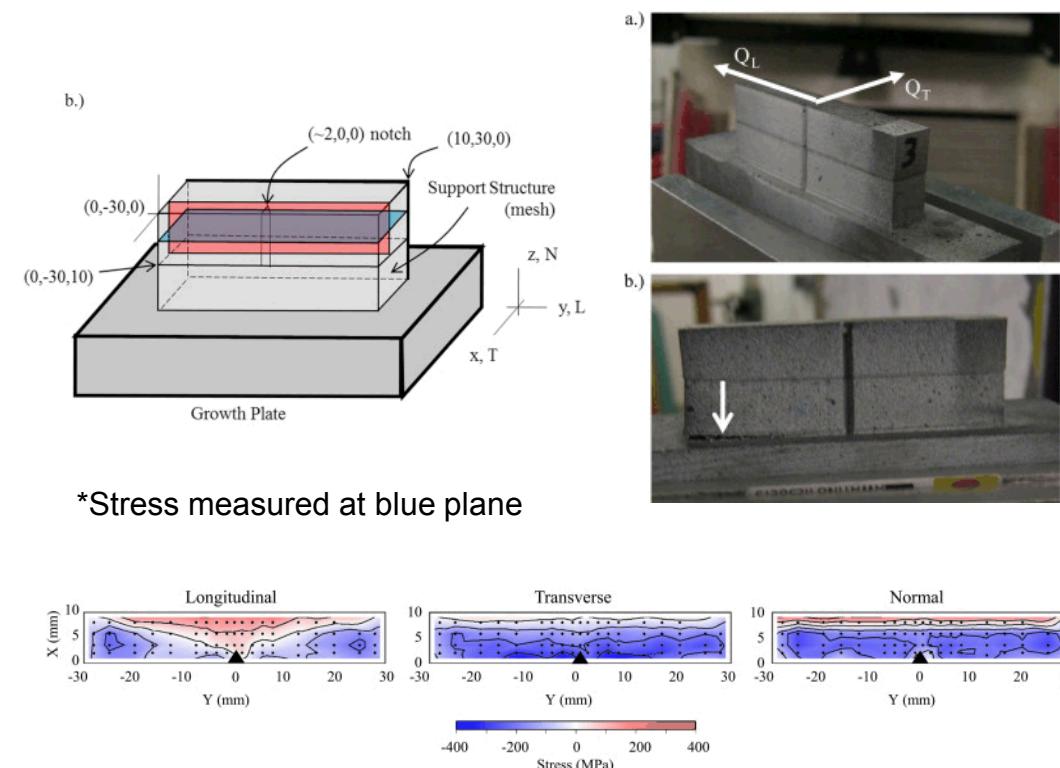
(J. Carroll, SNL)

# High Thermal Gradients Produce High Residual Stresses



(b)

316L Stainless Steel Powder Bed  
Wu *et al.* 2014 (LLNL, LANL)



17-4 Stainless Steel Powder Bed  
Brown *et al.* 2016 (LANL)

# AM Materials Exhibit Higher Dislocation Density

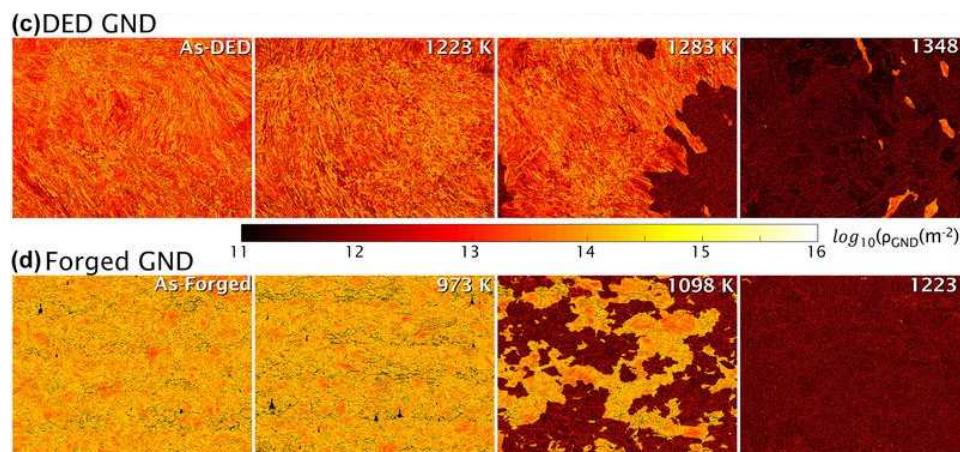
Brown *et al.* 2017, *Met Trans A*

Table III. Microstructural Parameters Determined from DLPA

| Sample | T/C geometry | Applied Strain | $X_A$ (nm)   | $\rho \times 10^{14}$ (1/m <sup>2</sup> ) | $M$  |
|--------|--------------|----------------|--------------|-------------------------------------------|------|
| W-U    | C            | 0              | Wrought 304L |                                           | 2.25 |
| W-U    | T            | 0              | Wrought 304L |                                           |      |
| P-U    | C            | 0              | Wrought 304L |                                           | 2.14 |
| P-U    | T            | 0              | Wrought 304L |                                           | 3.50 |
| X-U    | C            | 0              | LENS 304L    |                                           | 3.73 |
| X-U    | T            | 0              | LENS 304L    |                                           | 3.03 |
| W-C    |              |                |              |                                           | 1.86 |
| P-C    |              |                |              |                                           | 2.29 |
| X-C    |              |                |              |                                           | 1.49 |
| W-T    |              |                |              |                                           | 1.32 |
| P-T    |              |                |              |                                           | 1.61 |
| X-T    |              |                |              |                                           |      |
| W      |              |                |              |                                           |      |

Can we predict the higher yield caused by increased dislocation density?

Smith *et al.* 2018, *JOM*



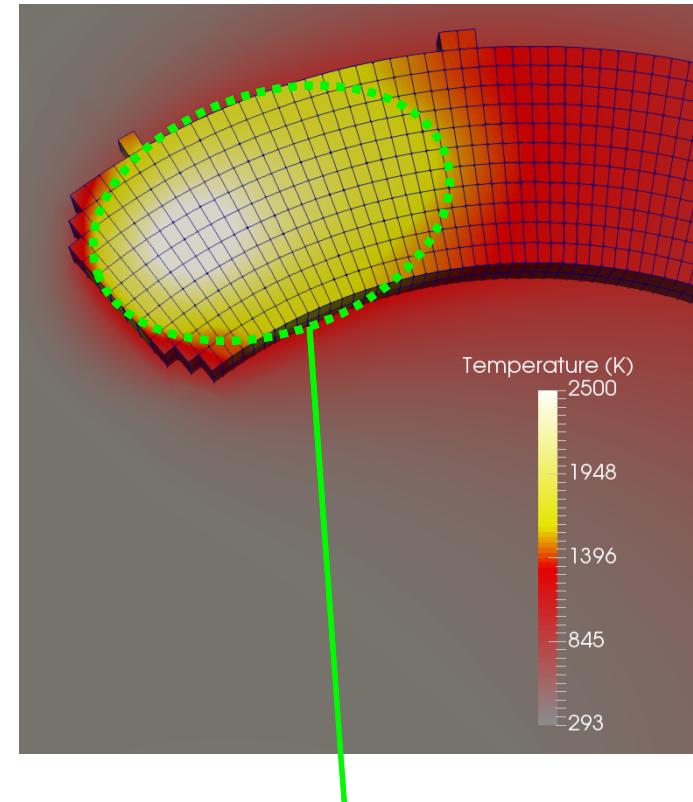
# Thermal Approach

Pre-meshed part is initialized with "inactive" elements. Baseplate elements are active.

