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The computational burden of Large-eddy Simulation for reactive flows is exacerbated in
the presence of uncertainty in flow conditions or kinetic variables. A comprehensive statisti-
cal analysis, with a sufficiently large number of samples, remains elusive. Statistical learning
to suitably constrain the domain of the variables of interest carries the promise of extracting
more information from fewer samples. Such procedures, if successful, would greatly enhance
the predictability of models constrained by the size of the associated statistical samples. In this
paper, we show how a recently developed procedure for probabilistic learning on manifolds
can serve to improve the predictability of a scramjet simulation. The estimates of the prob-
ability density functions of the quantities of interest are improved together with estimates of
the statistics of their maxima. We also demonstrate how the improved statistical model adds
critical insight to the performance of the model.
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Nomenclature
Cw = admissible set of w
mw = dimension of w orW
N = number of data points
N sup = maximum value of N
n = dimension of x
nq = number of QoI
νsim = number of additional realizations
pQ = pdf of Q
pQ = pdf of Q
pQmax = pdf of Qmax

pW = pdf ofW
pX = pdf of X
QoI = Quantity of Interest
Q = (Q1, ...,Qnq

), random QoI
Q = any component of Q
Qk = component k of Q
Qmax = maximum of Q
QoI = Quantity of interest
q = (q1, . . . ,qnq

)
qℓ = ℓ-th realization of Q

qℓar = ℓ-th additional realization ofQ
qk = component k of q
qαmax = α-th realization of Qmax
R = set of all the real numbers
Rmw = Euclidean space of dimension mw

Rn = Euclidean space of dimension n
Rnq = Euclidean space of dimension nq
w = (w1, . . . ,wmw

), vector of parameters
wℓ = ℓ-th realization ofW
wℓ
ar = ℓ-th additional realization ofW

w j = component j of w
W = (W1, . . . ,Wmw

), random parameters
W j = component j ofW
X = (X1, . . . ,Xn ) = (W,Q)
X j = component j of X
x = (x1, . . . , xn ) = (w,q)
xℓ = ℓ-th realization of X
xℓar = ℓ-th additional realization of X
x j = component j of x

A lower case letter such as y is a real deterministic variable.
A boldface lower case letter such as y is a real deterministic vector.
An upper case letter such as Y is a real random variable.
A boldface upper case letter such as Y is a real random vector.
A lower case letter between brackets such as [y] is a real deterministic matrix.
A boldface upper case letter between brackets such as [Y] is a real random matrix.

I. Introduction
The performance of a scramjet engine is closely tied to the evolution of physical phenomena on scales ranging from

the size of the fuel injector to the geometry of the combustion chamber. Capturing the interaction between these phe-
nomena requires the resolution of mathematical models using very fine spatio-temporal discretizations that continue
to challenge the most advanced computational resources. Integrating these simulations into a model-based design op-
timization or a parametric uncertainty propagation context significantly exacerbates the computational burden as they
require multiple multiple numerical simulations under varying design and parameter conditions. The task of optimiza-
tion under uncertainty remains elusive, requiring simplifying assumptions on the physics of the problem that put into
question the optimality and even the feasibility of the computed solution. In general, predictions from mathematical
models are grounded in conservation laws and can thus be expected to have an implicit structure that may be conducive
to numerical simplifications. As indicated previously, given the multiscale nature of relevant phenomena, reductions
that oversimplify the physics may lose sight of quantities of interest that are critical for design or safety. Alternative
reduction formalisms, as pursued in the present paper, may be cast in the form of probabilistic learning schemes, where
intrinsic structure is progressively learned until sufficient credibility in the inferred statements can be certified. In this
manner, the spatio-temporal resolution required by the physics is always honored, while the mathematical structure
representing the dependence of some quantity of interest (QoI) (itself a function of the solution) on design variables
or parameters is learned from consecutive expensive simulations. The hope is that sufficient learning will be achieved
from a few such simulations; far fewer than would typically be required for optimization under uncertainty. Clearly,
the learning and the simulations from which it is synthesized are dependent on the QoI.

The objective of the present paper is to adapt a recent procedure for probabilistic learning on manifolds [1, 2]
to the challenges presented by an LES-resolved simulation of a scramjet. The manifold in question is the geometric
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structure defining the key design objectives in the span of design and and uncertain parameters. The procedure permits
the localization of the support of the probability measure of all available data to the manifold discovered through a
Markov process on this data [3]. Available data refers here to numerically generated data that, as indicated above,
will be limited in view of the expense associated with its generation. Sampling procedures are then put in place that
can augment the initial dataset with statistically consistent samples. While the present paper focuses on this statistical
augmentation step, the extension of the results to the design optimization problem are self-evident. They do, however,
require special care that places them outside the scope of the present work.

