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1 Introduction

The study of smooth four-manifolds is a rich and still largely puzzling subject in mathe-
matics. For instance, it is presently unknown how to classify simply connected compact
smooth four-manifolds. This is the case despite the fact that the classification of topo-
logical four-manifolds has been proved a long time ago [1]. To this day, it is an open
problem how to translate the classification of topological four-manifolds into a classifica-
tion of smooth four-manifolds. One issue lies in the fact that there are examples of spaces,
such as R*, which have an uncountable number of different smooth structures (known
as exotic R*). Similarly, it appears that some important tools, crucial in the study and
classification of manifolds in lower dimensions, seem to be less powerful in the case of four-
dimensional smooth manifolds. For instance the Ricci flow equation [2, 3] (a well-known
example of a flow, that “uniformizes” the metric), which was famously employed in the



proof of Thurston’s geometrization conjecture of three-manifolds [4] (and in particular the
Poincaré conjecture) in [5], does not preserve the Hermiticity of the metric.! The Ricci
flow has a natural interpretation in physics [9]; it arises as the renormalization group flow
of the target-manifold of a two-dimensional sigma-model at one-loop. From this (physical)
perspective, the fact that solutions to the Ricci flow equation approach constant curvature
metrics can be viewed as the consequence of the renormalization group flow “washing out”
(irrelevant) data such as the moduli of the original metric.?

This is a common theme when studying renormalization group flows in physics, and
a natural question to ask is whether more intricate (physically relevant) setups could give
rise to novel “uniformization” flows that might help in the study of smooth (four-) mani-
folds.? In this paper, we employ this approach, and study the supergravity limit of a stack
of M5-branes wrapping a Kéhler four-manifold in M-theory. This leads to holographic
renormalization group flows for the metric of Kéhler four-manifolds, which we expect (on
physical grounds) to be “uniformizing”.

The study of branes wrapping supersymmetric cycles from the perspective of hologra-
phy was first introduced in [14]. In particular, they adopted the perspective of viewing these
setups as holographic renormalization group flows across dimensions. Their focus was on
the case of Mb-branes (among other examples) to wrap a Riemann surface. Subsequently,
a plethora of solutions describing M5-branes wrapping certain classes of four-manifolds has
been found by studying either the effective maximally supersymmetric seven-dimensional
gauged supergravity (a consistent truncation of eleven-dimensional supergravity) or the
full M-theory supergravity background [15-20].*

In order to preserve some supersymmetry, the theory will generally be required to be
“twisted” [10, 21]. Due to the twist, a priori any choice of metric on a four-manifold
(within a given class) will preserve some supersymmetry. However, most supergravity
solutions known thus far assume that the twists hold along the full renormalization group
flow from the ultraviolet asymptotically locally AdS7 to the infrared AdSs. This then puts
constraints on the particular type of four-manifolds allowed by supersymmetry, because
the flow has to be consistent with an AdSs solution in the deep infrared. However, since
the metric is fixed along the full flow, one cannot observe how it varies along the flows,
and thus the expected uniformization of the metric is not visible.

In reference [22], the authors remedy this by working out the case of M5-branes (among
other examples) wrapping Riemann surfaces, but now with the metric on the Riemann

'There is a variant of the Ricci low — the Hermitian Ricci flow — which does preserve Hermitian
metrics along the flow [6] also related to the physics of RG flows [7, 8], and various interesting results have
been proved by the same authors. However, a uniform treatment of smooth four-manifolds using Ricci flows
seems to be lacking as of now.

2An alternative vastly successful approach to the study of four-manifold motivated (also) from physics
is by the use of gauge theory [10-13]. This is unrelated to the motivation of the current paper.

3Throughout this paper, we shall use the term uniformization to describe metric (renormalization group)
flows which we believe to exhibit (loosely speaking) behavior leading to uniform (e.g. constant-curvature)
metric at the (infrared) fixed point of the flow.

“In the case of M5-branes wrapping four-manifolds, we detail the relevant setups and allowed classes of
four-manifolds involved in section 2 (see also table 1).



surface left arbitrary. They prove that indeed flows exist and uniformize the metric on the
Riemann surface. This result is motivated from the corresponding field theory setup, which
states that upon wrapping M5-branes on a Riemann surface, the resulting four-dimensional
N = 2 superconformal field theories should only depend on the complex structure of the
curve [23-25].

In this paper, we aim to initiate an extension of the discussion of holographic renormal-
ization group flows across dimensions; we consider a physical setup of M5-branes wrapping
Kahler four-cycles, which are calibrated cycles inside a Calabi-Yau threefold. The phys-
ical setup then requires the twist to be implemented in the ultraviolet as an asymptotic
boundary condition, such that supersymmetry is preserved. Similarly, in the infrared, it is
required that the solution is in fact a valid (vacuum) AdSs solution, which puts asymptotic
constraints on the fields and the metric. As opposed to the solutions in [15-20], both the
ultraviolet and the infrared thus merely serve as boundary conditions, and one studies the
equations arising from supergravity (and in particular the condition that some supersym-
metry is preserved along the full flow®) for the metric of the four-manifold in the bulk of
the flow."

Apart from the supersymmetry (and their integrability) conditions we solve all equa-
tions of motions, Einstein equations, and Bianchi identities for the metric of the Kéahler
four-manifold. We find a set of equations for the metric, which, if they are satisfied, give
a solution to the full supergravity setup. They are second-order in terms of the Kahler
metric. We further study the boundary conditions in the ultraviolet as well as the infrared.
We find that indeed in the ultraviolet (to leading order) there will not be any constraints
on the Kéhler metric. At the infrared fixed point however, we observe that the supergrav-
ity equations imply that the metric has to be Kéhler-Einstein. This can be viewed as an
indication of uniformizing behavior of the set of equations we derive for the Kéhler metric.

This paper is organized as follows. We start in section 2 by reviewing some aspects
of twisted Mb-branes and their relation to calibrated cycles of special holonomy mani-
folds. We further introduce some intuition behind the notion of uniformization (or its
higher dimensional analogue) arising when wrapping M5-branes on calibrated four-cycles.
In section 3 we introduce our main tool, namely the maximally supersymmetric seven-
dimensional gauged supergravity. In section 4, we discuss our ansatz and provide some
more details for the particular calibration considered in this paper. Finally, in section 5,
we present the metric flow equations and make some comments about their asymptotic
behavior. Lastly, in section 6, we conclude the main part of the paper with a discussion of
our results and a rather extensive list of interesting future directions. In two appendices
we provide some clarification of our notation in the main part of the paper, and some more
details for the derivation of our solution.

5In this paper, we shall restrict to flows that are %—BPS with respect to the maximally possible super-
symmetry allowed for such a setup.

As remarked in [22], one views such types of supergravity flows as a boundary-value problem, with
prescribed infrared and ultraviolet boundary conditions. However, this is rather different to the usual
picture of Wilsonian renormalization group flows.



2 Twisting, calibrated cycles and uniformization

Generically, when putting a supersymmetric theory on a curved manifold, we will not
be able to preserve (any) supersymmetry. This is due to the fact that there might not
exist a covariantly constant Killing spinor. However, if the theory has global symmetries
(such as R-symmetries or flavor symmetries) one can implement what is called a (partial)
topological twist [10]. The idea is that one introduces a background field A, for (part of)
the global symmetry group and tunes it in such a way that it cancels against (part of) the
spin-connection, i.e. somewhat schematically

Oue+ (wu™yan + Ag ) € = ue = 0. (2.1)

In principle one may choose any part of the global symmetry group to perform this twist.
However, since one would prefer this procedure to be independent of the choice of theory,
it is advantageous to use part of the global R-symmetry group [26]. Since the stress energy
tensor is in the same supermultiplet as the R-current, there will always be a way to twist,
independent of the details of the theory.

For the purpose of this paper we shall be interested in branes wrapping (arbitrary)
supersymmetric cycles. It is then generically the case that the field theory realized on
the branes is twisted [21]. In particular, the cycles will typically not have any covariantly
constant spinors, and hence supersymmetry has to be preserved by implementing a (partial)
topological twist.

An alternative point of view on such twists is to start with the full (string or) M-
theory. In order to preserve supersymmetry in the full eleven-dimensional M-theory setup,
we have to put the theory on a “special holonomy manifold”. Then, to support static M5-
branes solutions, we require the Mb5-branes to wrap supersymmetric cycles of the special
holonomy manifold. It can be argued on general grounds that these supersymmetric cycles
are precisely given by calibrated cycles [27-30] (see also [31] for a nice review).”