Laser heat source is scanned according to input path

Elements are activated by a thermal conductivity increase once they reach melt temperature

Conduction, convection, and radiation are considered.



Approximate Melt Pool

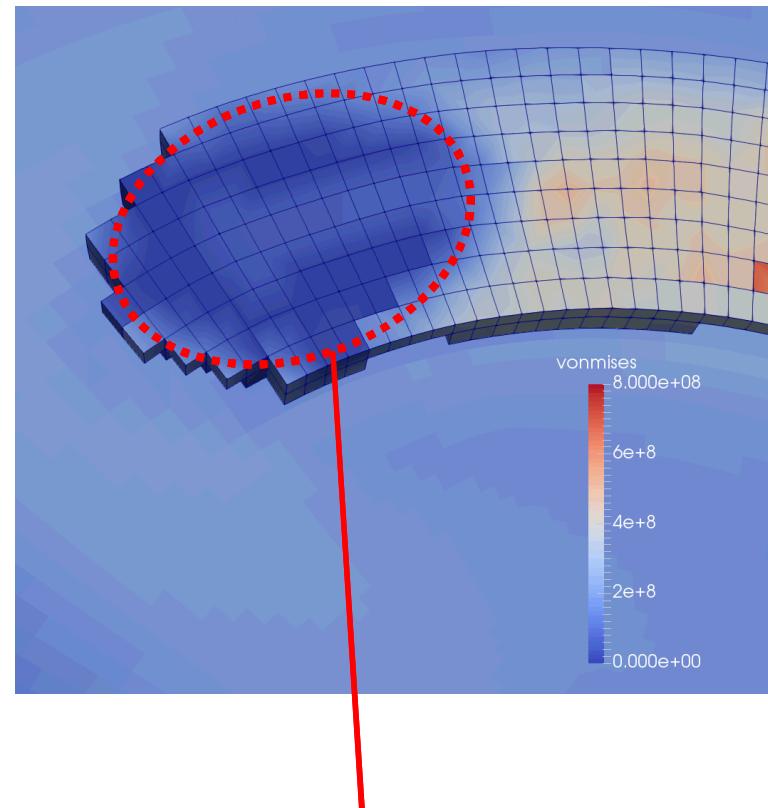
# Solid Mechanics Approach

Pre-meshed part is initialized with "inactive" elements. Baseplate elements are active.

Thermal output file is read at every time step to provide temperatures

Elements are activated using once they reach melt temperature

Residual stress builds as elements contract upon cooling and build thermal strain



Approximate Melt Pool (~zero stress)

# BCJ Material Model

- Temperature and history-dependent viscoplastic internal state variable model
- Stress is dependent on damage  $\phi$  and evolves according to

$$\dot{\sigma} = \left( \frac{\dot{E}}{E} - \frac{\dot{\phi}}{1 - \phi} \right) \sigma + E(1 - \phi)(\dot{\epsilon} - \dot{\epsilon}_p)$$

- Flow rule includes yield stress and internal state variables for hardening and damage

$$\dot{\epsilon}_p = f \sinh^n \left( \frac{\frac{\sigma_e}{1 - \phi} - \kappa}{Y} - 1 \right)$$

- Statistically stored dislocations are represented by isotropic hardening variable  $\kappa$

$$\bar{\kappa} = c_{\bar{\epsilon}_{ssds}} b \mu(\theta) \sqrt{\bar{\rho}_{ssds}} \quad \dot{\bar{\rho}}_{ssds} = \left[ \frac{k_1}{L_s} + \frac{k_2}{L_g} - R_d(\theta) \bar{\rho}_{ssds} \right] \dot{\epsilon}_p$$

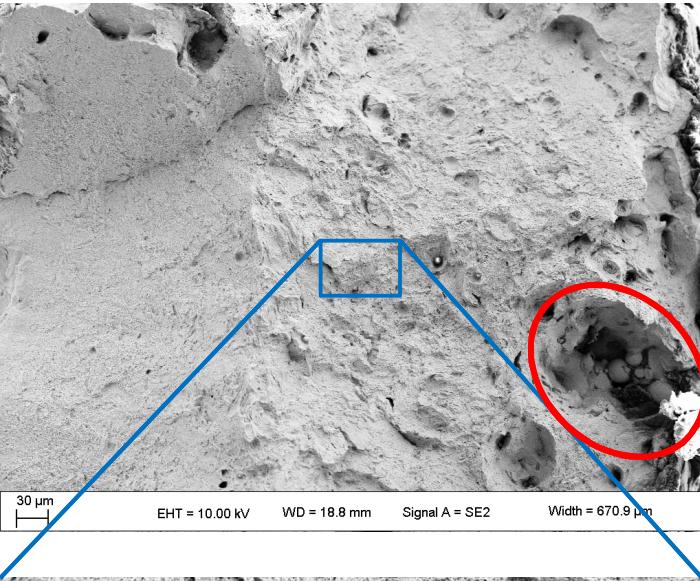
- The isotropic hardening variable  $\kappa$  evolves in a hardening minus recovery form.

$$\dot{\kappa} = \kappa \frac{\dot{\mu}}{\mu} + (H(\theta) - R_d(\theta) \kappa) \dot{\epsilon}_p$$

(Bammann *et al.* 1993, Brown and Bammann 2012)

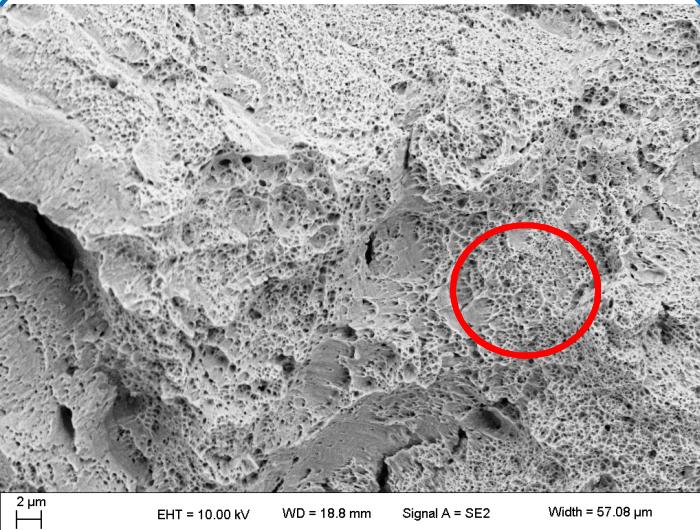
# Incorporating porosity as initial damage