It should be noted that the statistical and probabilistic learning methods have been extensively developed [4–12])
and play an increasingly important role in computational science and engineering [13]), in particular for design opti-
mization under uncertainties using large scale computational models and more generally, in artificial intelligence for
extracting information from big data. In recent years, statistical learning methods have been developed in the form of
surrogate models from which approximations of model-based function evaluations can easily be computed [14–17].
Although Gaussian process models are most commonly used in this context (see for instance [18, 19]), alternative
approaches based on Bayesian methods such as Bayesian optimization have been proposed [14, 20, 21]. For the evalu-
ations of expensive stochastic functions in presence of uncertainties, computational challenges remain currently signif-
icant enough to require relevant probabilistic approximations [16, 22–24]. There are many fields for which statistical
and probabilistic learning methods are used. In the field of aeronautical engineering learning procedures have been
used for over two decades with success for training neural networks [25, 26]. More recently, postprocessing of a given
set of Monte Carlo realizations has been proposed for improving integral computation [27] and a machine-learning
approach has been used [28] for improving predictive models of turbulence synthesized from limited experimental
data. This last paper is certainly in the spirit of the work presented in this paper for which the objective is to enhance
the knowledge extracted from limited data, but in using a non-Gaussian probabilistic learning process.

The probabilistic learning on manifold [1], which is used in this paper for enhancingmodel predictability, proposes
a new methodology for generating additional realizations of a random vector whose non-Gaussian probability distri-
bution is unknown and is presumed to be concentrated on an unknown manifold, for which the available information
is only constituted of a dataset of independent realizations of this random vector. The probabilistic learning method
consists (1) in discovering and in taking into account the geometrical structure of the dataset by using a diffusion
maps technique in order to enrich the usual construction of the probability distribution based on a multidimensional
Gaussian kernel-density estimation (nonparametric statistics), (2) in preserving the concentration of the additional re-
alizations around the manifold, and (3) in constructing an associated Markov Chain Monte Carlo (MCMC) generator
for generating additional realizations that follow the estimated probability distribution.

The paper is organized as follows. In Section II, we summarize the physical and computational model that is
used for simulating the complex flow for a ScramJet by means of a large scale computational fluid dynamics model.
This section allows also for defining the uncertain parameters of the computational fluid dynamics model (which are
modeled as random variables), the random quantities of interest, the specifications of the computational model, and
the simulations performed. Section III presents a brief summary of the probabilistic learning on manifold that is
used for analyzing ScramJet data. The reader can find all the details of the algorithm in [1]. Section IV is devoted
to the description of the ScramJet model representation, to the definition of the random parameters and the random
quantities of interest that are retained for the ScramJet analysis, and finally, to the definition of the dataset used for
the probabilistic learning. Section V presents the statistical estimation and analysis using the probabilistic learning
on manifold that allows for generating additional realizations used for estimating the probability density functions of
quantities of interest and of their maximum statistics. The numerical simulations and the analysis of the ScramJet
database is presented in Section VI. In particular, we analyze the robustness of the probabilistic learning approach and
we show how such an approach allows for enhancing model predictability.

II. Physical and Computational Model
We concentrate on a scramjet configuration studied under the HIFiRE (Hypersonic International Flight Research

and Experimentation) program [29, 30], as depicted in Figure 1(a). A ground test rig, designated the HIFiRE Direct
Connect Rig (HDCR) (Figure 1(b)), was developed to duplicate the isolator/combustor layout [31, 32]. Mirroring
the HDCR setup, we aim to simulate and assess flow characteristics inside the isolator/combustor portion of the
scramjet. The rig consists of a constant-area isolator (planar duct) attached to a combustion chamber. It includes four
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primary injectors mounted upstream of flame stabilization cavities on both the top and bottom walls. Four secondary
injectors along both walls are positioned downstream of the cavities. Flow travels from left to right in the x-direction
(streamwise), and the geometry is symmetric about the centerline in the y-direction. Numerical simulations take
advantage of this symmetry by considering a domain that covers only the bottom half of this configuration. To further
reduce the computational cost, we consider one set of primary/secondary injectors and impose periodic conditions
in the z-direction (spanwise). The overall computational domain is highlighted by the red lines in Figure 2. JP-7

(a) HIFiRE Flight 2 payload

 

    
 

Figure 3. Three dimensional view of the HDCR instrumentation layout
(b) HDCR

Fig. 1 HIFiRE Flight 2 payload and HDCR cut views.

surrogate fuel [33], composed of 36% methane and 64% ethylene by volume (mole), enters through these injectors.
The combustion process is described by a reduced, three-step mechanism [34, 35]:

CH4 + 2(O2 + fNON2) → CO2 + 2H2O + 2 fNON2 (1)
C2H4 + 3(O2 + fNON2) → 2CO2 + 2H2O + 3 fNON2 (2)

2CO + O2 → 2CO2, (3)

where fNO = 0.79/0.21 is the ratio between the mole fractions of N2 and O2 in the oxidizer streams. Arrhenius
kinetic parameters are tuned to match the heat release rate to a reference mechanism [36] and to retain robust/stable
combustion in the current simulations.

