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1 Introduction

The study of smooth four-manifolds is a rich and still largely puzzling subject in mathe-

matics. For instance, it is presently unknown how to classify simply connected compact

smooth four-manifolds. This is the case despite the fact that the classification of topo-

logical four-manifolds has been proved a long time ago [1]. To this day, it is an open

problem how to translate the classification of topological four-manifolds into a classifica-

tion of smooth four-manifolds. One issue lies in the fact that there are examples of spaces,

such as R4, which have an uncountable number of different smooth structures (known

as exotic R4). Similarly, it appears that some important tools, crucial in the study and

classification of manifolds in lower dimensions, seem to be less powerful in the case of four-

dimensional smooth manifolds. For instance the Ricci flow equation [2, 3] (a well-known

example of a flow, that “uniformizes” the metric), which was famously employed in the
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proof of Thurston’s geometrization conjecture of three-manifolds [4] (and in particular the

Poincaré conjecture) in [5], does not preserve the Hermiticity of the metric.1 The Ricci

flow has a natural interpretation in physics [9]; it arises as the renormalization group flow

of the target-manifold of a two-dimensional sigma-model at one-loop. From this (physical)

perspective, the fact that solutions to the Ricci flow equation approach constant curvature

metrics can be viewed as the consequence of the renormalization group flow “washing out”

(irrelevant) data such as the moduli of the original metric.2

This is a common theme when studying renormalization group flows in physics, and

a natural question to ask is whether more intricate (physically relevant) setups could give

rise to novel “uniformization” flows that might help in the study of smooth (four-) mani-

folds.3 In this paper, we employ this approach, and study the supergravity limit of a stack

of M5-branes wrapping a Kähler four-manifold in M-theory. This leads to holographic

renormalization group flows for the metric of Kähler four-manifolds, which we expect (on

physical grounds) to be “uniformizing”.

The study of branes wrapping supersymmetric cycles from the perspective of hologra-

phy was first introduced in [14]. In particular, they adopted the perspective of viewing these

setups as holographic renormalization group flows across dimensions. Their focus was on

the case of M5-branes (among other examples) to wrap a Riemann surface. Subsequently,

a plethora of solutions describing M5-branes wrapping certain classes of four-manifolds has

been found by studying either the effective maximally supersymmetric seven-dimensional

gauged supergravity (a consistent truncation of eleven-dimensional supergravity) or the

full M-theory supergravity background [15–20].4

In order to preserve some supersymmetry, the theory will generally be required to be

“twisted” [10, 21]. Due to the twist, a priori any choice of metric on a four-manifold

(within a given class) will preserve some supersymmetry. However, most supergravity

solutions known thus far assume that the twists hold along the full renormalization group

flow from the ultraviolet asymptotically locally AdS7 to the infrared AdS3. This then puts

constraints on the particular type of four-manifolds allowed by supersymmetry, because

the flow has to be consistent with an AdS3 solution in the deep infrared. However, since

the metric is fixed along the full flow, one cannot observe how it varies along the flows,

and thus the expected uniformization of the metric is not visible.

In reference [22], the authors remedy this by working out the case of M5-branes (among

other examples) wrapping Riemann surfaces, but now with the metric on the Riemann

1There is a variant of the Ricci flow — the Hermitian Ricci flow — which does preserve Hermitian

metrics along the flow [6] also related to the physics of RG flows [7, 8], and various interesting results have

been proved by the same authors. However, a uniform treatment of smooth four-manifolds using Ricci flows

seems to be lacking as of now.
2An alternative vastly successful approach to the study of four-manifold motivated (also) from physics

is by the use of gauge theory [10–13]. This is unrelated to the motivation of the current paper.
3Throughout this paper, we shall use the term uniformization to describe metric (renormalization group)

flows which we believe to exhibit (loosely speaking) behavior leading to uniform (e.g. constant-curvature)

metric at the (infrared) fixed point of the flow.
4In the case of M5-branes wrapping four-manifolds, we detail the relevant setups and allowed classes of

four-manifolds involved in section 2 (see also table 1).
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surface left arbitrary. They prove that indeed flows exist and uniformize the metric on the

Riemann surface. This result is motivated from the corresponding field theory setup, which

states that upon wrapping M5-branes on a Riemann surface, the resulting four-dimensional

N = 2 superconformal field theories should only depend on the complex structure of the

curve [23–25].

In this paper, we aim to initiate an extension of the discussion of holographic renormal-

ization group flows across dimensions; we consider a physical setup of M5-branes wrapping

Kähler four-cycles, which are calibrated cycles inside a Calabi-Yau threefold. The phys-

ical setup then requires the twist to be implemented in the ultraviolet as an asymptotic

boundary condition, such that supersymmetry is preserved. Similarly, in the infrared, it is

required that the solution is in fact a valid (vacuum) AdS3 solution, which puts asymptotic

constraints on the fields and the metric. As opposed to the solutions in [15–20], both the

ultraviolet and the infrared thus merely serve as boundary conditions, and one studies the

equations arising from supergravity (and in particular the condition that some supersym-

metry is preserved along the full flow5) for the metric of the four-manifold in the bulk of

the flow.6

Apart from the supersymmetry (and their integrability) conditions we solve all equa-

tions of motions, Einstein equations, and Bianchi identities for the metric of the Kähler

four-manifold. We find a set of equations for the metric, which, if they are satisfied, give

a solution to the full supergravity setup. They are second-order in terms of the Kähler

metric. We further study the boundary conditions in the ultraviolet as well as the infrared.

We find that indeed in the ultraviolet (to leading order) there will not be any constraints

on the Kähler metric. At the infrared fixed point however, we observe that the supergrav-

ity equations imply that the metric has to be Kähler-Einstein. This can be viewed as an

indication of uniformizing behavior of the set of equations we derive for the Kähler metric.

This paper is organized as follows. We start in section 2 by reviewing some aspects

of twisted M5-branes and their relation to calibrated cycles of special holonomy mani-

folds. We further introduce some intuition behind the notion of uniformization (or its

higher dimensional analogue) arising when wrapping M5-branes on calibrated four-cycles.