In the current paper, we are mainly concerned with the case of calibrated four-cycles.
In table 1, we detail the possible calibrated four-cycles of M-theory on special holonomy
manifolds, as well as the preserved supersymmetry in two dimensions, and the condition on
the four-cycles arising from explicit supergravity solutions. All but one of these calibrated
brane setups have a corresponding global solution in a truncated gauged seven-dimensional
supergravity [15-18].8 The (single) case without a known solution in the effective seven-
dimensional setup (i.e. Kéhler four-cycles in CY3) will be treated in this paper.” However

"We call a g-form ® on a manifold M a calibration if and only if d® = 0, and V2 € M and any oriented
g-dimensional subspace &, C T, M, <I>\§m < v01|Ez, where vol|Em is the volume form of &,. A g-cycle Xy is
then calibrated by @ if and only if

¢'|Eq = V01|2q . (2.2)

8Any solution in the truncated gauged seven-dimensional supergravity can be uplifted to eleven-
dimensional M-theory, as we will discuss in some detail in section 3.1.

In the current paper, we shall not provide or investigate global solutions, since the focus is on deriving
the flow equations from supergravity. We intend to study possible global solutions in future work.



this case has a solution in eleven-dimensional M-theory given by AdSs x CY3 x S? [32] (see
also [33, 34]).

An alternative perspective on such brane setups is as renormalization group flows
across dimensions. On the field theory side, in the ultraviolet of the RG flow, we expect
the microscopic description to be given by the worldvolume theory on the Mb5-branes —
namely the six-dimensional N' = (2,0) superconformal field theory [35, 36] — on some
nontrivial background of the form R x M,. Moving to the infrared regime, we expect
the characteristic size of My to be small and the theory to be essentially given by a two-
dimensional superconformal field theory with the amount of supersymmetry determined
by the particular class of four-manifolds, and the twist/choice of calibration (see table 1).

Complementary to this field theoretic picture, there is a corresponding dual holographic
RG flow analogue. The N' = (2,0) theory in the ultraviolet is dual to eleven-dimensional
supergravity on a space of the form AdS; x §* [32, 37]. However, to match the field theory
setup, the AdS7-factor is now given by Rb! x My at constant r-slices, with r the radial
direction of AdS7. In order be able to put the theory on such a background, we have to
precisely implement the (partial) topological twist in the ultraviolet, given schematically by
the condition in (2.1). In the infrared however, we expect a two-dimensional superconformal
field theory and therefore the corresponding supergravity dual should be of the form AdSj5 x
My with a certain amount of supersymmetry preserved.

A priori, the internal four-manifold M, can be picked arbitrarily within a given class
of calibrations. Due to the (partial) twist, supersymmetry is guaranteed to be preserved.
However, as was observed in the particular supergravity solutions [15-18], supersymmetry
imposes further conditions if we want solutions which also exist in the deep infrared and
give an appropriate physically relevant AdS3 solution. In all of those cases the internal
four-cycle My and in particular the twisting condition in (2.1) was fized along the full flow
from the ultraviolet to the infrared.

In the current paper, we are precisely interested in studying how the metric varies
along the RG flow. This was considered in [22] for the calibrated cycle given by a Riemann
surface. In the following, we shall employ a similar strategy but for four-cycles. If we leave
the metric arbitrary, the infrared and ultraviolet behavior become separate asymptotic
boundary conditions to a set of equations which determines the RG flow of the metric.
The (partial) topological twist is then only applicable in the ultraviolet, and so we may
pick any choice of four-cycle (within a given class of calibrations) asymptotically in the UV.
In the asymptotic infrared region however, we generally expect to reach the known AdSs
solutions and consequently we expect that the additional conditions on the IR four-cycles
have to be satisfied. In the following to distinguish the two asymptotic metrics, we shall
denote the four-manifold appearing in the ultraviolet as MflUV), and the one in the infrared
as ./\/lfllR); of course they are still the “same” manifold, but with different metrics on it.
In table 1, we provide the expected infrared conditions for MELIR) arising from the known
holographic solutions.

The reason one expects further conditions on the four-cycle in the infrared regime, can
be understood by considering again the dual field theory setup; we take the field theory
limit on the stack of M5-branes, and expect to flow to a two-dimensional field theory. Far



Calibration Embedding 2d SUSY | IR manifold M{™
CY = (1,1
SLAG b---- 1/,\\/;(47§ g B N= 1 Constant curvature
My x My C CYy x CYy N:(Q,Q)
CYy = (4,0
Kahler F---- //\\jllii oy i ffffff ﬁ/'/’z 52: 0; 1 Kahler-Einstein
Kahler-Einstein and
Lagrangian My C HK, N =(2,1) | constant holomorphic
sectional curvature
Coassociative MaC GQ N=( Conformally half-flat
Cayley My C Spin(7) N =(1,0)

Table 1. The possible calibrated four-cycles of special holonomy manifolds (coming from bilinears
of spinors). In the first two columns we list the type of calibration and the particular embedding into
the special holonomy manifold. In the third column we write down the maximal supersymmetry
preserved in the two-dimensional superconformal field theory from the respective calibration (or
from the equivalent partial topological twist). Finally, in the fourth column we list the conditions
arising from (known) supergravity solutions [15-18] on the four-cycles in the infrared limit, where
the geometry is given by AdSs x MELIR).

in the infrared regime, it is expected that we obtain a conformal fixed point, which is
precisely the theory dual to the IR, AdSs solution. The precise details of the metric on the
four-cycle MELIR) then enter as data for the “effective” superconformal field theory at the
fixed point. For the case of four-dimensional N' = 2 superconformal field theories arising
on Mb5-branes wrapping calibrated two-cycles inside CY3, only the complex structure of
the Riemann surface enters the description of the four-dimensional theory [23-25]. At the
same time, the conformal factor of the metric is supposed to be washed out along the RG
flow. Therefore, it is expected that the internal Riemann surface “uniformizes” along the
RG flow. This is precisely the uniformization behavior observed in [22] from holography.

Similar results are expected to hold for the case of Mb5-branes wrapping higher-
dimensional calibrated cycles [38-40].'° Thus, we expect that the infrared four-cycle ./\/lfllR)
“uniformizes” in the deep infrared, which is what we set out to test in the following us-
ing holography.

3 Seven-dimensional maximally supersymmetric gauged supergravity

In this section, we set up the maximally supersymmetric seven-dimensional SO(5) gauged
supergravity theory as introduced in [42]. This is the theory in which we are computing the
relevant M5-branes renormalization group flows for Kahler four-manifolds. The theory has
N = 4 supersymmetry and can be obtained by a consistent truncation of eleven-dimensional
M-theory on S* [43-45]. As such it has an SO(5), gauge symmetry. Furthermore, there is
a composite SO(5). symmetry acting on the scalars.

19Gee also some discussion in the introduction of [41].



Apart from the seven-dimensional graviton e, the bosonic field content of this theory
includes fourteen scalar fields which we package into a tensor II;* transforming in the
fundamental representation of SO(5), from the left and in the fundamental representation
of SO(5). from the right.!! For ease of notation we shall also introduce the fields recombined

into a symmetric matrix 7;; as follows'?

Ty = (1),

(2

I (H—l)j T817, T =69Ty, (3.1)

which parametrizes the SL(5,R)/SO(5). coset and satisfies |det (7j;)| = 1. Furthermore,
there is a 1-form gauge field Au“ transforming in the adjoint of SO(5), with field strength
F,'7 =dAl 4 gATK A AR (3.2)

where we denoted by g the seven-dimensional gauge coupling. Similarly, we may introduce
symmetric and anti-symmetric composite gauge fields P, ;; and @), ;; via

Quiisl + Pugiyy = (), 1 (61704 + A, r7) 11,765 . (3-3)

Finally, there is a three-form antisymmetric tensor field S,,,;, which transforms in the
fundamental representation of SO(5),, with field strength given by

F]EdS[+gA[J/\SJ. (3.4)

Apart from the bosonic fields there are the fermionic superpartners, which we shall
mention briefly here, and set to zero in the following. First, we have four gravitini ¢,
transforming in the spinor representation of SO(5).. Secondly there are the dilatini given
by sixteen spin-3 fields A%, which transform under SO(5). in the spinor-vector (16) rep-
resentation.

We shall from now on set the fermionic fields to zero. The bosonic action is given by

2
Z‘ISNVPI) }
—6m5[JS]/\FJ+\/EEIJKLM(SINSN/\FJK/\FLM—I-% (2@5[14] —Qg[A]) s (35)

2L :e{R—i—%mz (T?—2T;;T") = P, y3 P9 — L (T, T F,, ') —m? ([T
where m is the mass parameter and 23[A] and Q5[A] are the Chern-Simons forms of the
gauge-field A, which are explicitly given as
2
Q3[A] = eP7oP Ty <AMF,,p - 3AMAVAp> Tr (FyaFay) (3.6)
4 2
Q5[A] = 7B Ty <A#FVPFMFM — s AuAV A FooFly = S Ay AL F o Aoy

4
= Ay Ay ApAs AaFy — ;;A#A,,APAUAQAﬁA7> . (3.7)

"For our explicit choice of notation and indices, we refer to appendix A.
R2Eor convenience, we shall switch back and forth between the two notations, II;" and T5;.