Large eddy simulation (LES) calculations are then performed using the RAPTOR code framework developed by
Oefelein [37, 38]. The theoretical framework solves the fully coupled conservation equations of mass, momentum,
total-energy, and species for a chemically reacting flow. It is designed to handle high Reynolds number, high-pressure,
real-gas and/or liquid conditions over a wide Mach operating range. It also accounts for detailed thermodynamics and
transport processes at the molecular level. Noteworthy is that RAPTOR is designed specifically for LES using non-
dissipative, discretely conservative, staggered, finite-volume differencing. This eliminates numerical contamination
of the subfilter models due to artificial dissipation and provides discrete conservation of mass, momentum, energy,
and species, which is imperative for high quality LES. Representative results and case studies using RAPTOR can be
found in studies by Oefelein et al. [39–41].

In our numerical studies, we allow a total of 11 input parameters to be variable and uncertain, shown in Table 1
along with their uncertainty distributions. These distributions are assumed uniform across the ranges indicated. We
focus on three quantities of interest (QoIs): (1) combustion efficiency (ηc) that is related to the burned equivalence
ratio (φB), (2) stagnation pressure loss ratio (RP̄), and (3) wall-normal averaged turbulence kinetic energy (TKE) at
various streamwise locations. The first two QoIs reflect the overall scramjet performance, while the third contains
more localized descriptions that can offer insights for turbulence modeling. All QoIs are time-averaged variables. The
data utilized in the current analysis are from 2D simulations of the scramjet computation, using grid resolutions where
cell sizes are 1/8 and 1/16 of the injector diameter d = 3.175 mm.
• Combustion efficiency (ηc) is the combustion efficiency based on static enthalpy quantities [32, 42]:

ηc =
H (Tref,Ye) − H (Tref,Yref)

H (Tref,Ye,ideal) − H (Tref,Yref)
. (4)
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Fig. 2 The HDCR experimental setup and schematic of the full computational domain.

Here H is the total static enthalpy, the “ref” subscript indicates a reference condition derived from the inputs,
the “e” subscript is for the exit, and the “ideal” subscript is for the ideal condition where all fuel is burnt to
completion. The reference condition corresponds to that of a hypothetical non-reacting mixture of all inlet air
and fuel at thermal equilibrium. The numerator, H (Tref,Ye) − H (Tref,Yref), thus reflects the global heat released
during the combustion, while the denominator represents the total heat release available in the fuel-air mixture.
• Stagnation pressure loss ratio (RP̄) is defined as

RP̄ = 1 −
Ps,e
Ps,i
, (5)

where Ps,e and Ps,i are the wall-normal-averaged stagnation pressure quantities at the exit and inlet planes,
respectively.
• Turbulence kinetic energy (TKE) is characterized by the root-mean-square (RMS) velocity fluctuations at a
given location:

TKE = 1
2
(

u2rms + v2rms + w2rms
)

, (6)

where the RMS quantity is urms =
√

u2 − u2, with u indicating time-averaged quantity. In the numerical investi-
gations of this paper, we will look at TKE from multiple streamwise locations (i.e., different x locations).

III. Probabilistic Learning on Manifold for Analyzing ScramJet Data
In this section, we summarize the probabilistic learning methodology [1] that will be used throughout the paper

for predicting the statistics and for performing model exploration to enhance model predictability of LES simulations
of a ScramJet.

This probabilistic learning on manifold uses only a dataset of N data points {x1, . . . ,xN } in Rn , which are assumed to
be N independent realizations of a random vector X with values in Rn . The probability distribution of X is unknown
and is assumed to be concentrated in a neighborhood of a subset of Rn (a manifold) that is also unknown and that
has to be discovered. For the ScramJet database, vector X will be constituted of the 11 uncertain parameters of the
computational model (modeled by random variables as explained in Section II) to which are added all the random
quantities of interest (QoIs) that are outputs of the stochastic computational model. The objective of the probabilistic
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Parameter Range Description
Inlet boundary conditions:

p0 [1.406,1.554]× 106 Pa Stagnation pressure
T0 [1472.5,1627.5] K Stagnation temperature
M0 [2.259,2.759] Mach number
Li [0,8] × 10−3 m Inlet turbulence length scale
Ii [0,0.05] Turbulence intensity horizontal component
Ri [0.8,1.2] Ratio of turbulence intensity vertical to horizontal components

Fuel inflow boundary conditions:
I f [0,0.05] Turbulence intensity magnitude
L f [0,1] × 10−3 m Turbulence length scale

Turbulence model parameters:
CR [0.01,0.06] Modified Smagorinsky constant
Prt [0.5,1.7] Turbulent Prandtl number
Sct [0.5,1.7] Turbulent Schmidt number

Table 1 Uncertain input parameters. The uncertainty distributions are assumed uniform across the ranges
shown.

learning on manifold is to construct a probabilistic model of random vector X using only dataset {x1, . . . ,xN }, which
allows for generating νsim ≫ N additional independent realizations {x1ar, . . . ,x

νsim
ar } in R

n of random vector X. The
proposed method preserves the concentration of the additional realizations around the manifold. For the ScramJet
analysis, we can then generate a very large number, νsim ≫ N , of additional realizations that allow for estimating
the probability density functions of various QoIs, including the statistics of their maxima. The main steps of this
methodology can be roughly summarized as follows.