In section 3 we introduce our main tool, namely the maximally supersymmetric seven-

dimensional gauged supergravity. In section 4, we discuss our ansatz and provide some

more details for the particular calibration considered in this paper. Finally, in section 5,

we present the metric flow equations and make some comments about their asymptotic

behavior. Lastly, in section 6, we conclude the main part of the paper with a discussion of

our results and a rather extensive list of interesting future directions. In two appendices

we provide some clarification of our notation in the main part of the paper, and some more

details for the derivation of our solution.

5In this paper, we shall restrict to flows that are 1
2
-BPS with respect to the maximally possible super-

symmetry allowed for such a setup.
6As remarked in [22], one views such types of supergravity flows as a boundary-value problem, with

prescribed infrared and ultraviolet boundary conditions. However, this is rather different to the usual

picture of Wilsonian renormalization group flows.
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2 Twisting, calibrated cycles and uniformization

Generically, when putting a supersymmetric theory on a curved manifold, we will not

be able to preserve (any) supersymmetry. This is due to the fact that there might not

exist a covariantly constant Killing spinor. However, if the theory has global symmetries

(such as R-symmetries or flavor symmetries) one can implement what is called a (partial)

topological twist [10]. The idea is that one introduces a background field Ag for (part of)

the global symmetry group and tunes it in such a way that it cancels against (part of) the

spin-connection, i.e. somewhat schematically

∂µε+
(
ωµ

abγab +Ag

)
ε = ∂µε = 0 . (2.1)

In principle one may choose any part of the global symmetry group to perform this twist.

However, since one would prefer this procedure to be independent of the choice of theory,

it is advantageous to use part of the global R-symmetry group [26]. Since the stress energy

tensor is in the same supermultiplet as the R-current, there will always be a way to twist,

independent of the details of the theory.

For the purpose of this paper we shall be interested in branes wrapping (arbitrary)

supersymmetric cycles. It is then generically the case that the field theory realized on

the branes is twisted [21]. In particular, the cycles will typically not have any covariantly

constant spinors, and hence supersymmetry has to be preserved by implementing a (partial)

topological twist.

An alternative point of view on such twists is to start with the full (string or) M-

theory. In order to preserve supersymmetry in the full eleven-dimensional M-theory setup,

we have to put the theory on a “special holonomy manifold”. Then, to support static M5-

branes solutions, we require the M5-branes to wrap supersymmetric cycles of the special

holonomy manifold. It can be argued on general grounds that these supersymmetric cycles

are precisely given by calibrated cycles [27–30] (see also [31] for a nice review).7

In the current paper, we are mainly concerned with the case of calibrated four -cycles.

In table 1, we detail the possible calibrated four-cycles of M-theory on special holonomy

manifolds, as well as the preserved supersymmetry in two dimensions, and the condition on

the four-cycles arising from explicit supergravity solutions. All but one of these calibrated

brane setups have a corresponding global solution in a truncated gauged seven-dimensional

supergravity [15–18].8 The (single) case without a known solution in the effective seven-

dimensional setup (i.e. Kähler four-cycles in CY3) will be treated in this paper.9 However

7We call a q-form Φ on a manifold M a calibration if and only if dΦ = 0, and ∀x ∈M and any oriented

q-dimensional subspace ξx ⊂ TxM , Φ|ξx ≤ vol|ξx , where vol|ξx is the volume form of ξx. A q-cycle Σq is

then calibrated by Φ if and only if

Φ|Σq
≡ vol|Σq

. (2.2)

8Any solution in the truncated gauged seven-dimensional supergravity can be uplifted to eleven-

dimensional M-theory, as we will discuss in some detail in section 3.1.
9In the current paper, we shall not provide or investigate global solutions, since the focus is on deriving

the flow equations from supergravity. We intend to study possible global solutions in future work.
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this case has a solution in eleven-dimensional M-theory given by AdS3×CY3×S2 [32] (see

also [33, 34]).

An alternative perspective on such brane setups is as renormalization group flows

across dimensions. On the field theory side, in the ultraviolet of the RG flow, we expect

the microscopic description to be given by the worldvolume theory on the M5-branes —

namely the six-dimensional N = (2, 0) superconformal field theory [35, 36] — on some

nontrivial background of the form R1,1 ×M4. Moving to the infrared regime, we expect

the characteristic size of M4 to be small and the theory to be essentially given by a two-

dimensional superconformal field theory with the amount of supersymmetry determined

by the particular class of four-manifolds, and the twist/choice of calibration (see table 1).

Complementary to this field theoretic picture, there is a corresponding dual holographic

RG flow analogue. The N = (2, 0) theory in the ultraviolet is dual to eleven-dimensional

supergravity on a space of the form AdS7×S4 [32, 37]. However, to match the field theory

setup, the AdS7-factor is now given by R1,1 ×M4 at constant r-slices, with r the radial

direction of AdS7. In order be able to put the theory on such a background, we have to

precisely implement the (partial) topological twist in the ultraviolet, given schematically by

the condition in (2.1). In the infrared however, we expect a two-dimensional superconformal

field theory and therefore the corresponding supergravity dual should be of the form AdS3×
M4 with a certain amount of supersymmetry preserved.

A priori, the internal four-manifold M4 can be picked arbitrarily within a given class

of calibrations. Due to the (partial) twist, supersymmetry is guaranteed to be preserved.

However, as was observed in the particular supergravity solutions [15–18], supersymmetry

imposes further conditions if we want solutions which also exist in the deep infrared and

give an appropriate physically relevant AdS3 solution. In all of those cases the internal

four-cycleM4 and in particular the twisting condition in (2.1) was fixed along the full flow

from the ultraviolet to the infrared.

In the current paper, we are precisely interested in studying how the metric varies

along the RG flow. This was considered in [22] for the calibrated cycle given by a Riemann

surface. In the following, we shall employ a similar strategy but for four-cycles. If we leave

the metric arbitrary, the infrared and ultraviolet behavior become separate asymptotic

boundary conditions to a set of equations which determines the RG flow of the metric.

The (partial) topological twist is then only applicable in the ultraviolet, and so we may

pick any choice of four-cycle (within a given class of calibrations) asymptotically in the UV.