From the above Lagrangian we can find the following equations of motion for the theory

1 1
1\ K (-1 Jo._ 1+ JK A LM
(51K(H )z (H )z Sy= m*FI+4\/§m2€IJKLM*(F AF ), (3.8)
D[TZ;ITJEI*F”} :mTiFkl (*DT@i)+\/§Ei1i2i3ngi1i2/\Fi3
6
—fF[1[2/\F11]2/\Fkl—GmQSk/\Sg, (3.9)
m

D{(T7Y), DT | = 2m (2Tig Ty~ T ) (+1)+4T5 T (<F™) A FH
1
+12m? Ty (+SF)AS' =20, [41/ (K1) FATAT, (+F™) A
+12m2TM(*S’f)ASﬂ , (3.10)
Ry = Puijpvij‘i' (HIiHJiFupU) (HKjHLjFVpKL)
+3m2 [(171), " Syupr] 67 (1171, 75,7,
1 g
— 199 [m2 (T2 —2T;;T) + (IIILF)* 4 4m? (Hls)ﬂ . (3.11)

Here, by V' we denote the scalar potential

V= %mQ [2njnj - (Tﬁ] . (3.12)
Let us remark that the scalar matrix Tj; can be fixed to be diagonal by an SO(5), gauge
rotation. Upon doing so, this will still leave some residual gauge symmetry.
The supersymmetry conditions for the gauged supergravity theory are given by setting
the supersymmetry variations of the fermionic fields to zero. In full generality these are
given by (spinor indices are suppressed)

1 1 . .
6y = Dye+ —mTye — — (7,77 — 83,/4°) Tije I T F, 1/

20 40
m y 9., ; _

+ T\/g <’7u P 5(5# ,yp0'> Flﬁ (H 1)i ISVpO—[ = 0, (313)
6>\—1”FjP 1 T, 1T5 rJ 1 w7l 1FF s *u,tr,,
i =57 Emj+§m iy~ g4 0 6+E’7 pibe — plitp | €ty Py

v j j -1\ I
+ m’yu p (FZJ — 45z]) € (H )j Suyp[ = O, (314)

where the covariant derivative acts on the Killing spinors as

1 1 .
Dyea = Opéq + Zwum"'ymnea + 1 Quis (T7), bep . (3.15)
Furthermore, we have used the seven-dimensional gamma matrices 7, (with Lorentzian
metric) and the five-dimensional ones T'; (with Euclidean signature), and we have denoted
by w,™" the seven-dimensional spin connection. We refer to appendix A for further details
on our notation and conventions as well as explicit forms for the gamma matrices.



Lastly, any supergravity solution has to satisfy the following Bianchi identities

Dy F,,"7 =0, (3.16)
DyFyp' =0, (3.17)
Dy, (F9),,7 =0, (3.18)
Dy, (D,II) =0. (3.19)

Finally, the mass parameter m is related to the gauge coupling by
g=2m, (3.20)
and we shall employ this to remove the explicit m-dependence in the following,

3.1 Uplift to eleven-dimensional M-theory

The maximally gauged supergravity in seven-dimensions can be obtained as a consistent
truncation of eleven-dimensional supergravity reduced on a four-sphere [43-45]. The cor-
responding uplifted eleven-dimensional metric and fields are given by

2 1/3 7.2 AT
dSH = A d57 + B} TZ] D[L D/,L s (321)
where pf, with i = 1,...,5, are constrained coordinates on S* satisfying Z?Zl pipt =1,

and g is the seven-dimensional gauge coupling as above. Furthermore, we introduced
A = Tyuind, (3.22)

as well as
Du' =dp’ + gAYpu?, for i=1,...5. (3.23)

Finally, the four-form field strength of the eleven-dimensional M-theory is given in terms
of the seven-dimensional fields as

1 ) . .
HY = L n Dy - i 1)
A2 . A A _ A
+2493{ —U P Du? ADu® ANDu** A Du'®
+4 T4 %t DT, A Dy A Dpit A Dpts
+(694) TilejFiQiB A ID,UM A DMiS }6i112i3i4i5 ) (3.24)
where we have defined
U=2T, T puiy® — ATy, (3.25)

and we denoted by %7 the seven-dimensional Hodge star operation.



4 Supergravity Ansatz

4.1 Ansatz

In this section we introduce our main ansatz, including the asymptotic behavior, for the

13 We will focus on

seven-dimensional gauged supergravity renormalization group flows.
the case of a Kahler calibrated four-cycle inside of a Calabi-Yau threefold in M-theory.
As previously mentioned, a gauged seven-dimensional supergravity solution is lacking in
this case. However, there are known eleven-dimensional solutions of the form AdSg X
CY3 x S? [32, 33]. As we shall see in the following, given our more general ansatz, we
find some evidence suggesting that the divergence spoiling consistent IR solutions in seven-
dimensional gauged supergravity might be avoided if the Kéhler metric has non-trivial r-
dependence. We plan on studying possible global solutions as well as more general setups
in future work [46].

The guiding principle to set up our ansatz will be to use intuition gained from known
solutions [15, 16, 47], as well as general arguments for M-theory geometries involving M5-
branes [33].

First let us recall the precise “calibrated Kahler twist”. We start by considering a
stack of M5-branes wrapping a Kéahler four-manifold, which has holonomy given by U(2) ~
U(1)1 x SU(2)2. In order to ensure that there are supersymmetric solutions for generic
Kihler manifolds, we are required to introduce a (partial) topological twist.!* There are
two ways of doing so: on the one hand one can embed the U(1); subgroup of U(2), or
on the other hand one may embed the SU(2)2 part inside the SO(5)r R-symmetry of
the six-dimensional (2,0) Mb5-branes worldvolume theory. In the former case the Kéahler
four-cycle is a calibrated cycle inside a Calabi-Yau threefold (CY3) and in the latter case
it is a calibrated cycle inside a Calabi-Yau fourfold (CYy). In this paper we shall focus
on the former case, in which the Kéhler four-manifold is given by a calibrated four-cycle
inside a CY3. Thus the Kéhler four-manifold is a holomorphic cycle calibrated by the
four-form %J A J, where J is the complex structure two-form on CY3. The tangent bundle
to the Calabi-Yau threefold restricted to the four-cycle then splits into a tangential and a
normal part

TCYs|,, =TMs & NM,. (4.1)

}M4

Since Calabi-Yau manifolds have vanishing first Chern-class, we find
c1(TCY3) =0 =c1(TMy) + c1(NMy), (4.2)

and one can show that N My is intrinsic and isomorphic to the canonical bundle of My.
From this, it follows that in the regime near the M5-branes, the Calabi-Yau threefold can
be described by a complex line bundle over the Kéhler four-manifold.

13Recall that for our purposes the asymptotic conditions in the infrared and ultraviolet are considered as
boundary conditions of our metric flow equations.

1 For us this twist will only be effective as an asymptotic ultraviolet boundary condition of the holographic
RG flow.

~10 -



Now, we are looking for solutions in the near-horizon limit. Thus, we expect that only
the local geometry of the calibrated Kéahler four-cycle inside CY3 and its normal bundle
structure enters the construction. Therefore, the original eleven-dimensional setup

RY % CY3 x R? (4.3)
should now give rise to the following M-theory supergravity geometry
AdSs x (5} = Mffm) x S x Iy. (4.4)

This is only strictly true in the infrared asymptotic limit for our case. However, to formulate
a sensible ansatz, it is helpful to have this intuition in mind. In equation (4.4), we denote
by S}' — My a circle fibration over My, which is what we expect the complex line bundle
to turn into in the supergravity approximation. The two-sphere 512% will be dual to the
R-symmetry of the two-dimensional superconformal field theory.'® Finally, by Iy we label
an interval.'® Together, the S' factor with the sphere 512% and the interval Iy will give
topologically a four-sphere. Of course the ultraviolet boundary condition of our RG flows
are simply of the form AdS; x S*, where slices of constant radius of AdS; are given by
RLL x MiUV). We refer to section 4.2 for explicit comparison of the eleven-dimensional
uplift of our ansatz with the discussion here.

For the purpose of this paper and in accordance with the above picture, we shall
further restrict to the seven-dimensional gauged supergravity described in section 3, which
is a consistent truncation of M-theory on a four-sphere [43-45]. The theory has an SO(5),
gauge symmetry corresponding to the isometry of the four-sphere. We expect to turn on
gauge fields for the SO(2) subgroup in SO(5), — SO(2) x SO(3), whereas the SO(3) factor,
which corresponds to the R-symmetry of the two-dimensional N' = (4,0) superconformal
field theory, is assumed to survive. In particular the corresponding gauge fields should then
be tuned to zero in the vacuum state.!”

Now, in order to set up our supergravity ansatz, let us start by looking at the pre-
cise asymptotic (boundary) conditions for the renormalization group flows in the seven-
dimensional gauged supergravity.