## Void Growth



Pre-existing voids captured by void growth

$$\dot{\phi} = \sqrt{\frac{2}{3}} \dot{\epsilon}_p \frac{1 - (1 - \phi)^{m+1}}{(1 - \phi)^m} \sinh \left[ \frac{2(2m - 1)}{2m + 1} \frac{\langle p \rangle}{\sigma_e} \right]$$



## Void Nucleation

Fine scale voids ( $< 1\mu\text{m}$ ) indicate nucleation

$$\dot{\eta} = \eta \dot{\epsilon}_p \left( N_1 \left[ \frac{4}{27} - \frac{J_3^2}{J_2^3} \right] + N_2 \frac{J_3}{J_2^3} + N_3 \frac{\langle p \rangle}{\sigma_e} \right)$$

\*Fractography taken from 3<sup>rd</sup> Sandia Fracture Challenge

# LPBF High Throughput Dogbone Example

## Process

Thermal and Structural Model (Scan path, laser power, laser speed)



## Structure

Initial dislocation density, defects



## Property

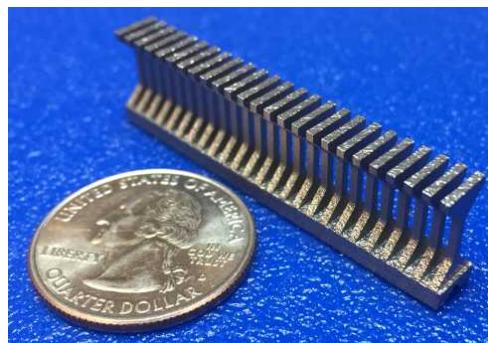
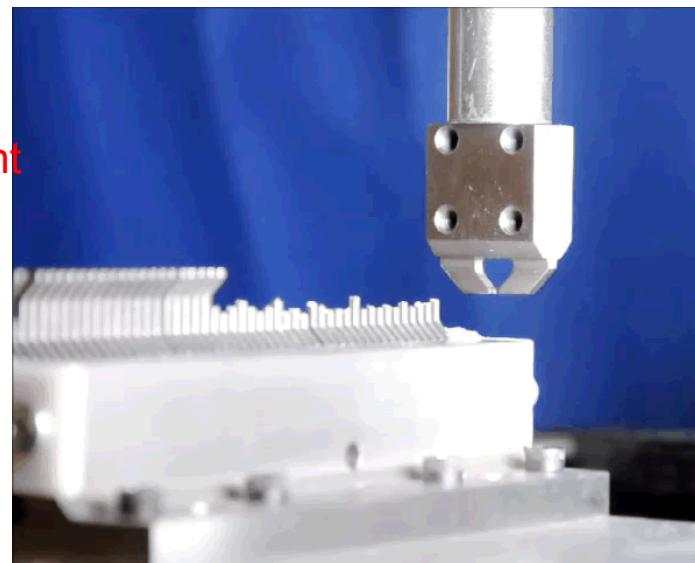
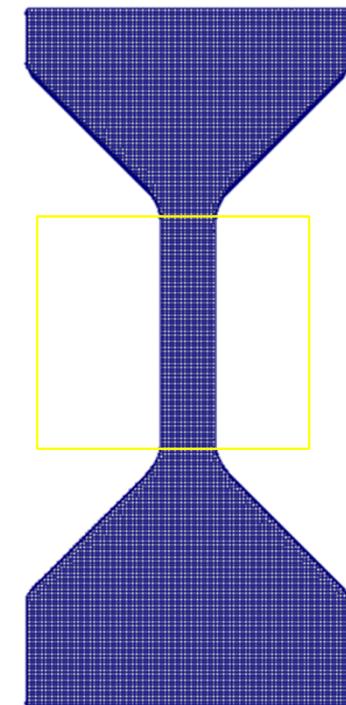
Residual Stress, Higher yield, UTS



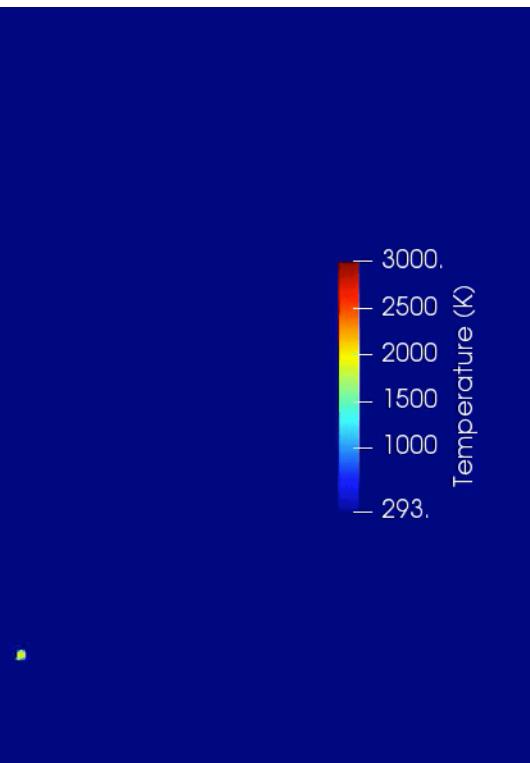
## Performance

Component behavior using as-built properties, residual stress, and porosity

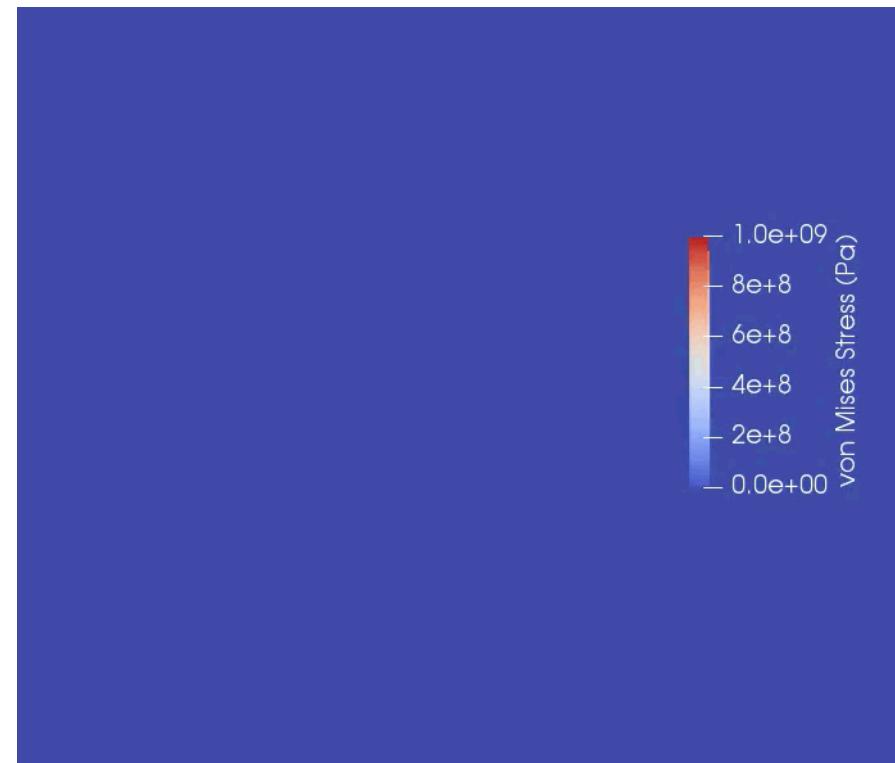
- Laser diameter = 120  $\mu\text{m}$
- Laser Speed = 1400 mm/s
- Layer Thickness = 0.03 mm
- Laser Power = 120 W
- Hatch Spacing = 60  $\mu\text{m}$
- **Material model calibrated to wrought data**