In the asymptotic infrared region however, we generally expect to reach the known AdS3

solutions and consequently we expect that the additional conditions on the IR four-cycles

have to be satisfied. In the following to distinguish the two asymptotic metrics, we shall

denote the four-manifold appearing in the ultraviolet asM(UV)
4 , and the one in the infrared

as M(IR)
4 ; of course they are still the “same” manifold, but with different metrics on it.

In table 1, we provide the expected infrared conditions for M(IR)
4 arising from the known

holographic solutions.

The reason one expects further conditions on the four-cycle in the infrared regime, can

be understood by considering again the dual field theory setup; we take the field theory

limit on the stack of M5-branes, and expect to flow to a two-dimensional field theory. Far
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Calibration Embedding 2d SUSY IR manifold M(IR)
4

SLAG
M4 ⊂ CY4 N = (1, 1)

Constant curvature
M2 × M̃2 ⊂ CY2 × C̃Y2 N = (2, 2)

Kähler
M4 ⊂ CY3 N = (4, 0)

Kähler-Einstein
M4 ⊂ CY4 N = (2, 0)

Kähler-Einstein and

Lagrangian M4 ⊂ HK2 N = (2, 1) constant holomorphic

sectional curvature

Coassociative M4 ⊂ G2 N = (2, 0)
Conformally half-flat

Cayley M4 ⊂ Spin(7) N = (1, 0)

Table 1. The possible calibrated four-cycles of special holonomy manifolds (coming from bilinears

of spinors). In the first two columns we list the type of calibration and the particular embedding into

the special holonomy manifold. In the third column we write down the maximal supersymmetry

preserved in the two-dimensional superconformal field theory from the respective calibration (or

from the equivalent partial topological twist). Finally, in the fourth column we list the conditions

arising from (known) supergravity solutions [15–18] on the four-cycles in the infrared limit, where

the geometry is given by AdS3 ×M(IR)
4 .

in the infrared regime, it is expected that we obtain a conformal fixed point, which is

precisely the theory dual to the IR AdS3 solution. The precise details of the metric on the

four-cycle M(IR)
4 then enter as data for the “effective” superconformal field theory at the

fixed point. For the case of four-dimensional N = 2 superconformal field theories arising

on M5-branes wrapping calibrated two-cycles inside CY2, only the complex structure of

the Riemann surface enters the description of the four-dimensional theory [23–25]. At the

same time, the conformal factor of the metric is supposed to be washed out along the RG

flow. Therefore, it is expected that the internal Riemann surface “uniformizes” along the

RG flow. This is precisely the uniformization behavior observed in [22] from holography.

Similar results are expected to hold for the case of M5-branes wrapping higher-

dimensional calibrated cycles [38–40].10 Thus, we expect that the infrared four-cycleM(IR)
4

“uniformizes” in the deep infrared, which is what we set out to test in the following us-

ing holography.

3 Seven-dimensional maximally supersymmetric gauged supergravity

In this section, we set up the maximally supersymmetric seven-dimensional SO(5) gauged

supergravity theory as introduced in [42]. This is the theory in which we are computing the

relevant M5-branes renormalization group flows for Kähler four-manifolds. The theory has

N = 4 supersymmetry and can be obtained by a consistent truncation of eleven-dimensional

M-theory on S4 [43–45]. As such it has an SO(5)g gauge symmetry. Furthermore, there is

a composite SO(5)c symmetry acting on the scalars.

10See also some discussion in the introduction of [41].
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Apart from the seven-dimensional graviton eµ
m, the bosonic field content of this theory

includes fourteen scalar fields which we package into a tensor ΠI
i transforming in the

fundamental representation of SO(5)g from the left and in the fundamental representation

of SO(5)c from the right.11 For ease of notation we shall also introduce the fields recombined

into a symmetric matrix Tij as follows12

Tij =
(
Π−1

)
i
I
(
Π−1

)
j
JδIJ , T = δijTij , (3.1)

which parametrizes the SL(5,R)/SO(5)c coset and satisfies |det (Tij)| = 1. Furthermore,

there is a 1-form gauge field Aµ
IJ transforming in the adjoint of SO(5)g with field strength

Fµν
IJ ≡ dAIJ + gAIK ∧AKJ , (3.2)

where we denoted by g the seven-dimensional gauge coupling. Similarly, we may introduce

symmetric and anti-symmetric composite gauge fields Pµ ij and Qµ ij via

Qµ [ij] + Pµ (ij) =
(
Π−1

)
i
I
(
δI
J∂µ + gAµ I

J
)

ΠJ
kδkj . (3.3)

Finally, there is a three-form antisymmetric tensor field Sµνρ I , which transforms in the

fundamental representation of SO(5)g, with field strength given by

FI ≡ dSI + gAI
J ∧ SJ . (3.4)

Apart from the bosonic fields there are the fermionic superpartners, which we shall

mention briefly here, and set to zero in the following. First, we have four gravitini ψµ
a

transforming in the spinor representation of SO(5)c. Secondly there are the dilatini given

by sixteen spin- 1
2 fields λai, which transform under SO(5)c in the spinor-vector (16) rep-

resentation.

We shall from now on set the fermionic fields to zero. The bosonic action is given by

2L=e
{
R+ 1

2m
2
(
T 2−2TijT

ij
)
−PµijPµij− 1

2

(
ΠI

iΠJ
jFµν

IJ
)2−m2

([
Π−1

]
i
ISµνρI

)2}
−6mδIJSI∧FJ+

√
3εIJKLMδ

INSN∧F JK∧FLM+ 1
8m (2Ω5[A]−Ω3[A]) , (3.5)

where m is the mass parameter and Ω3[A] and Ω5[A] are the Chern-Simons forms of the

gauge-field A, which are explicitly given as

Ω3[A] = εµνρσαβγ Tr

(
AµFνρ −

2

3
AµAνAρ

)
Tr (FσαFβγ) (3.6)

Ω5[A] = εµνρσαβγ Tr

(
AµFνρFσαFβγ −

4

5
AµAνAρFσαFβγ −

2

5
AµAνFρσAαFβγ

+
4

5
AµAνAρAσAαFβγ −

8

35
AµAνAρAσAαAβAγ

)
. (3.7)

11For our explicit choice of notation and indices, we refer to appendix A.
12For convenience, we shall switch back and forth between the two notations, ΠI

i and Tij .
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From the above Lagrangian we can find the following equations of motion for the theory