Ultraviolet. In the UV, we expect to have a resulting metric which is asymptotically
locally AdS7 with slices of constant r being of the form

0AY
RV x MUY (4.5)
for an arbitrary Kahler four-cycle MELUV). The fact that we can pick an arbitrary metric on

MiUV) comes from imposing a (partial) topological twist asymptotically in the ultraviolet.

15The relevant Kihler calibrated cycle inside CY3 preserves N’ = (4,0) supersymmetry in two dimensions.

More precisely, we expect the radial directions of the R® factor and the complex line bundle to turn
into the radial direction of AdSs and the interval Iy (see for instance [48] and [20] for similar statements in
different setups).

17 A priori, it is not clear whether they must be turned off along the full RG flow, however it is a sensible
assumption, since they are turned off in the ultraviolet as well as in the infrared.
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The particular topological twist we are employing here (i.e., the topological twist corre-
sponding the Kahler calibration in a CY3) can be imposed as follows: the SO(5),-gauge
fields for the seven-dimensional gauged supergravity are specified by the spin-connection

V)

Mb5-branes is twisted. Therefore, we decompose the gauge group as follows

of the arbitrary Kéhler metric on MELU , corresponding to the fact that the theory on the

SO(5), — SO(2) x SO(3) (4.6)

where we use the SO(2) factor to (partially) twist the theory. This decomposition is mir-
rored in the eleven-dimensional M-theory setup by the division of the transverse directions
to the M5-branes into tangent and normal bundles of the special holonomy manifold. From
the general discussion above, we hence expect that only the SO(2)-gauge fields are excited
in the ultraviolet. In particular, we set all the gauge fields to be vanishing apart from the
component A2, which we fix such that it cancels the spin-connection, i.e.

«M“ﬂ’m%m+QﬂnOe:0, (4.7)
"

in the asymptotic ultraviolet regime, where w(VV)

is the spin-connection of the Kéahler
four-manifold MELUV) of arbitrary metric, and @ is the composite gauge field. To explicitly

solve equation (4.7), we fix projection conditions for the Killing spinors, namely'®

7'ea =0, (4.9)
V'ea =7ea = i<F12)ab6b7 (4.10)
where a = 1,...,4. It is important to notice that these projection conditions are actually

%—BPS (i.e., we preserve half of the supersymmetries required to implement the twist). The
reason we pick those projection conditions instead of the “fully” supersymmetric ones is
due to the fact that the resulting Kahler metric flow equations are rather restrictive [49],
though they should be of interest in their own right. Given these projection conditions
we may fix the components of the U(1) gauge field A'? in the ultraviolet by solving (4.7)
asymptotically.

Infrared. In the infrared, we expect that the theory is given by a metric of the form

AdSs x M) (4.11)

where we denote by MS}R)

the four-cycle My at the IR fixed point (i.e., after uniformiza-
tion). As explained above, we expect now that the SO(3) part of the gauge symmetry
corresponds to part of the R-symmetry of the dual two-dimensional superconformal field

theory, and we should not have any gauge fields turned on for it in the supergravity solution.

18Since we have yet to specify a frame, we denote the gamma matrices here by their spacetime indices. In
terms of the frame in equation (4.16), and the gamma matrices in appendix A, the projection conditions read

'y3ea =0, and fy4ea = 'VGea = i(l"lg)abeb. (4.8)
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Given the discussion of the infrared and ultraviolet limits, we first impose that the
Killing spinors €, surviving the projection conditions (4.9) and (4.10), shall be preserved
along the full flow. It is then natural to consider an ansatz for the seven-dimensional metric
as follows

ds? = e/ da? (RY1) + e*9dr? + ehds? (My) . (4.12)

Here ds? (M) is the metric on the calibrated Kihler four-cycle along the full RG flow,
which we write as

ds* (My) = (09:,05,K) dz'd# (4.13)

where K is the Kahler potential, which we pick to be an arbitrary function of r as well as
the coordinates on My, i.e.
K=K(r 2,21, 22,23) - (4.14)

The part dz? (Rl’l) corresponds to the flat space metric of the resulting two-dimensional
superconformal field theory. Finally, the functions f, g and h depend on the radial coordi-
nate r as well as on the holomorphic coordinates {z1, z1, 22, Z5 } of the K&hler four-manifold

My, ie.
f = f(rv 21721722722) y 9= g(ra Zl,EI;ZZ;EQ) ) h = h(’l“, 2172172272§) . (415)

They have to satisfy specific asymptotic conditions in the UV and the IR, which we shall
discuss in some detail in section 5.2.

In the following we are required to explicitly pick a frame for the seven-dimensional
metric. We choose the following vielbeins for the seven-dimensional metric ansatz

el =ef dt, e? =el dz, e3 =eddr,
et =e" Bt S = BT, b =e"E?, (4.16)
el — ehE’i,

where for the frame of the Kdhler metric we definel?

El _ ICII le + KiQ dZQ Ei _
(S TOREI () (418)
2 _ (’Clilcﬁ - Kli’cm)l/z ~2 (’Cli’CQi - ICIQICTQ)UZ _ '
E° = 75 dza, £ = 12 dzs .
(Kip)" (Ki1)
Notice that this choice of frame requires the (tangent) four-dimensional metric to be of
the form
0100
_ 1000
0010
9From here on out we shall employ the following shorthand notation
fro= 0 f(r,zi,2,...), fig = 0:,05f(r,2i,%5,...), etc, (4.17)

for an arbitrary function f depending on variables (r, z;, Z7, . . .) .

~13 -



Again referring to the asymptotic conditions discussed above, it is natural to turn off
all but the A'? components of the SO(5), gauge fields along the full RG flow. In terms of
the seven-dimensional vielbeins we may expand the field strength as

7
1 o
12
F'? =2 Z Fije' Nel (4.20)
7]
4,523
where (F;;) is anti-symmetric, and the functions F;; depend on all but the spacetime
coordinates, i.e.

]:Z] = ]:ij(rv 21, 217 22, EQ) ) Vi 75 ] . (421)

This ansatz for the gauge fields and the metric also implies that the scalar sector of the
supergravity has to satisfy reduced symmetry transformations along the full RG flow. Let
us now recall that the scalar matrix Tj; (or similarly II 4%) can be fixed to be diagonal by
an SO(5), gauge rotation. Thus, we may fix the composite scalars to be of diagonal form,
and in particular we set as an ansatz

4" = diag <€3>\,€3/\,€_2>\,6_2>\,6_2>\) , (4.22)

where
A= A(r, 21,27, 22, Z3) - (4.23)

With this choice, the composite gauge-field @ is determined by the gauge-fields via
Q.7 =2m A" (4.24)

Finally, the three-form S’ is generically non-vanishing. However, we can trivially solve
the S-equation of motion by setting S’ = 0.

4.2 Uplift to eleven-dimensional M-theory

We now briefly discuss the uplift of our seven-dimensional gauged supergravity ansatz to
eleven-dimensional M-theory. We employ the general uplift formulas detailed in section 3.1
and first outlined in [43-45]. The eleven-dimensional metric is then given by

B A72/3
ds%1 = Al/?’ds% + o {66>‘ sin’ 6§ (dd) + 2mA12)2 + e~ cos? Gdﬁ“dﬂa}
C2AA1/3
m2

de?, (4.25)

where 1%, a = 1,2,3 are constrained coordinates such that g%n® =1,

A =esin?0 + e** cos? 0, (4.26)
and 0 € [0,27). Furthermore, ds? is the seven-dimensional metric ansatz as given in (4.12).
As expected from the point of view of calibrated cycles, we see that there is an S' fibered
over the four-cycle My, which can be viewed as the unit (co-)normal bundle on the Kéhler
cycle inside the Calabi-Yau threefold. Furthermore, as expected, there is an S? factor
corresponding to the R-symmetry, and 6 gives the interval Iy as required from our previous
discussion around equation (4.4).
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4.3 Supergravity equations in Ansatz

Let us now write down the supersymmetry equations, equations of motion and Bianchi-
identities given our ansatz in section 4.1. Namely, by setting S = 0, the S-equation
of motion

5IK (H_l)i 7

1 1
K (-1 Jao. _ JK , LM
(H ) Sy = m*FI+4\/§m26L]KLM*(F NF ) , (4.27)

is trivially satisfied. In addition, we fix a diagonal gauge for the composite scalars II;* as
in equation (4.22), and thus we find (in the alternative notation) for T;;,

T;; = diag (6_6)‘, e~ et et 64’\> . (4.28)
Then the F-equation of motion simplifies to

D [em * FlQ] = 0. (4.29)

Similarly, the T-equation of motion is encoded in the following single (independent) equa-
tion ) )
dxd\ = [m2€_2/\ - 15‘/] (+1) + 561% (xF'2) A F12 (4.30)

where the scalar potential is now simply
V= —gmz |:€8>\ + 46_2>\:| . (4.31)