1) A principal component analysis of X is carried out in order to normalize the dataset, which yields a new
normalized dataset of N data points {y1, . . . ,yN } in Rν . This means that the random vectorY with values in Rν

for which {y1, . . . ,yN } are N independent realizations, has a zero empirical mean and an empirical covariance
matrix that is the unity matrix.

2) Dataset {y1, . . . ,yN } is rewritten as a (ν × N ) rectangular matrix [yd] that is construed as one realization of a
(ν× N ) rectangular randommatrix [Y] = [Y1 . . .YN ] in which Y1, . . . ,YN are N independent random vectors.
A modification [43] of the classical multidimensional Gaussian kernel-density estimation method [44, 45] is
then used to construct and estimate the probability density function (pdf) p[Y] ([y]) of random matrix [Y] with
respect to the volume element d[y] on the set of all the (ν × N ) real matrices.

3) A (ν × N ) matrix-valued Itô stochastic differential equation (ISDE), associated with the random matrix [Y],
is constructed and corresponds to a stochastic nonlinear dissipative Hamiltonian dynamical system, for which
p[Y] ([y]) d[y] is the unique invariant measure. This construction is performed using the approach proposed in
[43, 46] belonging to the class of Hamiltonian Monte Carlo methods [46–48], which is an MCMC algorithm
[49].

4) The diffusion-map approach [3] is then used to discover and characterize the local geometry structure of the
normalized dataset [yd]. The subset of the diffusion-maps basis, represented by a (N × m) matrix [g] =
[g1 . . . gm], are thus constructed with m ≪ N . They are associated with the first m eigenvalues of the transition
matrix of a Markov chain relative to the local geometric structure of the given normalized dataset [yd].

5) As proposed in [1], a reduced-order representation [Y] = [Z] [g]T is constructed in which [Z] is a (ν × m)
random matrix for which m ≪ N . A reduced-ISDE, associated with random matrix [Z], is obtained by pro-
jecting the ISDE introduced in Step 3 onto the subspace spanned by the reduced-order vector basis represented
by matrix [g]T . It should be noted that such a projection corresponds to a reduction of the dataset dimension
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and not to a reduction of the physical components of random vector Y that already results from a PCA applied
to X. Such a projection preserves the concentration of the generated realizations around the manifold. The
constructed reduced ISDE is then used for generating additional realizations [z1ar], . . . , [znMCar ] of random matrix
[Z], and therefore, for deducing the additional realizations [y1ar], . . . , [ynMCar ] of random matrix [Y]. Reshap-
ing these nMC matrices yields the νsim = N × nMC independent realizations {y1, . . . ,yνsim } of random vector Y.
Using the PCA constructed in Step 1 allows for generating the νsim ≫ N additional independent realizations
{x1ar, . . . ,x

νsim
ar } in Rn of random vector X.

IV. ScramJet Model Representation, Parameters, QoI, and Dataset
for the Probabilistic Learning

A. ScramJet Model Representation
The ScramJet database is generated with the physical and computational model presented in Section II. The uncer-
tain parameter of the computational model is a vector w = (w1, . . . ,wmw

) that belongs to a subset Cw of Rmw in
which mw = 11. This uncertain parameter w is modeled by a second-order Rmw -valued random variable W =

(W1, . . . ,Wmw
) defined on a probability space (Θ,T ,P) for which the support of the probability distribution is the set

Cw that is defined in Table 1.
The vector-valuedQoI that is deduced from the outputs of the computationalmodel is denoted by q = (q1, . . . ,qnq

)
∈ Rnq in which nq = 10. ForW = w fixed in Cw, the QoI is modeled by a Rnq -valued random variable F(w), defined
on probability space (Θ,T ,P), for which any realization will be denoted by F(w; θ) with θ ∈ Θ. It should be
noted that, for representing the computational model, we could have considered an Rnq -valued deterministic variable,
q = f(w), but it is more realistic to consider other possible uncertainties that the one induced by parameter w due
to the use of a very complex computational model that is run on a massively parallel computer. Consequently, the
corresponding random QoI is the Rnq -valued random variable, Q = (Q1, . . . ,Qnq

), defined on (Θ,T ,P) and such
that Q = F(W). It is assumed that Q is a second-order random variable. The realizations ofW and Q will be denoted
wℓ =W(θℓ ) and qℓ = Q(θℓ ) with θℓ ∈ Θ. The probability distribution of Q is unknown.

B. RandomModel Parameters and Random Quantities of Interest
For the ScramJet database, we have mw = 11 and nq = 10. The components of the random model parameters,
represented by random vectorW, are (see Table 1):

W1: Inlet stagnation pressure, p0.
W2: Inlet stagnation temperature, T0.
W3: Inlet Mach number, M0.
W4: Modified Smagorinsky constant, CR .
W5: Turbulent Prandtl number, Prt .
W6: Turbulent Schmidt number, Sct .
W7: Inlet turbulence intensity horizontal component, Ii .
W8: Inlet turbulence length scale, Li .
W9: Inlet ratio of turbulence intensity vertical to horizontal components, Ri .
W10: Fuel inflow turbulence intensity magnitude, I f .
W11: Fuel inflow turbulence length scale, L f .