δIK
(
Π−1

)
i
K
(
Π−1

)
i
JSJ =− 1

m
∗FI+

1

4
√

3m2
εIJKLM ∗

(
F JK∧FLM

)
, (3.8)

D
[
T−1
ik T

−1
j` ∗F

ij
]

=mT−1
i[k

(
∗DT`]i

)
+
√

3εi1i2i3k`F
i1i2∧F i3

− 6

m
FI1I2∧F I1I2∧Fkl−6m2Sk∧S` , (3.9)

D
[(
T−1

)
i
k∗DTkj

]
= 2m2(2Tik Tkj−Tkk Tij)(∗1)+4T−1

im T−1
k` (∗Fm`)∧F kj

+12m2Tjk (∗Sk)∧Si− 1

5
δij

[
4V (∗1)+4T−1

nmT
−1
k` (∗Fm`)∧F kn

+12m2Tk` (∗Sk)∧S`
]
, (3.10)

Rµν =Pµ
ijPν ij+

(
ΠI

iΠJ iFµρ
IJ
)(

ΠK
jΠLjFν

ρKL
)

+3m2
[(

Π−1
)
i
ISµνρI

]
δij
[(

Π−1
)
j
JSν

ρσ
J

]
− 1

10
gµν

[
m2
(
T 2−2TijT

ij
)
+(ΠΠF )2+4m2

(
Π−1S

)2]
. (3.11)

Here, by V we denote the scalar potential

V =
1

2
m2
[
2TijTij − (Tii)

2
]
. (3.12)

Let us remark that the scalar matrix Tij can be fixed to be diagonal by an SO(5)g gauge

rotation. Upon doing so, this will still leave some residual gauge symmetry.

The supersymmetry conditions for the gauged supergravity theory are given by setting

the supersymmetry variations of the fermionic fields to zero. In full generality these are

given by (spinor indices are suppressed)

δψµ = Dµε+
1

20
mTγµε−

1

40
(γµ

νρ − 8δµ
νγρ) ΓijεΠI

iΠJ
jFνρ

IJ

+
m

10
√

3

(
γµ

νρσ − 9

2
δµ
νγρσ

)
Γiε

(
Π−1

)
i
ISνρσ I = 0 , (3.13)

δλi =
1

2
γµΓjε Pµ ij +

1

2
m

(
Tij −

1

5
Tδij

)
Γjε+

1

16
γµν

(
ΓklΓi −

1

5
ΓiΓkl

)
εΠI

kΠJ
lFµν

IJ

+
m

20
√

3
γµνρ

(
Γi
j − 4δi

j
)
ε
(
Π−1

)
j
ISµνρ I = 0 , (3.14)

where the covariant derivative acts on the Killing spinors as

Dµεa = ∂µεa +
1

4
ωµ

mnγmnεa +
1

4
Qµ ij

(
Γij
)
a
bεb . (3.15)

Furthermore, we have used the seven-dimensional gamma matrices γµ (with Lorentzian

metric) and the five-dimensional ones Γi (with Euclidean signature), and we have denoted

by ωµ
mn the seven-dimensional spin connection. We refer to appendix A for further details

on our notation and conventions as well as explicit forms for the gamma matrices.

– 8 –
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Lastly, any supergravity solution has to satisfy the following Bianchi identities

D[µFνρ]
ij = 0 , (3.16)

D[µFνρσ]
i = 0 , (3.17)

D[µ

(
FQ
)
νρ]

ij = 0 , (3.18)

D[µ

(
Dν]ΠI

i
)

= 0 . (3.19)

Finally, the mass parameter m is related to the gauge coupling by

g = 2m, (3.20)

and we shall employ this to remove the explicit m-dependence in the following,

3.1 Uplift to eleven-dimensional M-theory

The maximally gauged supergravity in seven-dimensions can be obtained as a consistent

truncation of eleven-dimensional supergravity reduced on a four-sphere [43–45]. The cor-

responding uplifted eleven-dimensional metric and fields are given by

ds2
11 = ∆1/3ds2

7 +
∆−2/3

g2
T−1
ij Dµ

iDµi , (3.21)

where µi, with i = 1, . . . , 5, are constrained coordinates on S4 satisfying
∑5

i=1 µ
iµi = 1,

and g is the seven-dimensional gauge coupling as above. Furthermore, we introduced

∆ = Tijµ
iµj , (3.22)

as well as

Dµi = dµi + gAijµj , for i = 1, . . . 5 . (3.23)

Finally, the four-form field strength of the eleven-dimensional M-theory is given in terms

of the seven-dimensional fields as

F
(4)
11 =

1

g
Si ∧ Dµi − µiTij

(
∗7Sj

)
+

∆−2

24g3

{
− U µi1 Dµi2 ∧ Dµi3 ∧ Dµi4 ∧ Dµi5

+4T i1kµ
kµ`DT i2` ∧ Dµi3 ∧ Dµi4 ∧ Dµi5

+(6g∆)T i1jµ
jF i2i3 ∧ Dµi4 ∧ Dµi5

}
εi1i2i3i4i5 , (3.24)

where we have defined

U = 2TijT
j
kµ

iµk −∆Tii , (3.25)

and we denoted by ∗7 the seven-dimensional Hodge star operation.
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4 Supergravity Ansatz

4.1 Ansatz

In this section we introduce our main ansatz, including the asymptotic behavior, for the

seven-dimensional gauged supergravity renormalization group flows.13 We will focus on

the case of a Kähler calibrated four-cycle inside of a Calabi-Yau threefold in M-theory.

As previously mentioned, a gauged seven-dimensional supergravity solution is lacking in

this case. However, there are known eleven-dimensional solutions of the form AdS3 ×
CY3 × S2 [32, 33]. As we shall see in the following, given our more general ansatz, we

find some evidence suggesting that the divergence spoiling consistent IR solutions in seven-

dimensional gauged supergravity might be avoided if the Kähler metric has non-trivial r-

dependence. We plan on studying possible global solutions as well as more general setups

in future work [46].

The guiding principle to set up our ansatz will be to use intuition gained from known

solutions [15, 16, 47], as well as general arguments for M-theory geometries involving M5-

branes [33].