Finally, the Einstein equation (we shall use an equivalent version in different notation here)

1, _ 1. B . 1 o
Ruu = Z(T 1)Z]D,u,fjk(T l)kf DVTEZ' + Z(T l)zk(T l)leuprl/p M + Zﬂjs,upalsp uj
1 1 . 1 . .
+1g9 (—4(T1)ik(T1)ﬂFpngW“ = 3T Sp0r' ST + 2v> : (4.32)

with the scalar potential V' in equation (3.12) (after inserting our ansatz, V is given in
equation (4.31)) can be written as

1 1 2
Ry = 30(V,0) (VoX) + 5 (F12),(F'?),” = g, (e (F12)* —av),  (433)

where

(172" = ()

Before we discuss the supersymmetry conditions, let us write down the only nontrivial
(Abelian) Bianchi-identity

(P2 (4.34)

DF? =d(F) =0. (4.35)

Let us now turn to the supersymmetry conditions in our ansatz. We shall not explicitly
split the spinors up, since we will not explicitly need it in the remainder. The dilatini
equations for i € {1,2} can be written as

, 1 1
0 =~"T" (V,\) + =m <e_6)‘ — 364/\> Ie + TOeGHWFIQPie (F?),, - (4.36)
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and for j € {3,4,5} they are given by

j 1 A =62\ 1y L 6x
0=—"TVe (V) + £m <e4 —e© ) e+ Ee(j Yol e (F12)W . (4.37)
Similarly the gravitini equations in our ansatz read
1 1
D, = ~55™ (2676)‘ + 364)‘> Yu€ + %66)‘ (74P — 80, ) T'12€ (Fu)yp , (4.38)
where 1
Dyéa = Ouéa + 7w Ymn€a + g (4), (1), e, (4.39)

where we recall that we set g = 2m.

4.4 Integrability

Apart from the supergravity equations described in the previous section, we will also employ
what we call “integrability”. In principle one could try to solve integrability in the usual
sense, i.e. use the gravitini and dilatini variation to solve schematically

[Dy, Dyle o< Ry + -+, (4.40)

where the ellipsis denote curvatures for other bundles (e.g. gauge field strengths). However,
for our purposes it is enough to do this explicitly in our ansatz/solution. The procedure
goes as follows: we use the gravitini variation to solve for

on==1Lm, O n=2L,n, 0z =1Ixn, (4.41)
0.,m=1,n, 0zn=1In, (4.42)
in terms of the fields in our ansatz. Here we used 7 to denote a particular component of the
Killing spinor €, which is preserved under the aforementioned projection conditions (4.9)
and (4.10). Furthermore in Z; we schematically include all the relevant fields and their
derivatives that appear when solving for the left hand side. Then we take derivatives of

these equations and then the “Schwarz integrability condition” for PDEs will give us a set
of equations of the form

87"2’177 =0, (Izm) = 8Z1T77 = azl (ITT/) (4‘43)

and similarly for the other pairs of variables. By plugging equations (4.41) and (4.42) back
into (4.43) and its cousins, we find partial differential equations purely in terms of the
fields in our ansatz, independent of 7 (or €). Furthermore, these integrability conditions
will ensure that we can locally integrate to find the Killing spinors.

5 Metric flows for Kéahler calibrations inside CY3

5.1 Kahler metric flow equations

We now sketch our solution for the ansatz discussed in section 4 and refer to appendix B
for more details.
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We start by defining the following combination of fields

A=x—f, (5.1)
G=4f+g, (5.2)
H=h-f. (5.3)

From combining the gravitini equation (4.38) and the dilatini variations (4.36) and (4.37),
we observe that these combinations of fields only depend on three out of the five variables.

0

However, we assume in the following that they only depend on the r-direction,?’ i.e.

A=A(r), G=G(r), H=H(r). (5.4)

Using the full range of supersymmetry equations, equations of motion, Einstein equa-
tions as well as Bianchi identities including integrability conditions given in sections 4.3
and 4.4, we can solve for the components of F'2. In an expansion in terms of the seven-
dimensional frame coordinates — as detailed in (4.20) — we have written down the resulting
solutions in equations (B.7)—(B.16). Similarly, using all the aforementioned field equations
we can isolate the partial derivatives of the function f with respect to r, z; and z9; the
resulting solutions are provided in (B.17)—(B.19). For our purposes, we may neglect the
remaining partial derivatives of f with respect to the barred coordinates.

Furthermore, we found the following solutions for the fields A(r) and H(r) introduced
in (5.1) and (5.3)

A (r) = —meSHin (5.5)

N e

1
O-H(r) = = (0,G + 3me“T4) - 0 log (KiiKmz — Koo - (5.6)

Having fixed all these ingredients we arrive at the following set of metric flow equations
(we again refer to appendix B for more details)

t =t(r), (5.7)

t(r) = s(r), (5.8)

t(r) = Orlog (K11Ky03 — K93Kpa1) (5.9)
(logg),; =0, (5.10)
(log.g),5 = 0. (5.11)
(log g);; el = (lolikg;kz et + ma,log (/Ig:gﬂ Kz, (5.12)

20This is an assumption which helps to simplify the equations. It is rooted in the study of Kéhler
calibration flows that preserve the mazimal amount of supersymmetry [49]. Namely, in that case, one
can explicitly show that equations (5.1)—(5.3) are fully general. We shall not discuss “full” flows in the
current paper.

17 -



where i,k € {1,2}, and 7,/ € {1,2}, are arbitrary, and where we have introduced the
following definitions

t = Oy log (K11K,12 — K12Kp11) (5.14)
s = Oplog (K11Ky13 — K13K,11) - (5.15)

In particular, the equations arising in supergravity explicitly dictate that ¢ and s only
depend on the r-coordinate. Finally, we have defined

logg = log (’Clilczé - K13K13) (5~16)

which is strictly speaking 1/2 the logarithm of the determinant of the Kéhler metric, and
thus the Ricci tensor of the four-dimensional Ké&hler manifold reads

Ri; = —10;0;log det (g) = —2i (log g),; - (5.17)
There is one final equation

S

(logg);e" 1 s
2 )

=—-(0,G+ 3meG+4A) + 0 log Kiy —

o . (5.18)

for arbitrary i € {1,2} and 7 € {1,2}. This can be used to fix 9,G(r) in terms of the
Kahler potential, i.e.

(log g)ij{
iz m

0,G(r) = —3meS T4 12 — 20, logKi + 5. (5.19)

As we mention in appendix B, this furnishes a complete and consistent set of equations
upon taking derivatives.

5.2 Asymptotics

We shall now discuss the asymptotic behavior of the Kéahler manifold flow equations (5.7)—
(5.12). In the asymptotic ultraviolet, we expect that by implementing the appropriate
twist, we can pick an arbitrary Kéahler metric. At the infrared fixed point we should end
up with a Kéahler-Einstein metric on the Kéahler four-manifold wrapped by the M5-branes.
We shall confirm these expectations explicitly in the following.

5.2.1 Ultraviolet

As discussed in section 4, in the ultraviolet limit, the metric should be asymptotically
AdS7, with the slices at constant r-coordinate being of the form

uv
RY x /\/lf1 )

(5.20)
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In particular the ultraviolet region will be in the limit » — 0, and the metric will have

asymptotic boundary conditions as?!

f~—logr+o(l), g~—logr+o(l), h~—logr+o(l). (5.21)

Similarly, the scalar A and the U(1) gauge field F''? have to satisfy the following boundary
conditions in the UV

Ay~ L ( (UV>) J% 4 0(1 5.22
( ) 4dm w ab + O( ) ’ ( )
A~o(l), (5.23)
where w(UVY) is the spin-connection purely on the four-dimensional Kihler manifold MELUV),
and
0100
-1

Jw = 000 (5.24)

0 001

0 0-10

The former condition is precisely the asymptotic implementation of the twist (4.7). Finally
the Kahler potential goes as

K(r, 21,21, 22, Z3) ~ IC[()UV)(zl, Zi, 22, 23) + TICEUV) (21, 21, 22,23) +o(r) , (5.25)

for r — 0.
With this asymptotic behavior of the ansatz, the function F(r) in (5.13) is asymptot-
ically given by
el ~cst-r 4 o(r) (5.26)

in the » — 0 ultraviolet limit. Furthermore, by including higher order terms, such as
/CgUV), the functions s introduced in (5.15) and ¢ in (5.14) are in fact well defined and
vanishing in the » — 0 limit. This is important in order for the functions f, g and h to
be physically sensible and well-defined. It is then straightforward to observe that our set
of equations does not put any constraints on the Kahler metric IC(()UV) in the limit » — 0.
This confirms the expected result that we may start the RG flow with an arbitrary Kahler

metric in the UV.