# Thermal and Structural Results



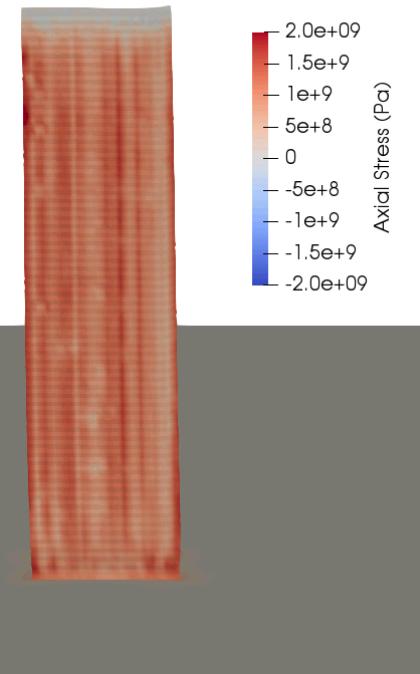
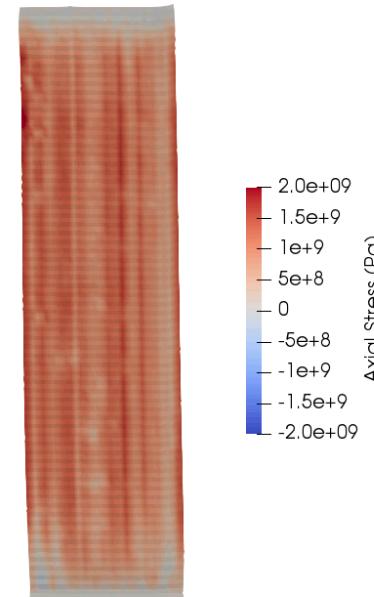
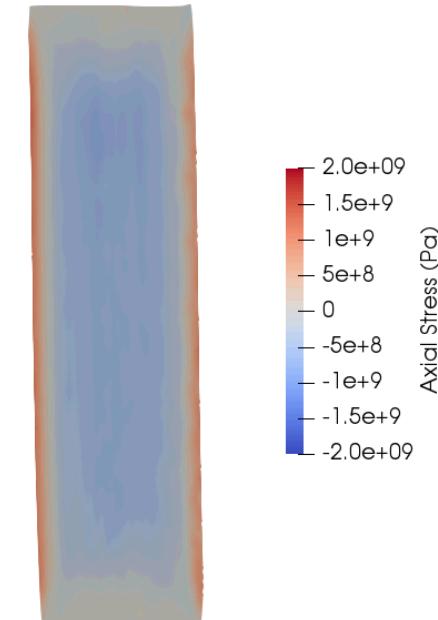
Thermal



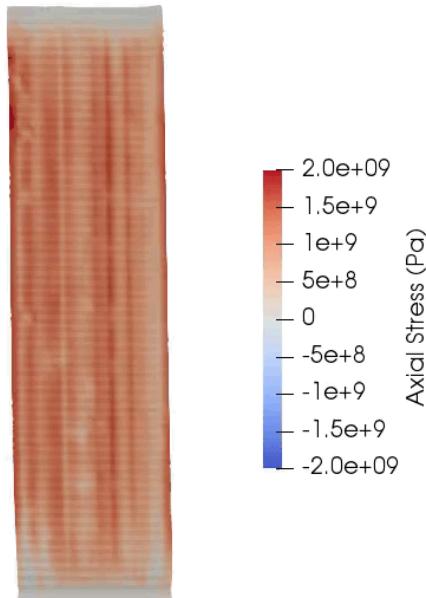
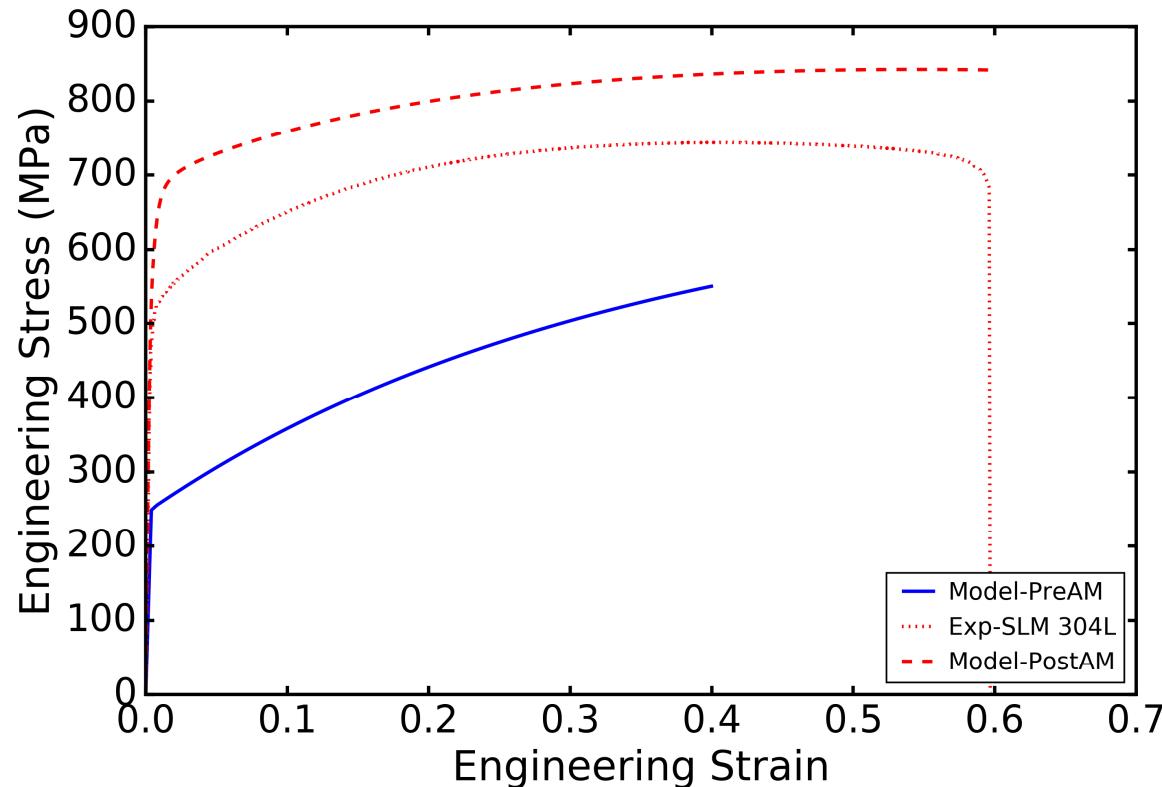
Structural