Subset Cw of Rmw is written as the cartesian product J1 × . . . × Jnw
of closed intervals Jj = [a j ,bj ] ⊂ R. The

components of the random quantities of interest, represented by random vector Q, are:
Q1: Burned equivalence ratio
Q2: Combustion efficiency
Q3: Pressure stagnation loss ratio
Q4: TKE at the inlet streamwise location
Q5: TKE at streamwise location just before the primary injectors
Q6: TKE at streamwise location after the primary injectors and before the cavity
Q7: TKE at streamwise location inside the cavity
Q8: TKE at streamwise location just after secondary injectors
Q9: TKE at streamwise location inside the combustion chamber
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Q10: TKE at streamwise location at end of the combustion chamber
in which TKE is the wall-normal averaged turbulence kinetic energy at various streamwise locations for which the
locations indicated in Figure 2).
For each considered dataset of the ScramJet database, the maximum number of data points that are available is denoted
by N sup. The current dimension of such a dataset that will be considered for the probabilistic learning is denoted by
N ≤ N sup. A convergence analysis of the probabilistic learning analysis related to all the computed quantities will be
performed with respect to the value of N when N will go to N sup. For a given dataset of the ScramJet database, for
fixed N such that 1 ≤ N ≤ N sup, and for ℓ = 1, . . . ,N , the realizations wℓ = W(θℓ ) ∈ Rmw and the corresponding
realizations qℓ = Q(θℓ) ∈ Rnq of Q are such that

qℓ = F(wℓ ; θℓ ) ∈ R
nq . (7)

C. Defining the Datasets for the Probabilistic Learning From the ScramJet Database
Three datasets are extracted from the ScramJet database. The first is defined as the d08 dataset and corresponds to the
results generated with the computational model that is constructed with a grid resolution where cell size is 1/8 while
the second one is defined as the d16 dataset and corresponds to a cell size of 1/16. The third one is the concatenated
d08-d16 dataset that corresponds to the concatenation of the d08 dataset with the d16 dataset, obtained by interlacing
the two datasets with respect to their data points. For each one of the three datadasets, the number N sup of data points
are N sup = 256 for the d08 and d16 datasets, while N sup = 512 for the concatenated d08-d16 dataset. For given
N ≤ N sup, a dataset is made up of the N data points x1, . . . ,xN in Rn with

n = mw + nq , (8)

such that
xℓ = (wℓ ,qℓ) ∈ R

n = R
mw × R

nq , ℓ = 1, . . . ,N . (9)

For fixed N , the probabilistic learning on manifold will be carried out using dataset {xℓ,ℓ = 1, . . . ,N }. This dataset
depends on N and as we have explained before, a convergence analysis of the probabilistic learning with respect to N
will be performed for 1 ≤ N ≤ N sup. It should be noted that, for the concatenated d08-d16 dataset, if, for instance,
N = 200, then there are the first 100 data points from the d08 dataset and the first 100 data points from the d16 dataset.

V. Statistical Estimation and Analysis Using Probabilistic Learning on Manifold
In all this section, N is fixed such that 1 ≤ N ≤ N sup. The probabilistic learning that will allow for generat-

ing νsim ≫ N additional realizations of X will then depend on this value of N . For simplifying the notations, this
dependence on N is removed when it is not necessary for the understanding.

A. Probability Distributions of Random Variables X, W, and Q
Let X = (X1, . . . ,Xn ) be a second-order random variable defined on probability space (Θ,T ,P) with values in Rn ,
with n = mw + nq . Its probability distribution PX(dx), that is assumed to be represented by a pdf pX(x) (with respect
to the Lebesgue measure dx on Rn) is unknown but the N given data points x1, . . . ,xN in Rn , defined by Eq. (9), are
assumed to be N given statistically independent realizations of X. This means that the solely available information for
estimating pX is constituted of dataset {x1, . . . ,xN } of N points inRn . Taking into account Eq. (9), random vector X
can also be written as

X = (W,Q) , (10)

in whichW = (W1, . . . ,Wmw
) and Q = (Q1, . . . ,Qnq

) are the random vectors defined in Section IV. B for which the
N realizations are wℓ ∈ Rmw and qℓ ∈ Rnq . The pdf x )→ pX(x) on Rn of X, with respect to dx, can also be rewritten
as the joint pdf (w,q) )→ pW,Q(w,q) on Rmw × Rnq of W and Q, with respect to dw dq, in which x = (w,q). As
explained in Section III, for the considered fixed value of N , the probabilistic learning will allow for generating νsim
additional realizations {x1ar, . . . ,x

νsim
ar } of X, with νsim ≫ N , by using only dataset {x1, . . . ,xN }. For estimating the

statistics related to Q, we will need to extract the corresponding νsim additional realizations {q1ar, . . . ,q
νsim
ar } for Q such

that,
(wℓ

ar,qℓar) = xℓar , ℓ = 1, . . . ,νsim . (11)

8

Page 8 of 19

Submitted to AIAA Journal. Confidential - Do not distribute.

