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Abstract: The image classification accuracy of a TaOx ReRAM based neuromorphic computing
accelerator is evaluated while intentionally inducing displacement damage to the devices. An effect on
classification accuracy only occurred after ~5x10%° vacancies were produced.
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I. Introduction

Resistive Random Access Memory (ReRAM) is one of the leading candidates of beyond CMOS non-
volatile memory technologies. A typical ReRAM structure consists of two metal terminals sandwiching a
substoichiometric metal oxide layer which is dielectric in the as-deposited state. A typical device is
diagramed in the inset of Fig. 1. A positive bias applied to the top electrodes can induce a soft breakdown
of the dielectric material in a process known as forming. A negative bias applied to the top electrode can
increase the resistance of the device in a process known as Reset which places the device in the High
Resistance State (HRS). A subsequent positive can decrease the resistance of the device again in a process
known as Set which places the device in the Low Resistance State (LRS). The current-voltage (I/V)
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Figure 1. Current Voltage (I-V) characteristics of a ReRAM device. Left: 1-V characteristic of device after
fabrication and (Inset) diagram of device stack. Middle: 1-V characteristics of soft breakdown process known as
Forming. Right: Switching the device from high to low resistance and back again using Set and Reset operations.

characteristics of these three processes are shown in Fig. 1.

In addition to memory, it has been suggested that ReRAM may be used for training deep networks [1],
[2]. Deep learning is a pattern recognition algorithm that is capable of outperforming traditional machine
learning techniques in image recognition, autonomous vehicle, and data science applications. Training deep

networks is computationally intensive, and difficult to implement in
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Furthermore, a neural accelerator based on analog ReRAM may be accurate even under irradiation. Initial
radiation studies for tantalum [4, 5], titanium [6, 7], and hafnium [8-10] oxide based ReRAM devices have
demonstrated promising results. Previously, TaOx ReRAM showed gradual resistance degradation only at
high fluences of Si and Ta ions due to additional oxygen vacancies introduced by ion displacement damage
to the switching region [4, 5] [11-13]. In the following, we investigate the effects of radiation on the
classification accuracy of an analog ReRAM training accelerator for the first time. Results show that analog
crosshars are resilient to radiation induced noise expected in space applications.




I1. Experimental Details

TaOx based ReRAM devices were fabricated in the Sandia National Laboratories’ Silicon Microfab
facility on 6” wafers. The switching stack composed of TiN-TaOx-Ta-TiN layers is deposited using reactive
sputtering, using a feedback technique described in [14]. The reduced TaOy layer was 15 nm thick and the
Ta layer was 15 nm thick, and the active region had 1.0 pm X 1.0 um lateral dimensions. All measurements
were made on a Cascade Microtech manual probe station with an Agilent B1500A Semiconductor
Parameter Analyzer mainframe equipped with a B1530 Waveform Generator Fast Measurement Unit. GGB
Industries Picoprobe model 40A-GS-250 were employed. The devices were irradiated using the nuclear
microbeam on Sandia National Laboratories’ Tandem particle accelerator. A 2.5 MeV Si ion broad beam
was directed at the device array and measurements were made ex-situ. Results were collected in a lookup
table for processing in CrossSim, the Sandia National Laboratories’ open sourced platform for determining
a device’s applicability to neuromorphic computing [15].

I11. Results
Devices were formed using a standard I/V sweep as seen in Fig. 1 but with a maximum voltage of 3V and
a 5 uA compliance. A series of 20 SET and RESET cycles were performed using an analog characterization

scheme as shown in Fig. 3. The device was then irradiated with 2: Si ions to a fluence of 1x10%°
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Figure 3: Operation of a TaOx ReRAM device to simulate neural network training. Left: diagram of the programming
pulses used to program the device. First, a measurement pulse is applied to the device, with a measurement during
the peak of the pulse, then a voltage update is applied to the device which changes the device conductance. This
programming pulse is applied 1000 times for SET and 1000 times for RESET with opposite polarity. Middle:
example of one of the devices in the study during analog operation. Right: operation of the same device with ion
shots every 40,000 updates. Note that there is a subtle change in the analog conductivity response after the 104
fluence.
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immediately following irradiation.
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Figure 5: SRIM calculations for displacement and ionization for the TaOy devices under 2.5 MeV Si ion irradiation.
Left: vacancy production vs. depth. Total vacancy production in the TaOx film is 5.2x10% tantalum vacancies and
5.7x10%° oxygen vacancies. Right: lonization vs. depth. The average ionization in the TaOx layer given by SRIM
calculations, is 7.5 eV/ion/A. This corresponds to 208 MRad for 1x10% ions / cm?.

or a middle resistance state. Previous results have indicated that these devices are highly radiation tolerant
[4,5] [11-13]. These devices have a thicker set of metals both above and below the switching region than
those devices previously tested.