# Significant Tensile and Compressive Residual Stresses Remain

Mid-plane Cut  
View

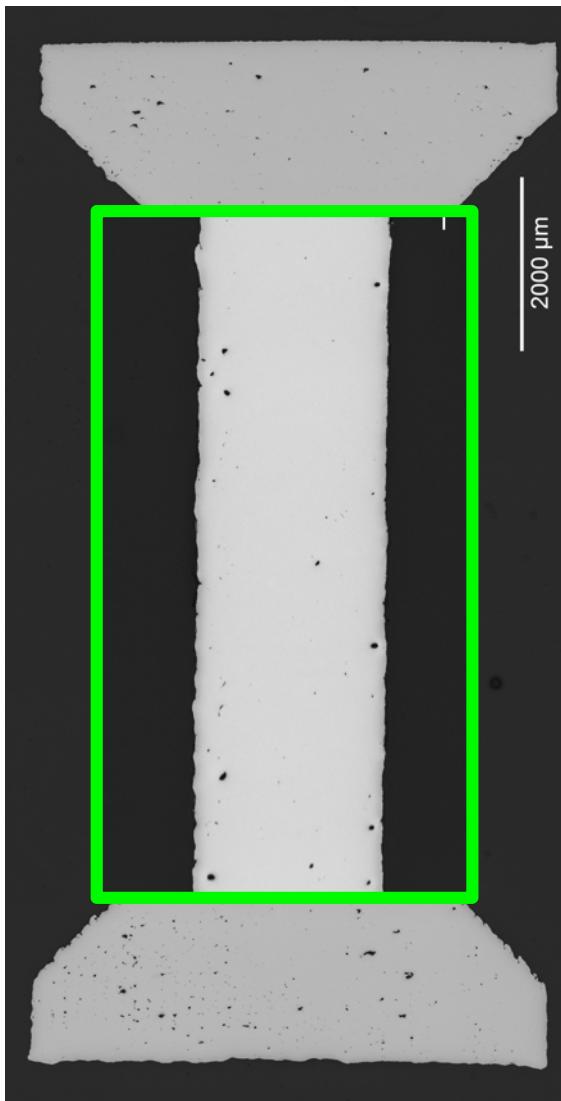
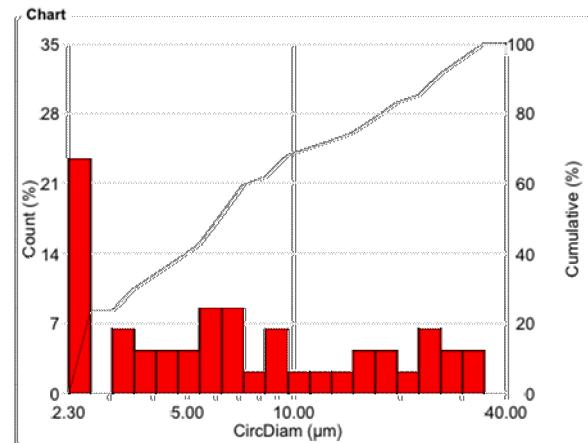


# Model Captures Higher Yield but Over Predicts Stress



- Model with no residual stress was also simulated, but results were similar

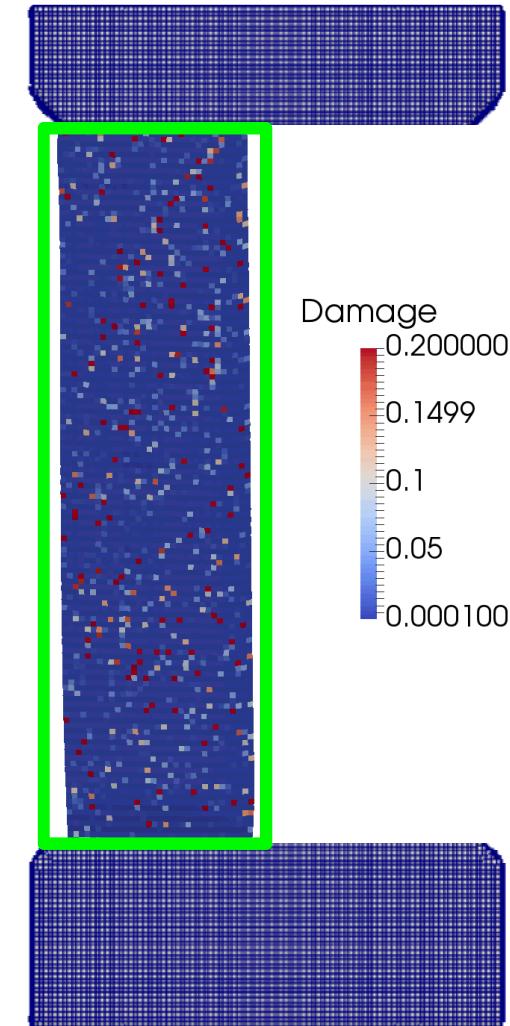
# Porosity Distribution is Directly Mapped to Mesh