AIAA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

B. Selecting the Random QoI for the Statistical Estimates
Random vectorQ is completely defined by its probability density function q )→ pQ(q) on Rnq , which can be estimated
using nonparametric statistics with a large number, νsim, of additional realizations of Q. In addition, we are interested
in analyzing the maximum statistics of the random components ofQ. In order to limit the number of figures presented
in the paper, we will not consider all the possible marginal probability density functions of random vector Q, but we
will only consider the probability density function of each random component Qk of Q for which k is in {1, . . . ,nq }
(marginal probability density function of order 1). In the following, in order to not complicate the notations, index k
is removed and notation Q is used instead of Qk (except if confusion is possible).

C. Defining the Maximum Statistics for the Selected Random QoI and Computing their Realizations
For the ScramJet application, since the real-valued random variables that are observed are positive almost surely, we are
only interested in constructing their maximum statistics, but their minimum statistics could similarly be constructed al-
though of low interest for this case. For a sufficiently large integer νs , the maximum of the real-valued random variable
Q can classically be defined as the real-valued random variable Qmax such that Qmax = max{Q(1) , . . . ,Q(νs ) }, in which
Q(1) , . . . ,Q(νs ) are νs independent copies of real-valued random variable Q. Random variable Qmax depends on νs , but
in order to simplify the notations, the dependence on νs is removed. The realizations of Qmax are computed as follows.
For fixed N such that N ≤ Nmax, for a given value νsim of additional realizations {(wℓ

ar,qℓar) ∈ Rmw × R,ℓ = 1, . . . ,νsim}
introduced in Section V. C and computed thanks to the probabilistic learning, and for νs sufficiently large such that
νs ≪ νsim, we construct να = νsim/νs independent realizations {q1max, . . . ,qναmax} of Qmax such that, for α = 1, . . . ,να ,
qαmax = maxℓ ∈ {νs (α−1) +1, ... , ανs } qℓar. For the Scramjet results presented in Section VI and for a fixed number νsim of
additional realizations (that is a finite number!), a convergence analysis of the estimated probability density function of
Qmax has been performed as a function of νs . We have found that, for the finite number of additional realizations that is
considered, a reasonable convergencewas obtained for νs = 100, such a convergence being obviously only considered
as sufficient in the framework for which the pdf of Qmax is studied for the enhancing of the model prediction. Note that,
since νsim can arbitrarily be increased without significant computational cost, νs and να could arbitrarily be increased
in satisfying the equation νsim = να × νs with νs < να .

D. Estimates of the Second-order Moments and the pdf of Random Variables Q and Qmax
For a fixed value of N , νsim, and νs (and consequently, of να = νsim/νs), the standard deviations σQ and σQmax of
the real-valued random variables Q and Qmax, and their probability density functions q )→ pQ(q) and q )→ pQmax (q)
with respect to dq on R, are estimated using the classical estimates (empirical estimates for the standard deviation and
Gaussian kernel density estimation for the pdf) based on the use of the additional realizations {q1ar, . . . ,q

νsim
ar } for Q and

of the realizations {q1max, . . . ,qναmax} for Qmax (for 11 components). The convergence analysis of these quantities has been
performed with respect to N (in order to analyze how the probabilistic learning approach learns from the dataset as a
function of its dimension) and with respect to νsim (in order to analyze the robustness of the estimates). Nevertheless,
for limiting the number of figures, in Section VI, only the convergence with respect to N of the probability density
functions q )→ pQ(q) and q )→ pQmax (q) are shown.

VI. Numerical Simulations and Statistical Analysis for the Datasets
of the ScramJet Database

For the d08 and d16 datasets, and for the concatenated d08-d16 dataset, the probabilistic learning has been performed
with the all the components ofW (11 components) and with all the components of Q (10 components). The compo-
nents, Qk , of random vector Q for which the statistics are presented below are Q2, Q3, Q6, Q7, Q8, Q9, and Q10.

A. Methodology Used for the Statistical Analysis
The methodology adopted for the statistical analysis is as follows:
1) For the d08 and d16 datasets, for Q2 and Q3, and for νsim = 25,600 additional realizations, an analysis of
the robustness of the probabilistic learning is performed with respect to the number N of data points with
N = {50,100,200,256}. Note that νsim = N ×nMC is maintained to 25,600 for each value of N (Section VI. B.1).

2) For the d08 and d16 datasets, the model predictability of TKE is performed at various streamwise locations cor-
responding to {Qk , k = 6, . . . ,10}, for N = 256 and for νsim = 25,600 additional realizations (Section VI. B.2).
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Fig. 3 Combustion efficiency Q2: probability density functions pQ(q) of random variable Q for N = 50 (dashed
black line), N = 100 (thin black line), N = 200 (med red line), N = 256 (thick blue line) with νsim = 25,600.
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(a) d08 dataset
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Fig. 4 Combustion efficiency Q2: probability density functions pQmax (q) of random variable Qmax for N = 50
(dashed black line), N = 100 (thin black line), N = 200 (med red line), N = 256 (thick blue line) with νsim =
25,600.