First let us recall the precise “calibrated Kähler twist”. We start by considering a

stack of M5-branes wrapping a Kähler four-manifold, which has holonomy given by U(2) ∼
U(1)1 × SU(2)2. In order to ensure that there are supersymmetric solutions for generic

Kähler manifolds, we are required to introduce a (partial) topological twist.14 There are

two ways of doing so: on the one hand one can embed the U(1)1 subgroup of U(2), or

on the other hand one may embed the SU(2)2 part inside the SO(5)R R-symmetry of

the six-dimensional (2, 0) M5-branes worldvolume theory. In the former case the Kähler

four-cycle is a calibrated cycle inside a Calabi-Yau threefold (CY3) and in the latter case

it is a calibrated cycle inside a Calabi-Yau fourfold (CY4). In this paper we shall focus

on the former case, in which the Kähler four-manifold is given by a calibrated four-cycle

inside a CY3. Thus the Kähler four-manifold is a holomorphic cycle calibrated by the

four-form 1
2!J ∧J , where J is the complex structure two-form on CY3. The tangent bundle

to the Calabi-Yau threefold restricted to the four-cycle then splits into a tangential and a

normal part

TCY3

∣∣
M4

= TM4 ⊕ NM4 . (4.1)

Since Calabi-Yau manifolds have vanishing first Chern-class, we find

c1(TCY3) ≡ 0 = c1(TM4) + c1(NM4) , (4.2)

and one can show that NM4 is intrinsic and isomorphic to the canonical bundle of M4.

From this, it follows that in the regime near the M5-branes, the Calabi-Yau threefold can

be described by a complex line bundle over the Kähler four-manifold.

13Recall that for our purposes the asymptotic conditions in the infrared and ultraviolet are considered as

boundary conditions of our metric flow equations.
14For us this twist will only be effective as an asymptotic ultraviolet boundary condition of the holographic

RG flow.
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Now, we are looking for solutions in the near-horizon limit. Thus, we expect that only

the local geometry of the calibrated Kähler four-cycle inside CY3 and its normal bundle

structure enters the construction. Therefore, the original eleven-dimensional setup

R1,1 × CY3 × R3 (4.3)

should now give rise to the following M-theory supergravity geometry

AdS3 ×
(
S1
f →M

(IR)
4

)
× S2

R × Iθ . (4.4)

This is only strictly true in the infrared asymptotic limit for our case. However, to formulate

a sensible ansatz, it is helpful to have this intuition in mind. In equation (4.4), we denote

by S1
f →M4 a circle fibration over M4, which is what we expect the complex line bundle

to turn into in the supergravity approximation. The two-sphere S2
R will be dual to the

R-symmetry of the two-dimensional superconformal field theory.15 Finally, by Iθ we label

an interval.16 Together, the S1 factor with the sphere S2
R and the interval Iθ will give

topologically a four-sphere. Of course the ultraviolet boundary condition of our RG flows

are simply of the form AdS7 × S4, where slices of constant radius of AdS7 are given by

R1,1 ×M(UV)
4 . We refer to section 4.2 for explicit comparison of the eleven-dimensional

uplift of our ansatz with the discussion here.

For the purpose of this paper and in accordance with the above picture, we shall

further restrict to the seven-dimensional gauged supergravity described in section 3, which

is a consistent truncation of M-theory on a four-sphere [43–45]. The theory has an SO(5)g
gauge symmetry corresponding to the isometry of the four-sphere. We expect to turn on

gauge fields for the SO(2) subgroup in SO(5)g → SO(2)×SO(3), whereas the SO(3) factor,

which corresponds to the R-symmetry of the two-dimensional N = (4, 0) superconformal

field theory, is assumed to survive. In particular the corresponding gauge fields should then

be tuned to zero in the vacuum state.17

Now, in order to set up our supergravity ansatz, let us start by looking at the pre-

cise asymptotic (boundary) conditions for the renormalization group flows in the seven-

dimensional gauged supergravity.

Ultraviolet. In the UV, we expect to have a resulting metric which is asymptotically

locally AdS7 with slices of constant r being of the form

R1,1 ×M(UV)
4 , (4.5)

for an arbitrary Kähler four-cycleM(UV)
4 . The fact that we can pick an arbitrary metric on

M(UV)
4 comes from imposing a (partial) topological twist asymptotically in the ultraviolet.

15The relevant Kähler calibrated cycle inside CY3 preserves N = (4, 0) supersymmetry in two dimensions.
16More precisely, we expect the radial directions of the R3 factor and the complex line bundle to turn

into the radial direction of AdS3 and the interval Iθ (see for instance [48] and [20] for similar statements in

different setups).
17A priori, it is not clear whether they must be turned off along the full RG flow, however it is a sensible

assumption, since they are turned off in the ultraviolet as well as in the infrared.
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The particular topological twist we are employing here (i.e., the topological twist corre-

sponding the Kähler calibration in a CY3) can be imposed as follows: the SO(5)g-gauge

fields for the seven-dimensional gauged supergravity are specified by the spin-connection

of the arbitrary Kähler metric on M(UV)
4 , corresponding to the fact that the theory on the

M5-branes is twisted. Therefore, we decompose the gauge group as follows

SO(5)g → SO(2)× SO(3) , (4.6)

where we use the SO(2) factor to (partially) twist the theory. This decomposition is mir-

rored in the eleven-dimensional M-theory setup by the division of the transverse directions

to the M5-branes into tangent and normal bundles of the special holonomy manifold. From

the general discussion above, we hence expect that only the SO(2)-gauge fields are excited

in the ultraviolet. In particular, we set all the gauge fields to be vanishing apart from the

component A12, which we fix such that it cancels the spin-connection, i.e.((
ω(UV)

)
µ

mnγmn +Qµ
ijΓij

)
ε = 0 , (4.7)

in the asymptotic ultraviolet regime, where ω(UV) is the spin-connection of the Kähler

four-manifoldM(UV)
4 of arbitrary metric, and Q is the composite gauge field. To explicitly

solve equation (4.7), we fix projection conditions for the Killing spinors, namely18

γrεa = 0 , (4.9)

γ1̄εa = γ2̄εa = i(Γ12)a
bεb , (4.10)

where a = 1, . . . , 4. It is important to notice that these projection conditions are actually
1
2 -BPS (i.e., we preserve half of the supersymmetries required to implement the twist). The

reason we pick those projection conditions instead of the “fully” supersymmetric ones is

due to the fact that the resulting Kähler metric flow equations are rather restrictive [49],

though they should be of interest in their own right. Given these projection conditions

we may fix the components of the U(1) gauge field A12 in the ultraviolet by solving (4.7)

asymptotically.