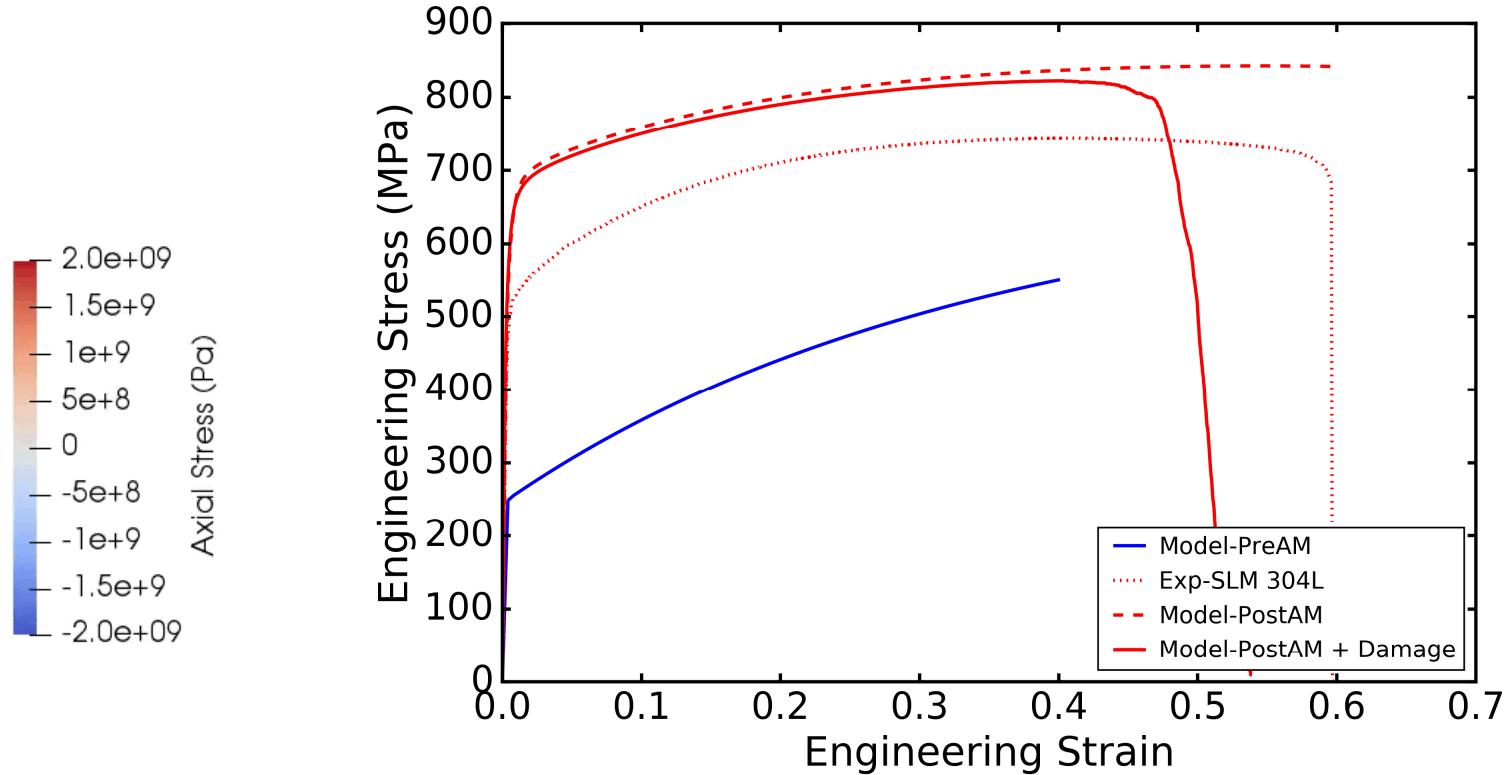
Porosity Mapping  
 $\text{X}, \text{y}, \text{z}, \text{r}_{\text{pore}}$



- Total Porosity: 2%
- Sample distribution taken from 3<sup>rd</sup> Sandia Fracture Challenge

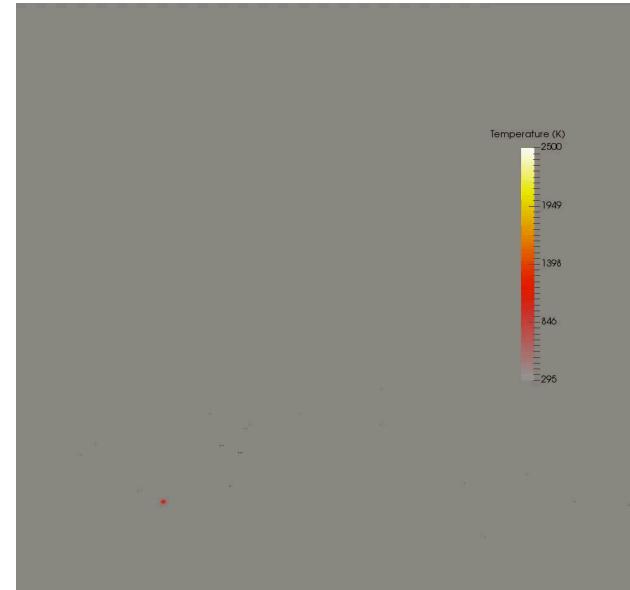


# Tensile Results with Porosity



# Future Work – Property Prediction

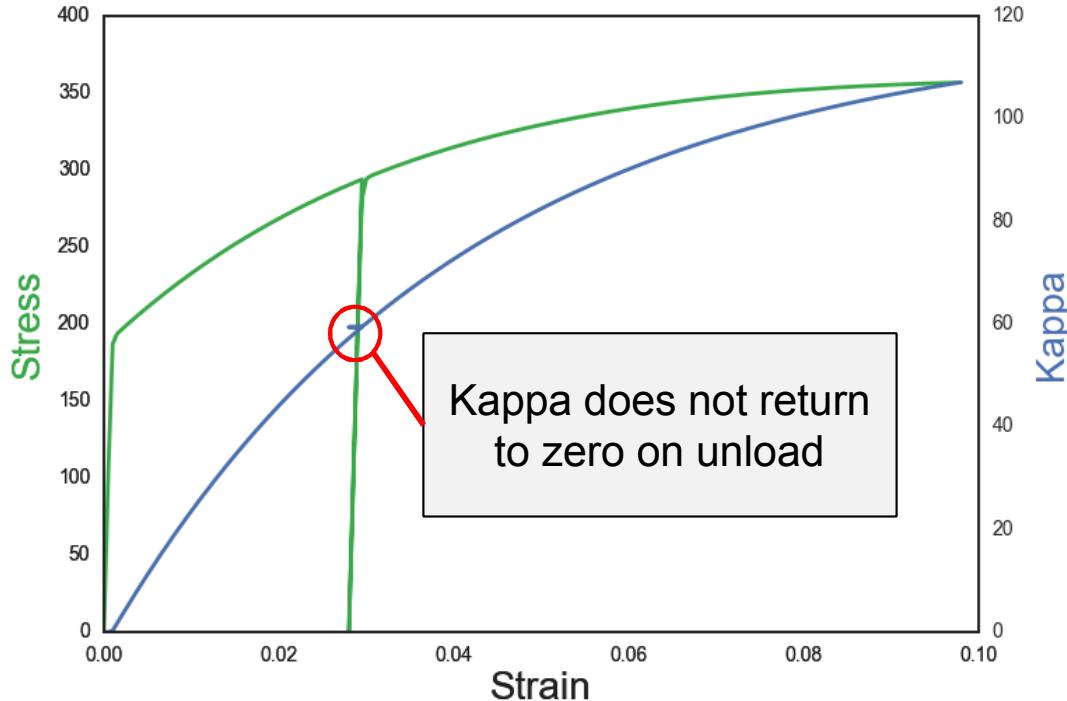
- Initial yield prediction is high
  - Refine material model at high temperatures with near melt Gleeble test data (Jeff Rodelas)
- Run more realizations of porosity for UQ (only 1 shown)
- Simulate full dogbone
- Simulate heat treatments
- Predict microstructure for crystal plasticity prediction