3) For the concatenated d08-d16 dataset, the analysis of the robustness of the probabilistic learning is again per-
formed for Q2 and Q3 with respect to the number N of data points with N = {50,100,200,450,512} and
νsim = N × nMC = 51,200 (Section VI. C.1).

4) Finally, for the concatenated d08-d16 dataset, the model predictability of TKE is again performed at the same
streamwise locations corresponding to {Qk , k = 6, . . . ,10}, for N = 512 and νsim = 51,200 additional realiza-
tions (Section VI. C.2).

B. Probabilistic Learning Approach for Analyzing the d08 and d16 Datasets

1. Robustness Analysis of the Probabilistic Learning Approach for the Combustion Efficiency and the Pressure Stag-
nation Loss Ratio
For each one of the d08 and d16 datasets, and for νsim = 25,600, an analysis has been carried out by studying, for

Q2 (combustion efficiency, Figures 3 and 4) and for Q3 (pressure stagnation loss ratio, Figures 5 and 6), the evolution
with respect to N of the probability density functions pQ(q) of random variable Q (Figures 3 and 5) and pQmax (q) of
random variable Qmax (Figures 4 and 6).
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(a) d08 dataset
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Fig. 5 Pressure stagnation loss ratio Q3: probability density functions pQ(q) of random variable Q for N = 50
(dashed black line), N = 100 (thin black line), N = 200 (med red line), N = 256 (thick blue line) with νsim =
25,600.
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Fig. 6 Pressure stagnation loss ratio Q3: probability density functions pQmax (q) of random variable Qmax for
N = 50 (dashed black line), N = 100 (thin black line), N = 200 (med red line), N = 256 (thick blue line) with
νsim = 25,600.
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Fig. 7 For the d08 dataset, for N = 256 and νsim = 25,600: probability density function pQ(q) of TKE Q. (a):
Q6 (mid blue line) and Q7 (thin black line). (b): Q8 (thick blue line), Q9 (mid red line), and Q10 (thin black line).
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Fig. 8 For the d16 dataset, for N = 256 and νsim = 25,600: probability density function pQ(q) of TKE Q. (a):
Q6 (mid blue line) and Q7 location (thin black line). (b): Q8 (thick blue line), Q9 (mid red line), and Q10 (thin
black line).

2. Model Predictability of the Wall-Normal averaged Turbulence Kinetic Energy Performed at Various Streamwise
Locations Using the Probabilistic Learning Approach
From the convergence analyses presented in Section VI. B.1, it can be concluded that N = 256 and νsim = 25,600

are good values for studying TKE at the various streamwise locations associated with Q6, Q7, Q8, Q9, and Q10. For
the d08 and d16 datasets, the analysis of the evolution of probability density functions pQ(q) of random variable Q
is shown in Figures 7 and 8 as a function of the location of the observations along the flow while the evolution of
pQmax (q) of random variable Qmax is shown in Figure 9 and 10.

C. Probabilistic Learning Approach for Analyzing the Concatenated d08-d16 Dataset

1. Robustness Analysis of the Probabilistic Learning Approach for the Combustion Efficiency and the Pressure Stag-
nation Loss Ratio
A similar analysis that the one presented in Section VI. B.1, has been performed for the concatenated d08-d16

dataset that is constructed in interlacing the data points of the d08 dataset with the d16 dataset. Therefore, there are
N sup = 512 data points in the concatenated d08-d16 dataset. Similarly to Section VI. B.2, for the concatenated d08-d16
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Fig. 9 For the d08 dataset, for N = 256 and νsim = 25,600: probability density function pQmax (q) of TKE Qmax.
(a): Q6 (mid blue line) and Q7 (thin black line). (b): Q8 (thick blue line), Q9 (mid red line), and Q10 (thin black
line).
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Fig. 10 For the d16 dataset, for N = 256 and νsim = 25,600: probability density function pQmax (q) of TKE Qmax.
(a): Q6 (mid blue line) and Q7 (thin black line). (b): Q8 (thick blue line), Q9 (mid red line), and Q10 (thin black
line).
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Fig. 11 d08-d16 dataset: probability density functions pQ(q) of random variable Q (a) for combustion effi-
ciency Q2 and (b) for pressure stagnation loss ratio Q3, for N = 50 (dashed black line), N = 100 (thin black
line), N = 200 (med red line), N = 450 (med blue line), N = 512 (thick black line) with νsim = 51,200.

dataset and for νsim = 51,200, an analysis has been carried out by studying the evolution with respect to N ≤ N sup

of the probability density function pQ(q) of random variable Q for Q = Q2 (combustion efficiency, Figure 11(a)) and
for Q = Q3 (pressure stagnation loss ratio, Figure 11(b)), while Figures 12(a) and (b) display the evolution of the
probability density function pQmax (q) of random variable Qmax.

2. Model Predictability of the Wall-Normal Averaged Turbulence Kinetic Energy Performed at Several Streamwise
Locations Using the Probabilistic Learning Approach With the Concatenated d08-d16 Dataset
From the convergence analyses presented in Section VI. C.1, it can be concluded that N = 512 and νsim = 51,200

are good values for studying TKE at various streamwise locations associated with Q6, Q7, Q8, Q9, and Q10. For the
concatenated d08-d16 dataset, Figure 13 displays the probability density function pQ(q) of TKE associated with Q6
to Q10, while Figure 14 displays the probability density function pQmax (q).