5.2.2 Infrared

In the infrared limit — corresponding to r — oo — we expect to obtain a metric solution
of the form
(IR)

21We use the (standard) notation: for any function f of the variable z, f(z) = o(g(x)) in the limit
x — 0, if and only if

f(z)

g(x)

lim =
x—0
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where MiIR) is supposed to be a “uniformized” version of the generic Kahler manifold we
started with in the UV. In particular, at the infrared fixed point, the Kahler potential will
be independent of the radial coordinate, i.e.

aTIC(Ta 21721722725) =0. (528)
Thus, in our Kéhler metric flow equations in (5.7)—(5.12), the remaining condition reads

(logg)iz _ (08 9)er (5.29)
Kiz Kyi

for arbitrary pairs (i7), (k€) € {(11), (12),(21),(22)}. In terms of the Ricci tensor and the
local metric on the four-manifold, this gives

Ry _ B (5.30)
9ij Ykt
Therefore, we conclude that MiIR) is as expected precisely Kahler-Einstein. The fact that
the ratio is independent of the r-coordinate follows from (5.10) and (5.11). Furthermore,
its independence of the local coordinates on the Kéhler manifold is a consequence of taking
derivatives of (5.19).22
Now we would like to explicitly see if we can find an asymptotic (consistent) IR AdSs
solution, by considering perturbation theory. To leading order the physical IR asymptotic

behavior of the metric fields f and g should satisfy
f~—=logr, g~ —logr, (5.31)

as well as
h ~ hg = constant, (5.32)

for r — oo. Thus, it follows that

1 1

el ~est-=+o () . (5.33)

r r

Similarly, there can be corrections to the Kéhler potential, and we fix an ansatz of the form
_ _ IR _ - IR _ 1

K(r, 21, 21, 22, 23) :IC(() )(zl,zi,zg,zi)—i—ng )(zl,zi,z%zi);—k--- . (5.34)

As mentioned above, the leading order ICE)IR) is then required to be Kéhler-Einstein with

(’CSIR))Z,J, s (R(()IR)>27 . (5.35)

The subleading contributions of the Kéhler potential can be fixed order-by-order. By doing

some constant fg € R, i.e.

so, we find an expansion consistent with the asymptotic behavior in (5.31) and (5.32). One

22There is a subtlety here in that the function s, defined in (5.15), is not well-defined for 8,.K = 0.
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can check that by solving the equations (5.5), (5.6) and (5.19) (which determine A, H and
G3) order-by-order, that the scalar A obeys

r

A~ Xo 40 <1> , (5.36)

where \g is a finite constant. Thus, the divergence, A — oo, observed in [15] seems to
be avoided in this expansion. The main difference is that the Kéhler potential-dependent
terms in equations (5.6) and (5.19) add more degrees of freedom, which allow us to cancel
the apparent unphysical behaviour of A. For instance, in equation (5.6), the K-dependent
piece starts contributing at leading order, i.e. at order O (1/r). If we fix the “bulk” K to be
independent of r, this term will be absent, and solutions will require unphysical asymptotic
behavior for the scalar A [15].%3

This works for the asymptotic Kéhler-Einstein metric IC[()IR) being positively curved,
i.e. having ¢y > 0 in (5.35). However, when ¢y < 0, we require imaginary Ag in (5.36),
to have a consistent set of asymptotic solutions. Of course none of this means that there
are any global solutions for ¢y > 0 or ¢y < 0, and it would be desirable to derive full
global solutions for either of those cases using our set of equations. We leave this for
future investigation.

Finally, let us briefly dwell on the observation that the infrared metric is Kéahler-
Einstein. In the mathematics literature, Kahler-Ricci flows have been an active area of
research for some time now (see for instance [50] for a nice review). An important fact
which was proved in [51] is that for non-positive first Chern-class — and after proper
normalization — the Kéhler-Ricci flow converges to a Kéhler-Einstein metrics (as a “by-
product”, the author was able to re-prove the famous Calabi-Yau theorem [52]). However,
if the first Chern class of the K&hler manifold is positive, the Kéhler-Ricci flow may not
converge to a Kdhler-Einstein metric (there exist compact Kéahler manifolds of ¢; > 0 which
do not admit a Kahler-Einstein metric [53, 54]). It is rather interesting, that we seem to
find somewhat complementary data, i.e. from a physical perspective, when ¢y > 0, we find
evidence for “well-behaved” IR Kahler-Einstein fixed points and when ¢3 < 0, we have
to consider a “complex” scalar (of course, from a mathematical perspective the physical
validity of the fixed points might not be relevant). The known mathematical results are
suggestive that there might exist global flows in the case of ¢y < 0. Either way we believe
that our set of equations could be an interesting alternative way to study four-dimensional
Kahler manifold flows and we hope to return to that in the future.

6 Discussion and outlook

In this paper we initiated the study of Kéahler four-manifold flows by treating renormaliza-
tion group flows across dimensions from holography. We started by setting up a physically
sensible ansatz for the case of Mb-branes wrapping a Kéahler four-manifold, which is a

#3Let us stress here that we do not recover the setting in [15] from our set of equations (5.7)—(5.12). This
is due to the fact that if the Kahler potential is independent of r everywhere, the functions s and ¢ are not
well-defined (see for instance equations (B.40) and (B.40)).
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calibrated cycle inside a Calabi-Yau threefold. This ansatz is taken in the local picture of
gauged seven-dimensional supergravity. We then went ahead and imposed %—BPS condi-
tions on the Killing spinors, and solved all the constraints coming from the supergravity
theory. This left us with a system of partial differential equations purely in terms of
the four-dimensional Kéhler metric (5.7)—(5.12). We then provided evidence that these
equations should describe some sort of higher dimensional analogue of uniformization of
the four-manifold, by taking expansions around the ultraviolet and infrared (physically
motivated) boundary conditions. We argued that in the ultraviolet one may start with
an arbitrary Kéahler metric, and in the infrared it should uniformize to a Kéhler-Einstein
(constant curvature) metric. In particular, both the UV and IR expansions seem to be
physically well-behaved.

We shall now present a rather extensive list of interesting future directions.

To begin with, an interesting problem is to study and analyze our equations (5.7)—
(5.12) in more detail. To do so, it might be useful to write down a “covariantized” version
of them. It is possible that this requires us to relax some assumptions in our ansatz;
for instance we suspect that when we “gauge-fix” the composite scalars to be diagonal
(see (4.22)), we also “pick a gauge” in a possible more general “covariantized” version of
the metric flow equations, such that they reduce to the ones we found. More precisely we
could imagine that fixing the composite scalars to this diagonal form might have drawn
us to a specific representation of more general “covariantized” flow equations for Kéhler
four-manifolds.

Along the same lines, it would also be very interesting to attempt to show uniformiza-
tion for Kéhler four-manifolds similar to the discussion in [22]. Given the form of our
equations (5.7)—(5.12), this looks like a rather daunting task. More realistically, it would be
nice to find and discuss (simple) examples of such Kéhler flows and observe uniformization-
behavior on a case-by-case basis. Similarly, it would be intriguing to analyze possible finite-
time singularities, which are ubiquitous in Ricci flows, for our Kéhler metric flow equations.
If such singularities appear, there might be a way to understand them physically. Finally,
it is important to find global solutions interpolating between the AdS7 and AdSs boundary
conditions. As we have seen, such solutions would require the Kahler four-cycle metric to
explicitly depend on the radial coordinate, i.e. 9,K;; # 0.

Another generalization to consider in the future is to treat metric RG flows for other
examples of calibrated four-cycles. The case we aspire to the most would be to understand
Mb5-branes wrapping a coassociative cycle inside a G2 manifold. This example is interesting,
because for any choice of the four-manifold, the Ga-manifold looks locally like the bundle of
self-dual two-forms over the calibrated coassociative cycle (see for instance [55]). Following
the logic advertised in the current paper, and in particular the fact that we work completely
locally, we would expect that starting from any four-manifold in the ultraviolet we would
get some uniformized version of the initial UV four-manifold in the infrared.?* Therefore,
the answer to finding such flow equations might hint towards many interesting and largely

24From the known solution in [15], in which the metric on the four-manifold is kept fixed, we expect that
in the infrared the metric is conformally half-flat, i.e. the Weyl tensor is anti-self-dual (e.g. see [56]).
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unexplored questions in the mathematics of four-manifolds. As a matter of fact, the current
paper is supposed to represent a stepping stone towards that goal. On the field theory side,
one expects that the two-dimensional theory preserves N = (2,0) supersymmetry, and a
study of the two-dimensional theories and their relation to four-manifold geometry was
performed in [40].