Johnson *et al.* 2017, *Computational Mechanics*

# Questions?

# Performance: Higher Yield Captured in 304L SS Upon Reloading



$$\dot{\kappa} = [H(\theta) - R_d(\theta)\kappa]\dot{\epsilon}_p$$

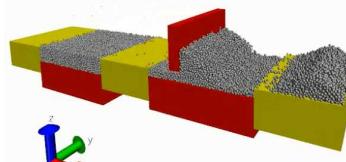
- Example: One element 304L SS loaded to 3 % strain, followed by unload and reload
- Model accurately captures loading history with kappa ISV

# SNL Modeling Work

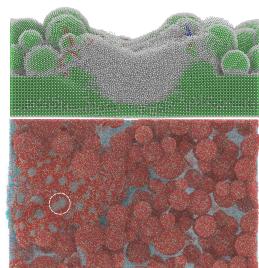
## Codes

LAMMPS, SPPARKS,  
Sierra/Aria,  
Sierra/Adagio

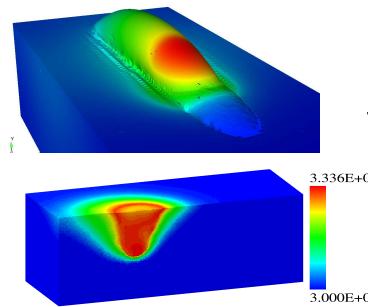
Powder Spreading  
Dan Bolintineanu



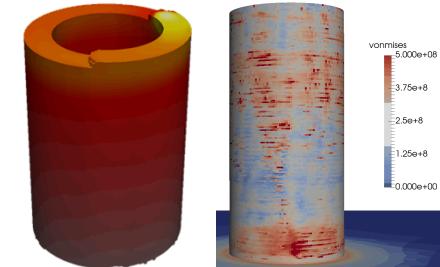
Powder Behavior  
Mark Wilson



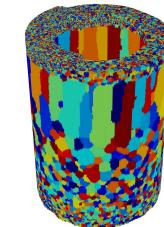
Mesoscale Thermal Behavior  
Mario Martinez & Brad Trembacki



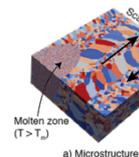
Part Scale Thermal & Solid Mechanics  
Kyle Johnson, Kurtis Ford, Mike Stender,  
Lauren Beghini & Joe Bishop



Part Scale Microstructure  
Theron Rodgers



Mesoscale Texture/Solid Mechanics/CX  
Judy Brown, Theron Rodgers and Kurtis Ford



$10^{-6}$

$10^{-3}$

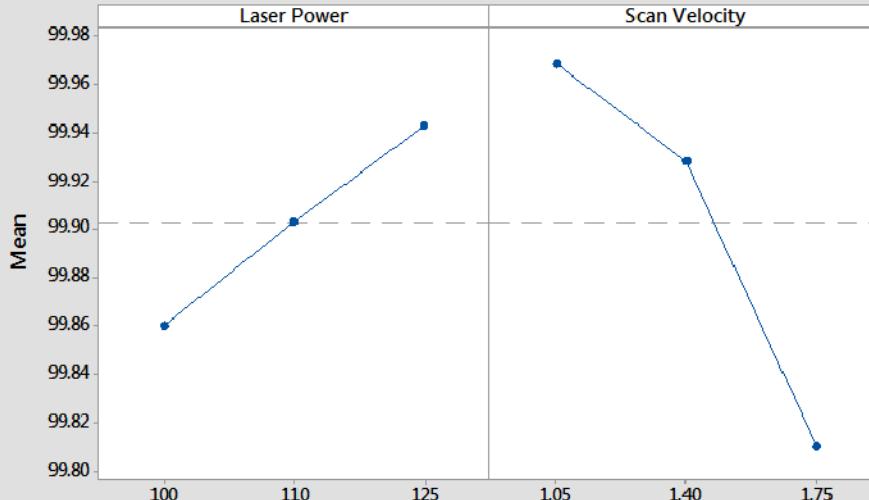
Length Scale (m)

1

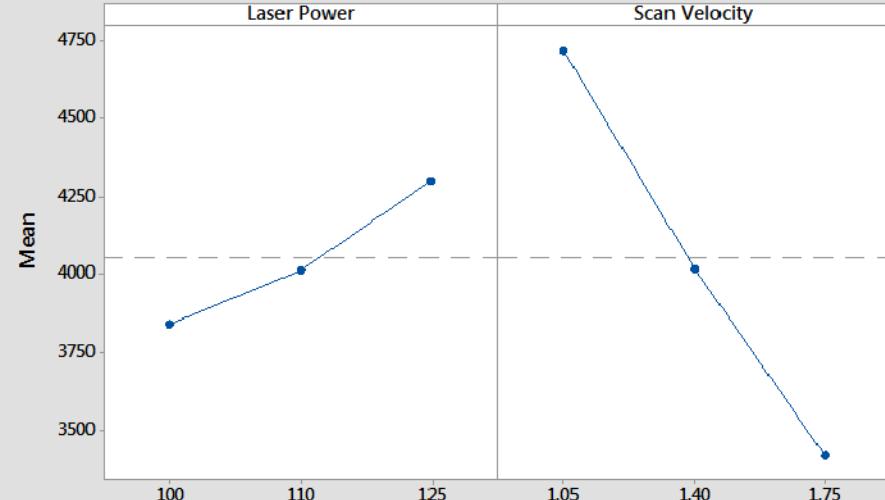
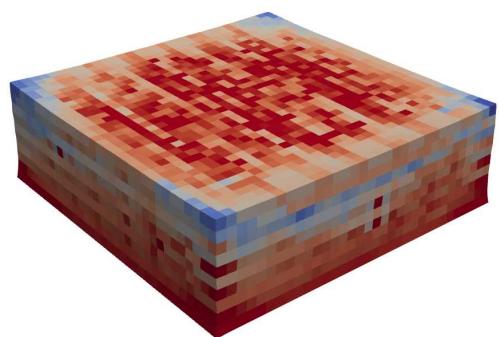
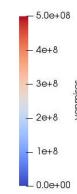
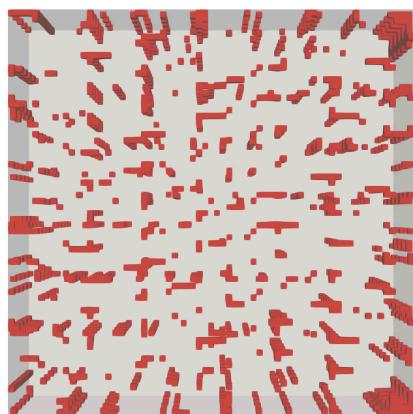
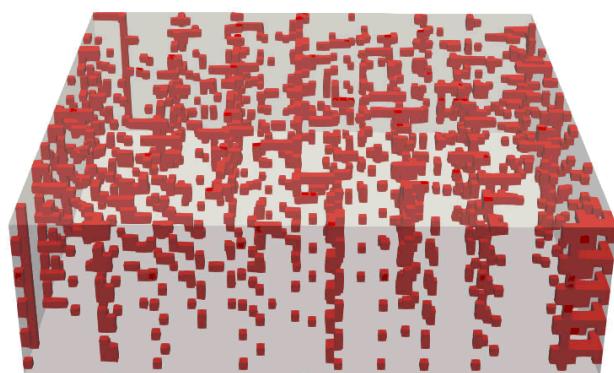
20

