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Abstract: The image classification accuracy of a TaOx ReRAM based neuromorphic computing 

accelerator is evaluated while intentionally inducing displacement damage to the devices. An effect on 

classification accuracy only occurred after ~5x1020 vacancies were produced. 
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 I. Introduction 

 Resistive Random Access Memory (ReRAM) is one of the leading candidates of beyond CMOS non-

volatile memory technologies. A typical ReRAM structure consists of two metal terminals sandwiching a 

substoichiometric metal oxide layer which is dielectric in the as-deposited state. A typical device is 

diagramed in the inset of Fig. 1. A positive bias applied to the top electrodes can induce a soft breakdown 

of the dielectric material in a process known as forming. A negative bias applied to the top electrode can 

increase the resistance of the device in a process known as Reset which places the device in the High 

Resistance State (HRS). A subsequent positive can decrease the resistance of the device again in a process 

known as Set which places the device in the Low Resistance State (LRS). The current-voltage (I/V) 

characteristics of these three processes are shown in Fig. 1. 

In addition to memory, it has been suggested that ReRAM may be used for training deep networks [1], 

[2]. Deep learning is a pattern recognition algorithm that is capable of outperforming traditional machine 

learning techniques in image recognition, autonomous vehicle, and data science applications. Training deep 

networks is computationally intensive, and difficult to implement in 

portable, embedded systems (e.g. spacecraft). Recent analysis has 

demonstrated that a special-purpose accelerator application specific 

integrated circuit (ASIC) based on analog ReRAM crossbars can 

improve the performance per watt by about two orders of magnitude 

over a digital system – potentially enabling real-time training on 

embedded systems [2]. The performance increase is obtained by 

carrying out a vector matrix multiply and weight update in one parallel 

step, the two most computationally intensive steps in deep network 

training [3]. An analog electronic vector matrix multiply is diagramed 

in Fig. 2. By applying bias to the left side of the crossbar, Kirkoff’s laws 

give the current on the bottom of each column as sum of the weights in 

the column of the crossbar multiplied by the applied voltage amplitude. 

Furthermore, a neural accelerator based on analog ReRAM may be accurate even under irradiation. Initial 

radiation studies for tantalum [4, 5], titanium [6, 7], and hafnium [8-10] oxide based ReRAM devices have 

demonstrated promising results. Previously, TaOx ReRAM showed gradual resistance degradation only at 

high fluences of Si and Ta ions due to additional oxygen vacancies introduced by ion displacement damage 

to the switching region [4, 5] [11-13]. In the following, we investigate the effects of radiation on the 

classification accuracy of an analog ReRAM training accelerator for the first time. Results show that analog 

crossbars are resilient to radiation induced noise expected in space applications. 

 
Figure 1. Current Voltage (I-V) characteristics of a ReRAM device. Left: I-V characteristic of device after 

fabrication and (Inset) diagram of device stack. Middle: I-V characteristics of soft breakdown process known as 

Forming. Right: Switching the device from high to low resistance and back again using Set and Reset operations. 

 

Figure 2: a vector matrix multiply 

may be implemented on a crossbar 

with ReRAM analog electronic 

elements.  
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II. Experimental Details 

TaOx based ReRAM devices were fabricated in the Sandia National Laboratories’ Silicon Microfab 

facility on 6” wafers. The switching stack composed of TiN-TaOx-Ta-TiN layers is deposited using reactive 

sputtering, using a feedback technique described in [14]. The reduced TaOx layer was 15 nm thick and the 

Ta layer was 15 nm thick, and the active region had 1.0 µm X 1.0 µm lateral dimensions. All measurements 

were made on a Cascade Microtech manual probe station with an Agilent B1500A Semiconductor 

Parameter Analyzer mainframe equipped with a B1530 Waveform Generator Fast Measurement Unit. GGB 

Industries Picoprobe model 40A-GS-250 were employed. The devices were irradiated using the nuclear 

microbeam on Sandia National Laboratories’ Tandem particle accelerator. A 2.5 MeV Si ion broad beam 

was directed at the device array and measurements were made ex-situ. Results were collected in a lookup 

table for processing in CrossSim, the Sandia National Laboratories’ open sourced platform for determining 

a device’s applicability to neuromorphic computing [15].  

 

III. Results 

Devices were formed using a standard I/V sweep as seen in Fig. 1 but with a maximum voltage of 3 V and 

a 5 uA compliance. A series of 20 SET and RESET cycles were performed using an analog characterization 

scheme as shown in Fig. 3. The device was then irradiated with 2.5 MeV Si ions to a fluence of 1x1010 

ions/cm2, followed by an I/V sweep and a repetition of 

the cycling pulses. Another shot was then performed at 

an exponentially increasing fluence. Note that there is a 

subtle change in the analog cycling behavior of the device 

after the shot with fluence of 1014 ions / cm2. Extracting 

device resistance using Ohm’s law from the I/V sweeps 

for three devices show a noticeable change in resistance 

after the 1014 shot. These results are similar to our earlier 

result on binary ReRAM devices [16] where the onset of 

resistance change occurs near similar thresholds of 

calculated oxygen vacancy concentrations. Note that 

during the shots, the device was in the full high resistance 

state (HRS) as opposed to the low resistance state (LRS)  
Figure 4: Resistance for three devices extracted by 