Let us now briefly mention some observations about the coassociative four-cycle flows.
To begin with, one can slightly simplify the problem by working with a generic Hermitian
four-manifold instead of a fully general one. Even the case of Hermitian four-manifold
flows is vastly unexplored (one of the main issues being that the Ricci flows does not
seem to preserve the Hermiticity along the flow). Restricting to Hermitian four-manifolds,
we are required to keep the full non-Abelian SU(2) gauge fields for the twist. This will
induce a large system of equations for the metric, when studying the gravitini and dilatini
variation of the maximal seven-dimensional gauged supergravity. To isolate the conditions
on the metric one needs to study their integrability conditions and remove all the remaining
components of the SU(2) gauge fields, which is very labor-intensive. Fortunately the S-
equations of motion for the three-form in the gauged supergravity are still trivially satisfied
by setting S’ = 0, and so we still believe that such an approach is within the reach
of possibility.

An alternative approach is to rephrase the question inspired by intuition gained from
the “AGT — correspondence” [57].2° Namely, instead of dealing with a seven-dimensional
gauged supergravity, one truncates the supergravity ansatz to a five-dimensional theory,
which “lives” on the four-manifold together with the r-direction of AdS;. This five-
dimensional theory should then describe the metric RG flow. Ideally one would like to
map it to a familiar five-dimensional supergravity, and then use known results, such as the
study of allowed metrics on such theories to say something about the allowed metric RG
flows. Furthermore, having such a theory one could hope that there are quantities in the
theory that could serve as a “C-function”—analogue along the RG flow, and possibly make
a connection to the treatment in [26]. As a matter of fact, in [58] we employ this idea to
reformulate the supergravity solutions of a particular set of four-dimensional A" = 1 super-
conformal field theories, which arise from compactifications of M5-branes on a Riemann
surface [59, 60]. We shall find that this leads to the relation between these fixed points
and the study of Morse theory on two-dimensional Yang-Mills [61], which was originally
observed in [62].

Finally, it would of course be nice to study three-manifold flow equations and AdSy
solutions arising from a similar setup, and see if one can observe behavior akin to the Ricci
flow for the metrics of the involved three-manifold.
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A Notation

Let us mention some notation that we employ throughout the paper. To begin with, we
use the following conventions for indices:

e We use capital Roman indices I, J,... € {1,...,5} to denote indices for the gauge
group SO(5)y. They are raised and lowered via 548,
e Lower letter Roman indices 4, j,... € {1,...,5} shall be used throughout as a label

for the gauge group SO(5).. They are also raised and lowered via 6%.

e Lower letter Greek indices p,v... € {1,...,7} denote spacetime indices and are
raised and lowered by g,,. Lower letter Roman indices from the latter part of the
alphabet, m,n,... € {1,...,7} denote vielbein indices which are raised and lowered
via ™" of signature (—,+,...,+). Notice that the time direction will always be at

=1
e We shall mostly avoid explicitly writing down spinor indices, however if we do they

will be labeled by lower case Roman letters from the beginning of the alphabet,
a,b,...€{1,...,4}.

Throughout the paper, capital letter Gamma matrices I'; are elements in Clif f(5,0)
and in order to explicitly solve the supersymmetry constraints and integrability conditions,
we fix a particular basis, namely

Ii=—-0y®0;, forie{l,2,3}, I'y=01® 1,9, [5=03®1,. (A1)

Lower case Gamma matrices v, are elements in Cliff(6,1). However, since there is a
four-dimensional part of the metric that is given by a Kéhler metric, we have to pick the
following flat (frame) metric

-1

(A.2)

Imn =

o O = O O O

oo oo oo
o oo o~ O
coco oo~ oo
oo~ oo oo
_H o0 oo oo
O OO0 o oo

0

Similarly, we have to pick gamma matrices ~,,, which satisfy the gamma-matrix algebra
with this gy, i.e.

{’Vma ’Vn} = 29mnls. (A3)
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We start by choosing a standard set of gamma matrices, 7,, with respect to the usual flat
seven-dimensional Euclidean metric Gmp = dmn,

=iy A7, Yo =ioe ® 1y, (A.4)
"~}/2+j:i<72®rj, j=1,...,5, (A5)

where I'; are the five-dimensional gamma matrices in (A.1), and then use a transformation
matrix P, such that
Imn Py P = gpq - (A.6)

The appropriate seven-dimensional gamma matrices are then obtained by
Ym = Pmn¥,. (A.7)

B The full solution

In this section we will provide some more details of the derivation of the equations (5.7)—
(5.12), discussed in the main part of the paper. We will mention here that most of this
rather involved computation is performed in Mathematica. As remarked in the main text,
we start by making a simplifying assumption, namely we define

A=X-f, G=4f+g, H=h—-f, (B.1)
where the new functions A, G and H only depend on the r-direction
A=A(r), G=G(r), H=H(r). (B.2)

A vpriori, the function f = f(r, 21, 21, 22, Z3) still depends on all the variables. Imposing
the 1-BPS projection conditions (4.9) and (4.10), we can solve for H(r) and A(r) from the
supergravity equations as well as integrability conditions to find?

OrA(r) = %meGHA, (B.4)
1 1 3
0,1(r) =0, (g (K1ikyns ~ Kinfor) 4 4GO) +5A0)) . (B)

We can integrate the latter equation to find

1 1 3 ~ _ _
H(r) = 1 log (K11K, 12 — K12K,11) + ZG(T) + 51\(7”) + h (21, 71,22, %3) (B.6)

where h (21, 1, 22, Z3) is an arbitrary function in terms of the variables of the K&hler mani-
fold. We will not require to fix this function in the following. Finally, the function exp G(r)
can be fixed in terms of the Kéhler potential as well as A and H as we shall see below.

26Recall that we are employing the following shorthand notation throughout the paper
fro= 0nf(r,zi,2s,...), fig = 0,05 f(r,2i,%5,...), etc, (B.3)

for an arbitrary function f depending on variables (r, z;, Z7, . . .) .
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We now fix the frame in (4.16) and (4.18). Given the ansatz for F''? in equation (4.20),
and solving the gravitini and dilatini variations allows us to solve for the following compo-

nents of F12 .27
. 7f—H@)-6AG) T
Fay = Bie~ T/ H()—6A( )(ICl 1)1/2 ’ (B.7)
Fag = bie— T/~ H0I=6A() (foK1i — f1K1,) (B.8)
(Kap)'? (K1iKgs — K13Kp) /2
.7'_45 4 _2f G(r)=6A(r) |: ( G(r)+4A(r m + G/(T)> — 28r logICﬂ
+ Or log (K11, 93 — ’C2§’Cr1i)] ; (B.9)
Fi6 =0, (B.10)
Fur = ie=2/=G=6A) (K 15K,11 — K11K,15) 7 (B.11)

2611 (K11Ko3 — K13K1) 2

ie—2f—G(r)—6A(r) K lComo — Ko ]CT -
Fog = (K11K, 12 11/22 11)7 (B.12)
2K11 (K41K93 — K13K12)

Fo — _ie—2f—G(T)—6A(7“) [ _ (3€G<r>+4A<r>m n G/(r)) 420, log Ky

— 20, log (K11K95 — K13K12) + 0y log (K11K, 95 — K9aKq1) | - (B.13)

The remaining components of F'2, namely Fa5, F37 and Fs7 can be fixed by first realizing

that there cannot be any zjZz3-component
Fs7=0. (B.14)

The remaining two components can be fixed by solving and combining several of the re-

maining equations. After a lengthy calculation, we find the rather simple solutions?”
2
2 or —14f—2H(r)—12A() 1)
= -2 e B.1
(.F35) de /Clj 3 ( 5)
(Far)? = 25 ¢~ 14/ —2H()=12A0) (fiKiz — faKi)® (B.16)

Kyt (KiaK1a — Ki1Kg3) -
Finally it remains to isolate the function f, which still depends on all the coordinates.
A very lengthy and involved computation in which we use all the equations of motion,
Finstein equations, integrability conditions as well as Bianchi-identities, yields again a
rather simple solution?”

1
fr=-1 <0rG(7“) +2m (e‘mf‘“ + 3eG(’")+4A(T)) + 0 log (K12K13 — KyaKy1)

— Orlog (K12K, 41 — K1I’Cri2)> ) (B.17)
fZ1 =0, (B18)
fz2 =0. (B.lg)

2TNotice here that we already use results which we will describe below, in order to simplify these equations.
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The remaining two components, namely fz; and fz, are unfixed, but nonzero. In principle,
by determining their derivatives with respect to the other variables, and then integrating,
one could fix them. However, for our purposes this is not necessary. It is however a crucial
and highly nontrivial constraint that the second order derivatives satisfy the “Schwarz inte-
grability conditions”. For instance, we can solve for f.z; from the supergravity constraints
and it is important that this gives the same result as 0z (f.), where we plug in f, from
equation (B.17). Similarly, we require this for the other cases.