D. Analysis of the Results Obtained With the Probabilistic Learning
A few general observations can be made from inspecting Figures 3 to 14. Figures 3 and 5 show that combustion

efficiency (Q2) and pressure stagnation loss ratio (Q3) are learned with minimal effort using N = 50 data points, while
the maximum of these quantities requires about 200 data points (see Figures 4 and 6) of the learning process. It is
also observed that with the d16 dataset, the learning process is significantly faster than for the d08 dataset indicating a
stronger signature of the physics in the dataset. Furthermore, it is noted that learned d08 pdf for Q3 exhibits a slightly
bimodal behavior that may be is associated with a lack of combustion in a few data points of the d08 dataset.

The turbulent kinetic energy (TKE), on the other hand required all 256 data points for the convergence of the learn-
ing process, both for the d08 and d16 datasets, with distinctly behavior at different streamwise locations. For instance,
as observed by inspecting Figures 7 and 8, for Q6 (TKE after the primary injector and before cavity), the d08 dataset
exhibits a much narrower variation than the corresponding the d16 dataset. On the other hand, the bimodal behavior
observed for Q7 (TKE inside the cavity) is present both in the d08 and d16 datasets, which could be explained by the
mixing of two turbulence regimes.This bimodality persists in the pdf of the maximum statistics (see Figures 9 and
10) suggesting that each of these turbulent regimes contribute to extreme behavior. We also note that the TKE just
after the secondary injectors, Q8, inside the combustion chamber, Q9, and at the end of the combustion camber, Q10,
exhibit distinct behaviors between the d08 and d16 datasets with Q8 demonstrating bimodal behavior in both datasets.
This bimodality is visible also in the extreme statistics of d08 (see Figures 9 and 10). The bimodality of Q8, given
exposition right after the secondary injectors, can again be attributed to the mixing of two turbulence regimes. At this
point, we should note that the learning process for the extreme statistics of TKE Q6, Q8, and Q9 are not converged for
the d08 dataset. This suggests that this dataset does not capture sufficient features of the underlying physical processes
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Fig. 12 d08-d16 dataset: probability density functions pQmax (q) of random variable Qmax (a) for combustion
efficiency Q2 and (b) for pressure stagnation loss ratio Q3 (right figure), for N = 50 (dashed black line), N = 100
(thin black line), N = 200 (med red line), N = 450 (med blue line), N = 512 (thick black line) with νsim = 51,200.
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Fig. 13 For the d08-d16 dataset and for N = 512 and νsim = 51,200: probability density function pQ(q) of TKE
Q. (a): Q6 (mid blue line) and Q7 (thin black line). (b): Q8 (thick blue line), Q9 (mid red line), and Q10 (thin
black line).
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Fig. 14 For the d08-d16 dataset and for N = 512 and νsim = 51,200: probability density function pQmax (q) of
TKE Qmax. (a): Q6 (mid blue line) and Q7 (thin black line). (b): Q8 (thick blue line), Q9 (mid red line), and Q10
(thin black line).

that may be responsible for extreme behavior. Indeed, the learning process for these same statistics is converged for
the d16 dataset and with only 200 data points.

Figures 11 to 14 show the pdf of the QoIs for the concatenated d08-d16 dataset. It is observed that, while the
learning process is improved by the presence of the d16 data, the width of the pdf is adversely affected by the presence
of the d08 data. The bimodality of the extreme values of Q8 (see Figure 14) is weakly affected by the d08 data. On the
other hand, the bimodality of Q6 to Q10 (see Figure 13) is an artifact of concatenating the d08 and d16 data and should
not be interpreted as reflecting physical behavior.

VII. Conclusion
In this paper, we have delineated an implicit diffusion manifold and demonstrated its use for enhancing the pre-

dictability of complex flows within a scramjet. Leveraging this implicit structure, fewer statistical samples are required
to accurately characterize the statistics of LES predictions induced by parametric variations. The analysis is based on
a novel probabilistic "learning on manifolds" procedure that generates realizations of a random vector whose non-
Gaussian probability distribution is unknown and is presumed to be concentrated on an unknown manifold to be
characterized through a probabilistic learning process. Applied to the ScramJet database, the probability density func-
tions of the quantities of interest and their associated maximum statistics are estimated even though the number of
simulations available from the LES runs is not sufficient to obtain sufficiently converged estimates of these quantities.
We have shown how the probabilistic learning method learns as a function of the size of the datasets. This type of
analysis also serves to determine if the dimension of the initial dataset is sufficiently large for providing an assessment
of the quality of the probabilistic learning. The analysis of these probability density functions allows for interpret-
ing the physical behavior of the complex turbulent flow in relationship to the mesh size of the fluid domain and the
time averaging that is used for constructing the quantities of interest, such as the turbulent kinetic energy at different
streamwise locations of the flow.
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