# Process Setting Effects on Properties (Laura Swiler)

Main Effects Plot for Density  
Data Means



Main Effects Plot for Max Temp  
Data Means



# Thermal Modeling in Aria

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p \mathbf{v} \cdot \nabla T = -\nabla \cdot \mathbf{q} + H_V$$

## Radiation and Convection

$$\mathbf{q} = \varepsilon \sigma (T^4 - T_r^4)$$

$$\mathbf{q} = h(T - T_\infty)$$

## Conduction

$$\mathbf{q} = -k \nabla T$$

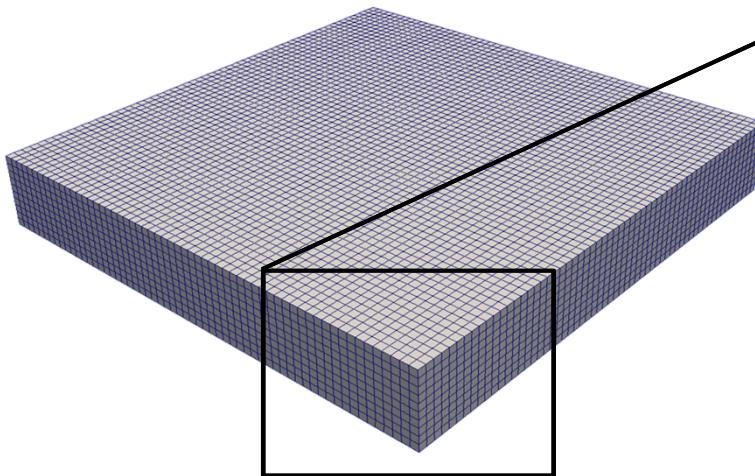
| Element Status      | K Value<br>(W/(m * K)) |
|---------------------|------------------------|
| Inactive LENS       | 0                      |
| Inactive Powder Bed | Powder Property (< 1)  |
| Active              | Bulk Property          |

## Volumetric Gaussian Laser Heat Source

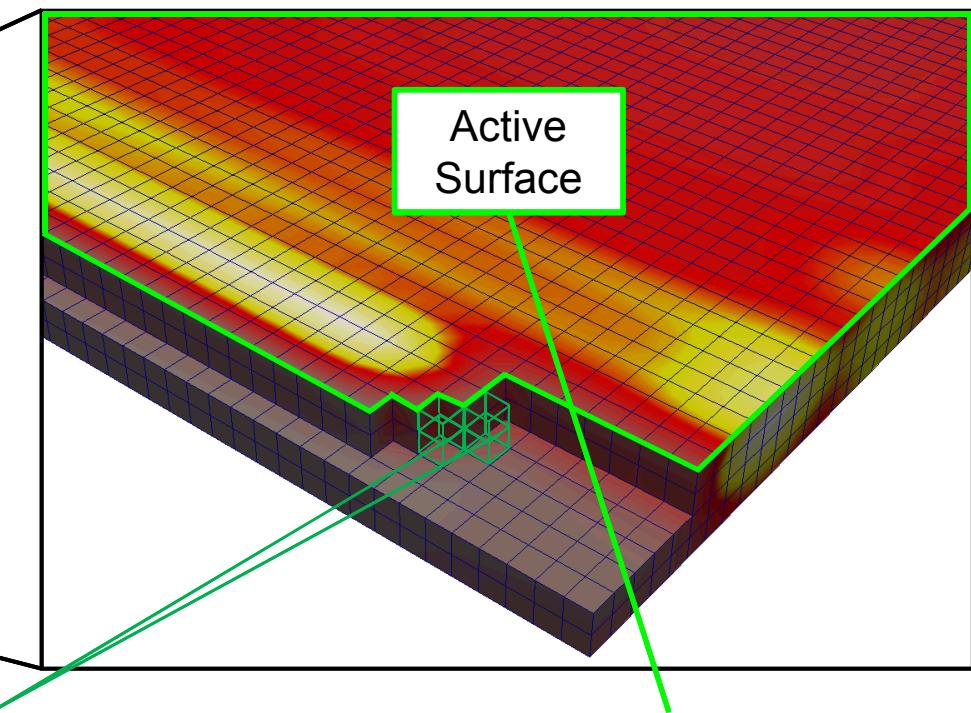
```
begin laser heating
Activation Temperature = 1698
power = 2000
beam diameter = 4.2
efficiency = 0.4
path function = path
depth direction = -z
distribution = gaussian
source type = activation_hemisphere
spatial influence factor = 1.2
add volume block_40
end
```

# Material Addition in Aria

Pre-meshed Part



Part During Process



Elements ahead of laser are  
inactive

Convection and radiation are  
applied to active surface as it  
evolves

# BCJ - Elasticity and Flow Rule

- Linear elasticity assumption

$$\overset{o}{\sigma} = \lambda \text{tr}(D^e) \mathbf{1} + 2\mu D^e$$

- The Cauchy stress is convected with the elastic spin as

$$\overset{o}{\sigma} = \overset{o}{\alpha} - W^e \sigma + \sigma W^e$$

- The elastic stretching and spin tensors are written as:

$$D^e = D - D^p - D^{th}$$

$$W^e = W - W^p$$

- The plastic flow rule needed in the above equation is written as

$$D^p = f(\theta) \sinh\left[\frac{|\xi| - \kappa - Y(\theta)}{V(\theta)}\right] \frac{\xi'}{|\xi'|}$$

- Where  $\theta$  is the temperature,  $\kappa$  is the isotropic hardening variable,  $\xi$  is the difference between the deviatoric Cauchy stress  $\sigma'$  and the tensor variable  $\alpha'$

$$\xi' = \sigma' - \alpha'$$

- The temperature dependence of the shear modulus is written as:

$$\mu(\theta) = \mu_0 \left[ 1 - \left( \frac{\theta}{\theta_m} \right) \exp\left[\theta_c \left( 1 - \frac{\theta}{\theta_m} \right)\right] \right]$$

- The temperature change due to plastic dissipation is:

$$\dot{\theta} = \frac{0.9}{\rho C_v} (\sigma \cdot D^p)$$