Infrared. In the infrared, we expect that the theory is given by a metric of the form

AdS3 ×M(IR)
4 , (4.11)

where we denote by M(IR)
4 the four-cycle M4 at the IR fixed point (i.e., after uniformiza-

tion). As explained above, we expect now that the SO(3) part of the gauge symmetry

corresponds to part of the R-symmetry of the dual two-dimensional superconformal field

theory, and we should not have any gauge fields turned on for it in the supergravity solution.

18Since we have yet to specify a frame, we denote the gamma matrices here by their spacetime indices. In

terms of the frame in equation (4.16), and the gamma matrices in appendix A, the projection conditions read

γ3εa = 0 , and γ4εa = γ6εa = i(Γ12)a
bεb . (4.8)
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Given the discussion of the infrared and ultraviolet limits, we first impose that the

Killing spinors εa surviving the projection conditions (4.9) and (4.10), shall be preserved

along the full flow. It is then natural to consider an ansatz for the seven-dimensional metric

as follows

ds2 = e2fdx2
(
R1,1

)
+ e2gdr2 + e2hds2 (M4) . (4.12)

Here ds2 (M4) is the metric on the calibrated Kähler four-cycle along the full RG flow,

which we write as

ds2 (M4) =
(
∂zi∂z̄̄K

)
dzidz̄ ̄ , (4.13)

where K is the Kähler potential, which we pick to be an arbitrary function of r as well as

the coordinates on M4, i.e.

K ≡ K (r, z1, z̄1̄, z2, z̄2̄) . (4.14)

The part dx2
(
R1,1

)
corresponds to the flat space metric of the resulting two-dimensional

superconformal field theory. Finally, the functions f , g and h depend on the radial coordi-

nate r as well as on the holomorphic coordinates {z1, z̄1̄, z2, z̄2̄} of the Kähler four-manifold

M4, i.e.

f ≡ f (r, z1, z̄1̄, z2, z̄2̄) , g ≡ g (r, z1, z̄1̄, z2, z̄2̄) , h ≡ h (r, z1, z̄1̄, z2, z̄2̄) . (4.15)

They have to satisfy specific asymptotic conditions in the UV and the IR, which we shall

discuss in some detail in section 5.2.

In the following we are required to explicitly pick a frame for the seven-dimensional

metric. We choose the following vielbeins for the seven-dimensional metric ansatz

e1 = ef dt , e2 = ef dx , e3 = eg dr ,

e4 = ehE1 , e5 = eh Ē1̄ , e6 = ehE2 ,

e7 = ehĒ2̄ ,

(4.16)

where for the frame of the Kähler metric we define19

E1 =
K11̄ dz1 +K1̄2 dz2

(K11̄)1/2
, Ē1̄ =

K11̄ dz̄1̄ +K12̄ dz̄2̄

(K11̄)1/2
,

E2 =
(K11̄K22̄ −K12̄K1̄2)1/2

(K11̄)1/2
dz2 , Ē2̄ =

(K11̄K22̄ −K12̄K1̄2)1/2

(K11̄)1/2
dz̄2̄ .

(4.18)

Notice that this choice of frame requires the (tangent) four-dimensional metric to be of

the form

(ḡ4)ab =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (4.19)

19From here on out we shall employ the following shorthand notation

fr := ∂rf(r, zi, z̄ı̄, . . .) , fi̄ := ∂zi∂z̄̄f(r, zi, z̄̄, . . .) , etc , (4.17)

for an arbitrary function f depending on variables (r, zi, z̄̄, . . .) .
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Again referring to the asymptotic conditions discussed above, it is natural to turn off

all but the A12 components of the SO(5)g gauge fields along the full RG flow. In terms of

the seven-dimensional vielbeins we may expand the field strength as

F 12 =
1

2

7∑
i 6=j
i,j≥3

Fijei ∧ ej , (4.20)

where (Fij) is anti-symmetric, and the functions Fij depend on all but the spacetime

coordinates, i.e.

Fij ≡ Fij(r, z1, z̄1̄, z2, z̄2̄) , ∀i 6= j . (4.21)

This ansatz for the gauge fields and the metric also implies that the scalar sector of the

supergravity has to satisfy reduced symmetry transformations along the full RG flow. Let

us now recall that the scalar matrix Tij (or similarly ΠA
i) can be fixed to be diagonal by

an SO(5)g gauge rotation. Thus, we may fix the composite scalars to be of diagonal form,

and in particular we set as an ansatz

ΠA
i = diag

(
e3λ, e3λ, e−2λ, e−2λ, e−2λ

)
, (4.22)

where

λ ≡ λ (r, z1, z̄1̄, z2, z̄2̄) . (4.23)

With this choice, the composite gauge-field Q is determined by the gauge-fields via

Qµ
ij = 2mAµ

ij . (4.24)

Finally, the three-form SI is generically non-vanishing. However, we can trivially solve

the S-equation of motion by setting SI = 0.

4.2 Uplift to eleven-dimensional M-theory

We now briefly discuss the uplift of our seven-dimensional gauged supergravity ansatz to

eleven-dimensional M-theory. We employ the general uplift formulas detailed in section 3.1

and first outlined in [43–45]. The eleven-dimensional metric is then given by

ds2
11 = ∆̃1/3ds2

7 +
∆̃−2/3

m2

{
e6λ sin2 θ

(
dφ+ 2mA12

)2
+ e−4λ cos2 θdµ̃adµ̃a

}
+
e2λ∆̃1/3

m2
dθ2 , (4.25)

where µ̃a, a = 1, 2, 3 are constrained coordinates such that µ̃aµ̃a = 1,

∆̃ = e−6λ sin2 θ + e4λ cos2 θ , (4.26)

and θ ∈ [0, 2π). Furthermore, ds2
7 is the seven-dimensional metric ansatz as given in (4.12).