Calculations using the Stopping and Range of lons in Matter (SRIM) application [17] estimate that the
vacancy production in the active region of the device to be 5.2x10%° tantalum vacancies and 5.7x10%° oxygen
vacancies. A plot of the vacancy distribution with respect to depth is given in Fig. 5. These calculations are
only an estimate, compound densities were calculated based on stoichiometry, and SRIM default
displacement threshold energies were used. The average ionization in the TaOx layer given by SRIM
calculations, is 7.5 eV/ion/A, which corresponds to 208 MRad for 1x10% ions / cm?. A plot of the average
ionization with respect to depth is given in Fig. 5. The exceptionally high radiation tolerance is likely due
to the small volume of the critical area which can be disrupted within the TaOx layer. While there are some
unknown aspects to the conductance switching mechanism in these devices, it has been demonstrated that
conductance switching occurs within a nanoscale tantalum rich filament which is created in the forming
process [12]. The switch from LRS to HRS by recombination of some of the Ta and oxygen ions is
hypothesized to not entire length of this filament during RESET. The resistance of the device will only
change if damage occurs within a small critical portion of the filament, which is already nanoscale in all
three dimensions [12].
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Figure 6: Accuracy of training on devices exposed to radiation. Left: Image recognition accuracy after each training
update. Right: Accuracy after training for three devices taken from the maximum classification accuracy of all
epochs.




Sandia’s CrossSim code was used to evaluate the effect of radiation on training on an analog ReRAM
crosshar [14], following the procedure in [2]. CrossSim takes a statistical device conductance dataset (Fig.
3) and converts it into a lookup table. It uses this data to simulate the behavior of the backpropagation of
error neural algorithm training network weights based on analog ReRAM cells. A standardized dataset of
handwritten digit images known as MNIST, was used to train the network [18]. CrossSim created a dataset
from the cycles following each shot and was used to simulate a plot of classification accuracy (correctly
identifying the handwritten digit) versus the neural network iteration (epoch) for a sample device (Fig. 6).
While the device largely continues to switch after the shot with 10 ions / cm? fluence, subtle changes to
the analog characteristics result in a somewhat lower accuracy after training than in the non-irradiated
device. After a large dose of radiation, the neural network would also need to be retrained, but the fact that
it can be trained online again is an advantage in continuous learning applications. The very high fluence
levels required to impact the accuracy after training of a neuromorphic accelerator based on TaOx RRAM
devices implies applicability of this technology to embedded systems in radiation environments, such as
spacecraft environments.

The full paper will include additional measurements which have been already preformed on three similar
devices with in-line 4 kohm resistors, as well as three control samples which were exposed to a similar
environment during tests, sans radiation. Data from three devices of each sample type held in the low
resistance state during irradiation, and a TID test consisting of three devices of each type in *°Co y-ray
exposure which has already been performed will be included. Furthermore, the classification accuracy
following training for these devices will be evaluated with additional training datasets.

V. Summary

The effect of displacement damage on neural network accuracy after training on an analog-crossbar based
on TaOx ReRAM array is investigated. It is found that a neural network training accelerator based on this
technology is robust to ion displacement damage, requiring a shot of 2.5 MeV Si ions with fluence of 10
ions / cm? to show a significant effect on the classification accuracy after training. At this dose, the device
conductance is found to shift. The devices were still functionally switching, and although subtle changes to
their analog conductance response were observed, neural training was still possible. SRIM calculations
confirm that displacement damage is occurring in the oxide. It appears that ReRAM may be more robust to
displacement damage when used as an analog neural network weight than as a digital memory, due to the
inherent fault tolerance of these algorithms. This study gives a promising direction for embedded pattern
recognition systems for space applications.
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