ohm’s law from 100 mV I/V sweeps performed 

immediately following irradiation. 
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Figure 3: Operation of a TaOx ReRAM device to simulate neural network training. Left: diagram of the programming 

pulses used to program the device. First, a measurement pulse is applied to the device, with a measurement during 

the peak of the pulse, then a voltage update is applied to the device which changes the device conductance. This 

programming pulse is applied 1000 times for SET and 1000 times for RESET with opposite polarity. Middle: 

example of one of the devices in the study during analog operation. Right: operation of the same device with ion 

shots every 40,000 updates. Note that there is a subtle change in the analog conductivity response after the 1014 

fluence. 
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or a middle resistance state. Previous results have indicated that these devices are highly radiation tolerant 

[4,5] [11-13]. These devices have a thicker set of metals both above and below the switching region than 

those devices previously tested. 

Calculations using the Stopping and Range of Ions in Matter (SRIM) application [17] estimate that the 

vacancy production in the active region of the device to be 5.2x1020 tantalum vacancies and 5.7x1020 oxygen 

vacancies. A plot of the vacancy distribution with respect to depth is given in Fig. 5. These calculations are 

only an estimate, compound densities were calculated based on stoichiometry, and SRIM default 

displacement threshold energies were used. The average ionization in the TaOx layer given by SRIM 

calculations, is 7.5 eV/ion/Å, which corresponds to 208 MRad for 1x1014 ions / cm2. A plot of the average 

ionization with respect to depth is given in Fig. 5. The exceptionally high radiation tolerance is likely due 

to the small volume of the critical area which can be disrupted within the TaOx layer. While there are some 

unknown aspects to the conductance switching mechanism in these devices, it has been demonstrated that 

conductance switching occurs within a nanoscale tantalum rich filament which is created in the forming 

process [12]. The switch from LRS to HRS by recombination of some of the Ta and oxygen ions is 

hypothesized to not entire length of this filament during RESET. The resistance of the device will only 

change if damage occurs within a small critical portion of the filament, which is already nanoscale in all 

three dimensions [12]. 

  
Figure 5: SRIM calculations for displacement and ionization for the TaOx devices under 2.5 MeV Si ion irradiation. 

Left: vacancy production vs. depth. Total vacancy production in the TaOx film is 5.2x1020 tantalum vacancies and 

5.7x1020 oxygen vacancies. Right: Ionization vs. depth. The average ionization in the TaOx layer given by SRIM 

calculations, is 7.5 eV/ion/Å. This corresponds to 208 MRad for 1x1014 ions / cm2. 
 

   
Figure 6: Accuracy of training on devices exposed to radiation. Left: Image recognition accuracy after each training 

update. Right: Accuracy after training for three devices taken from the maximum classification accuracy of all 

epochs. 
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Sandia’s CrossSim code was used to evaluate the effect of radiation on training on an analog ReRAM 

crossbar [14], following the procedure in [2]. CrossSim takes a statistical device conductance dataset (Fig. 

3) and converts it into a lookup table. It uses this data to simulate the behavior of the backpropagation of 

error neural algorithm training network weights based on analog ReRAM cells.  A standardized dataset of 

handwritten digit images known as MNIST, was used to train the network [18]. CrossSim created a dataset 

from the cycles following each shot and was used to simulate a plot of classification accuracy (correctly 

identifying the handwritten digit) versus the neural network iteration (epoch) for a sample device (Fig. 6). 

While the device largely continues to switch after the shot with 1014 ions / cm2 fluence, subtle changes to 

the analog characteristics result in a somewhat lower accuracy after training than in the non-irradiated 

device. After a large dose of radiation, the neural network would also need to be retrained, but the fact that 

it can be trained online again is an advantage in continuous learning applications. The very high fluence 

levels required to impact the accuracy after training of a neuromorphic accelerator based on TaOx RRAM 

devices implies applicability of this technology to embedded systems in radiation environments, such as 

spacecraft environments. 

The full paper will include additional measurements which have been already preformed on three similar 

devices with in-line 4 kohm resistors, as well as three control samples which were exposed to a similar 

environment during tests, sans radiation. Data from three devices of each sample type held in the low 

resistance state during irradiation, and a TID test consisting of three devices of each type in 60Co -ray 

exposure which has already been performed will be included. Furthermore, the classification accuracy 

following training for these devices will be evaluated with additional training datasets.  

 

IV. Summary 

The effect of displacement damage on neural network accuracy after training on an analog-crossbar based 

on TaOx ReRAM array is investigated. It is found that a neural network training accelerator based on this 

technology is robust to ion displacement damage, requiring a shot of 2.5 MeV Si ions with fluence of 1014 

ions / cm2 to show a significant effect on the classification accuracy after training. At this dose, the device 

conductance is found to shift. The devices were still functionally switching, and although subtle changes to 

their analog conductance response were observed, neural training was still possible. SRIM calculations 

confirm that displacement damage is occurring in the oxide. It appears that ReRAM may be more robust to 

displacement damage when used as an analog neural network weight than as a digital memory, due to the 

inherent fault tolerance of these algorithms. This study gives a promising direction for embedded pattern 

recognition systems for space applications. 
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