As expected from the point of view of calibrated cycles, we see that there is an S1 fibered

over the four-cycleM4, which can be viewed as the unit (co-)normal bundle on the Kähler

cycle inside the Calabi-Yau threefold. Furthermore, as expected, there is an S2 factor

corresponding to the R-symmetry, and θ gives the interval Iθ as required from our previous

discussion around equation (4.4).
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4.3 Supergravity equations in Ansatz

Let us now write down the supersymmetry equations, equations of motion and Bianchi-

identities given our ansatz in section 4.1. Namely, by setting SI = 0, the S-equation

of motion

δIK
(
Π−1

)
i
K
(
Π−1

)
i
JSJ = − 1

m
∗ FI +

1

4
√

3m2
εIJKLM ∗

(
F JK ∧ FLM

)
, (4.27)

is trivially satisfied. In addition, we fix a diagonal gauge for the composite scalars ΠI
i as

in equation (4.22), and thus we find (in the alternative notation) for Tij ,

Tij = diag
(
e−6λ , e−6λ , e4λ , e4λ , e4λ

)
. (4.28)

Then the F -equation of motion simplifies to

D
[
e12λ ∗ F 12

]
= 0 . (4.29)

Similarly, the T -equation of motion is encoded in the following single (independent) equa-

tion

d ∗ dλ =

[
m2e−2λ +

2

15
V

]
(∗1) +

2

5
e12λ (∗F 12) ∧ F 12 , (4.30)

where the scalar potential is now simply

V = −3

2
m2
[
e8λ + 4e−2λ

]
. (4.31)

Finally, the Einstein equation (we shall use an equivalent version in different notation here)

Rµν =
1

4
(T−1)ijDµTjk(T

−1)k`DνT`i +
1

4
(T−1)ik(T

−1)jlFµρ
ijFν

ρ kl +
1

4
TijSµρσ

iSρσν
j

+
1

10
gµν

(
−1

4
(T−1)ik(T

−1)j`Fρσ
ijF ρσ k` − 1

3
TijSρστ

iSρστ j + 2V

)
, (4.32)

with the scalar potential V in equation (3.12) (after inserting our ansatz, V is given in

equation (4.31)) can be written as

Rµν = 30 (∇µλ) (∇νλ) +
1

2
e12λ

(
F 12

)
µρ

(
F 12

)
ν
ρ − 1

20
gµν

(
e12λ

(
F 12

)2 − 4V
)
, (4.33)

where (
F 12

)2 ≡ (F 12
)
µν

(
F 12

)µν
. (4.34)

Before we discuss the supersymmetry conditions, let us write down the only nontrivial

(Abelian) Bianchi-identity

DF 12 ≡ d
(
F 12

)
= 0 . (4.35)

Let us now turn to the supersymmetry conditions in our ansatz. We shall not explicitly

split the spinors up, since we will not explicitly need it in the remainder. The dilatini

equations for i ∈ {1, 2} can be written as

0 = γµΓiε (∇µλ) +
1

5
m
(
e−6λ − 3e4λ

)
Γiε+

1

10
e6λγµνΓ12Γiε

(
F 12

)
µν
, (4.36)
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and for j ∈ {3, 4, 5} they are given by

0 = −γµΓjε (∇µλ) +
1

5
m
(
e4λ − e−6λ

)
Γjε+

1

10
e6λγµνΓ12Γjε

(
F 12

)
µν
. (4.37)

Similarly the gravitini equations in our ansatz read

Dµε = − 1

20
m
(

2e−6λ + 3e4λ
)
γµε+

1

20
e6λ (γµ

νρ − 8δµ
νγρ) Γ12ε

(
F 12

)
νρ
, (4.38)

where

Dµεa = ∂µεa +
1

4
ωµ

mnγmnεa +
g

2

(
A12
)
µ

(
Γ12
)
a
bεb , (4.39)

where we recall that we set g = 2m.

4.4 Integrability

Apart from the supergravity equations described in the previous section, we will also employ

what we call “integrability”. In principle one could try to solve integrability in the usual

sense, i.e. use the gravitini and dilatini variation to solve schematically

[Dµ, Dν ]ε ∝ Rµν + · · · , (4.40)

where the ellipsis denote curvatures for other bundles (e.g. gauge field strengths). However,

for our purposes it is enough to do this explicitly in our ansatz/solution. The procedure

goes as follows: we use the gravitini variation to solve for

∂rη = Irη , ∂z1η = Iz1η , ∂z̄1̄ = Iz̄1̄η , (4.41)

∂z2η = Iz2η , ∂z̄2̄η = Iz̄2̄η , (4.42)

in terms of the fields in our ansatz. Here we used η to denote a particular component of the

Killing spinor ε, which is preserved under the aforementioned projection conditions (4.9)

and (4.10). Furthermore in Ij we schematically include all the relevant fields and their

derivatives that appear when solving for the left hand side. Then we take derivatives of

these equations and then the “Schwarz integrability condition” for PDEs will give us a set

of equations of the form

∂rz1η = ∂r (Iz1η) ≡ ∂z1rη = ∂z1 (Irη) (4.43)

and similarly for the other pairs of variables. By plugging equations (4.41) and (4.42) back

into (4.43) and its cousins, we find partial differential equations purely in terms of the

fields in our ansatz, independent of η (or ε). Furthermore, these integrability conditions

will ensure that we can locally integrate to find the Killing spinors.

5 Metric flows for Kähler calibrations inside CY3

5.1 Kähler metric flow equations

We now sketch our solution for the ansatz discussed in section 4 and refer to appendix B

for more details.

– 16 –



J
H
E
P
0
8
(
2
0
1
8
)
0
4
6

We start by defining the following combination of fields

Λ = λ− f , (5.1)

G = 4f + g , (5.2)

H = h− f . (5.3)

From combining the gravitini equation (4.38) and the dilatini variations (4.36) and (4.37),

we observe that these combinations of fields only depend on three out of the five variables.

However, we assume in the following that they only depend on the r-direction,20 i.e.