Now finally we have isolated all the non-metric components of the system and we can
focus on the flow equations for the Kéhler potential. Solving all the equations of motion
including integrability conditions and Bianchi identities yields a set of eight independent
order-four (i.e. maximum of four derivatives acting on the Kahler potential) and five “in-

t”28 order-five equations for the Kihler potential.

dependen
We start by writing down the order-four equations. To simplify the formulas, let us

first write down some definitions that we also use in the main text

6F — €G72H+6A (BQO)
t = 0rlog (K11K,12 — K12K,11) (B.21)
s = Oplog (K11Ky13 — K13K,11) - (B.22)
We furthermore will use
logg = log (K11Ky — K13K1) - (B.23)

Then the first six order-four constraints read

K:T2 (]CT'TITICTIQ — ’Crﬁ’crrlﬁ)
- 1 To| = , B.24
s+ 0 log [ K12 (Ki1Kr1z — K1aKia1) (B.24)

(logg),; =0, (B.25)
(logg),5 =0, (B.26)

F 1 _ 1 1
e(onfg)m =3 (G' + 3me“™™) Ky + K10 — 55K12, (B.27)

e’ (logg)yz 1 1
Tw =3 (G’ + 3meG+4A) Kz + K3 — §3K1§ ) (B.28)

el (logg);; 1 1
Tll — 5 (G/ + 3meG+4A) ]CH —+ K:rli — 58 K:ﬁ , (B29)

F 1 _ 1 1
M = (G’ + 3meG+4A) Koz + Koz — z5Kys. (B.30)

m 2 2

Notice that final four equations imply
logg);; (1 i i7 7c {19
(logg)i;  (logg)us _ me=Fa, log <’Cw> i ke{1,2}, 7,0€{1,2}. (B.31)
,Cij ’Ck[ ICIJ

28It turns out that they are in fact not independent, but rather can be derived from the order-four
equations by taking derivatives.
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The remaining order-four equation reads
(log 9)11 i (log9) 5 r

e
— = (G + 3me“TM) + 8, 10g K17K 5
Icli ICIQ m ( + ame ) + og 1112

(’CHICTTZQ — ICQQK:TTH) )
K1iKra3 — K931

Thus together with our result from above, we find that

ICIQIC'I’Tli - Kli’Crrli _ _]CliICTTQQ - ’CZQICWH
K11k — KiaKoai K115 — KosKpat

and thus
s = O log (’Cﬁ’CrQQ - ’C2§’Cr11) .

Now we turn to the order-five equations. They can be written as

ICT?"HICTTQ — K:rlilcrri2)

1
0= §’Ciz (K11Kr12 — K12K,01) 2 ( —t2 42 Opt — 4(

—2G" + (G/)Z . 3m262G+8A> :

0 = Kz (K11K,12 — KioKp11) 2 - Ot + Kt (Ki1Kyio — KioKpa1) 2 - 02t
0= (Ky1Kyi2 — K1aKy11) 2 - Dot
0= (K1iK,12 — Ki2K,17) % - 01t
0= (K11Ky12 = K12Kp11) * - 85t -

Hence, assuming that

,C_
(K11K12 — K12Ky11) = K11K120; log [’CE] # 0,
we can integrate to find
t=t(r),

i.e. t only depends on the r-coordinate.
Then equation (B.35) tells us that

4K, 1
2 — 2t — 450, log K1y = —2G" + G — 3m2e2G+80 — 7,6”12 ,
12
and (if we do a different replacement)
A, 11
t2 =2t — 459, log Ki1 = —2G" + G — 3m2e2C0+8A — 715”1
11

We notice that (B.24) can be written as

(s — t(r) (’Cmfciz - ’Qig’ﬁi) 0

Kr12Kq1
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(B.33)

(B.34)

(B.42)

(B.43)
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We shall now further assume that

K11K19 — ’Cm’Cn>
20, B.45
( Ky12K11 (B.45)
and hence
s=s(r)=t(r). (B.46)

Independently, notice that the “Schwarz integrability conditions” for log g, i.e.

01 (log g)15 = 02 (log g)47, etc. (B.47)

imply that
0is =10, ie{1,1,2,2}. (B.48)

Thus, this is consistent with (B.46).
Finally we can look at the constraints arising from 0, (log g)ij. We start by noticing
that we may rewrite (log g)i]_ as

(log g)y; = {2H'(r) + 0, log Kig} (me™FKCsy) (B.49)
Therefore, we obtain
9y (logg);;=0 (B.50)

=0y [; (G+6A)+1Oglcig—;bg(lcﬁlcné—lcﬁlcrﬁ)] (me= G200 cys)
+0, B (G+6A)+log Ki— % log (K11K,12 —/cu/cm)] Oy (me~CTHH 0K,y
However, we also have
Oy (me=CF2H—0A K,y = [—; (G + 3me“™™ +¢(r)) + 9, log ICZ-J] JCiyme=CGT2H=6A
(B.51)

as well as 1
N = im(G' + 2melHat) GHah (B.52)

Hence, we obtain

1

0=1

<2G” — G” +3m22 N 149, log Kiy — 2 (t + s) (9, log Kiz) + 4 (9, log Kiz)?
20,5 +ts + (G + 3me“TN) (s — 1) ) , (B.53)

and so it follows that

40y, log Ki = —2G" + G? — 3m2e2Gt8A 4 9 (t+s) (0rlog Ki7) — 4 (0rlog ICZ-J—)2
+20,5 — ts — (G' + 3meS ) (s — 1) . (B.54)
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However given (B.46), we may write this as
Ki;
Now if we pick (i7) = (12) or (i7) = (11), this is precisely what we found in (B.42)
and (B.43).

There are two remaining choices for (i7) arising from this equation. The fact that

t2 — 2t — 4t (9, log Kj5) = —2G" + G — 3m2e20 8N 4 (B.55)

they are implied by the previous equations follows from the following: let (k,¢) and (i7) be
arbitrary, for consistency we require that

5% — 20,5 — 45 (0r log Ki5) — | s> — 20,5 — 45 (9, log ICM)]
= —2G" + G — 3m2e?Ft8N — 49, log Ki; — 4 (0, log lCij—)Q

2K 11 1, Grany 1 }
+ - (G"+3me — =5+ (0rlog Kz
(Kr11Kq2 — K,12K17) 2 ( ) 2 ( )

—| = 2G" 4+ G — 3m2e2 TN _ 49, 10g K17 — 4 (8, log K;7)?

2K41 (1 G+any _ 1 ] }
+ —(G" 4+ 3me —=s+ (OrlogKr7)| |, B.56
(K11K1p — K12K11) 2 ( ) 2 ( k) (B-56)

which can be rewritten as

1
3 [s +t] [(0rlog KCp7) — (Or log Kiz)] = Opy log Ky7 — 40y, log i

+ (0108 K40)” = (9108 Ky)?| . (B5T)

However, this is equivalent to

Kz\ 1 Kiz
Or (log g);; — Or (log )37 = 0 = Orr log </C1:Z> 2 (t+5)0rlog (’Q:@)

+ (9, log Kiz)? — (8- log Kyp)? (B.58)

and thus we showed that this is actually implied by our order-four equations.

B.1 Summary

Let us briefly summarize the independent metric flow equations arising from the analy-
sis of the solutions. The order-four constraints can be summarized to the following set
of equations

i (B.59)
t = 0 log (K11K, 03 — K93K11) (B.60)
(log g),; = 0, (B.61)
(log ), =0, (B.62)
log g).-
(log g);; _ {1 (G + 3meG+4A) + 0, log i — S} me™ ", (B.63)
Ki; 2 2
10 7 1 7 17 ) 19
(( 89)i; (Ogg)M) — 9, log (’CJ> meF, i ke{1,2}, 7.0e{1,2}. (B.64)
,Cij ]Csz ]Csz
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The order-five constraints then imply that

s=s(r), (B.65)
as well as (independently from order-four)

t=t(r). (B.66)

The logic should be as follows. We solve (B.63) in terms of 9,G and e for different

choices of (i7). In particular for fixed (i7) and (k¢) we can solve

logg).- ef
G = —3meCTi 42 %6— — 20, log Ki7+ 5. (B.67)
]Cij m
Plugging this into (B.63) removes that equation and leaves only (B.64). We can solve this
now for ef’, to find

7F (UOEZ)ﬁ B (10E§;k2)
me " = 5 log (%) . (B.68)

Our analysis shows that doing this is in fact consistent, i.e.

e ' = (=G +2H —6N)e I, 9,e =0, ete.. B.69
1

Once we eliminate these functions, we find equations purely in terms of the Kéhler potential.
Let us also mention here that equations (B.59) and (B.60) imply that the remaining
quantities are also equal, namely

s =t = Oplog (K13K, 95 — K3K,13) (B.70)
= Oplog (K13K,12 — K12K,13) (B.71)
= Orlog (K12K, 93 — Ko3K,12) - (B.72)

Finally, it is noteworthy that these functions might not be well-defined (e.g. when 9,K = 0).
In that case however we expect to get back to the solutions discussed in [15] (and one can
explicitly check that). It is the explicit purpose of the current paper to move away from
this case, and thus our equations correspond to a disjoint class of solutions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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