Λ ≡ Λ(r) , G ≡ G(r) , H ≡ H(r) . (5.4)

Using the full range of supersymmetry equations, equations of motion, Einstein equa-

tions as well as Bianchi identities including integrability conditions given in sections 4.3

and 4.4, we can solve for the components of F 12. In an expansion in terms of the seven-

dimensional frame coordinates — as detailed in (4.20) — we have written down the resulting

solutions in equations (B.7)–(B.16). Similarly, using all the aforementioned field equations

we can isolate the partial derivatives of the function f with respect to r, z1 and z2; the

resulting solutions are provided in (B.17)–(B.19). For our purposes, we may neglect the

remaining partial derivatives of f with respect to the barred coordinates.

Furthermore, we found the following solutions for the fields Λ(r) and H(r) introduced

in (5.1) and (5.3)

∂rΛ(r) =
1

2
meG+4Λ , (5.5)

∂rH(r) =
1

4

(
∂rG+ 3meG+4Λ

)
− 1

4
∂r log (K11̄Kr1̄2 −K1̄2Kr11̄) . (5.6)

Having fixed all these ingredients we arrive at the following set of metric flow equations

(we again refer to appendix B for more details)

t = t(r) , (5.7)

t(r) = s(r) , (5.8)

t(r) = ∂r log (K11̄Kr22̄ −K22̄Kr11̄) , (5.9)

(log g)r1̄ = 0 , (5.10)

(log g)r2̄ = 0 , (5.11)

(log g)i̄ e
F =

[
(log g)k ¯̀

Kk ¯̀
eF +m∂r log

(
Ki̄
Kk ¯̀

)]
Ki̄ , (5.12)

20This is an assumption which helps to simplify the equations. It is rooted in the study of Kähler

calibration flows that preserve the maximal amount of supersymmetry [49]. Namely, in that case, one

can explicitly show that equations (5.1)–(5.3) are fully general. We shall not discuss “full” flows in the

current paper.
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where i, k ∈ {1, 2}, and ̄, ¯̀ ∈ {1̄, 2̄}, are arbitrary, and where we have introduced the

following definitions

eF := eG−2H+6Λ (5.13)

t := ∂r log (K11̄Kr1̄2 −K1̄2Kr11̄) , (5.14)

s := ∂r log (K11̄Kr12̄ −K12̄Kr11̄) . (5.15)

In particular, the equations arising in supergravity explicitly dictate that t and s only

depend on the r-coordinate. Finally, we have defined

log g := log (K11̄K22̄ −K12̄K1̄2) , (5.16)

which is strictly speaking 1/2 the logarithm of the determinant of the Kähler metric, and

thus the Ricci tensor of the four-dimensional Kähler manifold reads

Ri̄ ≡ −i ∂i∂̄ log det (gµν) = −2i (log g)i̄ . (5.17)

There is one final equation

(log g)i̄ e
F

mKi̄
=

1

2

(
∂rG+ 3meG+4Λ

)
+ ∂r logKi̄ −

s

2
, (5.18)

for arbitrary i ∈ {1, 2} and ̄ ∈ {1̄, 2̄}. This can be used to fix ∂rG(r) in terms of the

Kähler potential, i.e.

∂rG(r) = −3meG+4Λ + 2
(log g)i̄
Ki̄

eF

m
− 2 ∂r logKi̄ + s . (5.19)

As we mention in appendix B, this furnishes a complete and consistent set of equations

upon taking derivatives.

5.2 Asymptotics

We shall now discuss the asymptotic behavior of the Kähler manifold flow equations (5.7)–

(5.12). In the asymptotic ultraviolet, we expect that by implementing the appropriate

twist, we can pick an arbitrary Kähler metric. At the infrared fixed point we should end

up with a Kähler-Einstein metric on the Kähler four-manifold wrapped by the M5-branes.

We shall confirm these expectations explicitly in the following.

5.2.1 Ultraviolet

As discussed in section 4, in the ultraviolet limit, the metric should be asymptotically

AdS7, with the slices at constant r-coordinate being of the form

R1,1 ×M(UV)
4 . (5.20)
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In particular the ultraviolet region will be in the limit r → 0, and the metric will have

asymptotic boundary conditions as21

f ∼ − log r + o (1) , g ∼ − log r + o (1) , h ∼ − log r + o (1) . (5.21)

Similarly, the scalar λ and the U(1) gauge field F 12 have to satisfy the following boundary

conditions in the UV (
A12
)
∼ i

4m

(
ω(UV)

)
ab
Jab + o (1) , (5.22)

λ ∼ o (1) , (5.23)

where ω(UV) is the spin-connection purely on the four-dimensional Kähler manifoldM(UV)
4 ,

and

Jab =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 . (5.24)

The former condition is precisely the asymptotic implementation of the twist (4.7). Finally

the Kähler potential goes as

K(r, z1, z̄1̄, z2, z̄2̄) ∼ K(UV)
0 (z1, z̄1̄, z2, z̄2̄) + rK(UV)

1 (z1, z̄1̄, z2, z̄2̄) + o (r) , (5.25)

for r → 0.

With this asymptotic behavior of the ansatz, the function F (r) in (5.13) is asymptot-

ically given by

eF ∼ cst · r + o(r) (5.26)

in the r → 0 ultraviolet limit. Furthermore, by including higher order terms, such as

K(UV)
1 , the functions s introduced in (5.15) and t in (5.14) are in fact well defined and

vanishing in the r → 0 limit. This is important in order for the functions f , g and h to

be physically sensible and well-defined. It is then straightforward to observe that our set

of equations does not put any constraints on the Kähler metric K(UV)
0 in the limit r → 0.

This confirms the expected result that we may start the RG flow with an arbitrary Kähler

metric in the UV.

5.2.2 Infrared

In the infrared limit — corresponding to r →∞ — we expect to obtain a metric solution

of the form

AdS3 ×M(IR)
4 , (5.27)

21We use the (standard) notation: for any function f of the variable x, f(x) := o (g(x)) in the limit

x→ 0, if and only if

lim
x→0

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0 .
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where M(IR)
4 is supposed to be a “uniformized” version of the generic Kähler manifold we

started with in the UV. In particular, at the infrared fixed point, the Kähler potential will

be independent of the radial coordinate, i.e.

∂rK(r, z1, z̄1̄, z2, z̄2̄) ≡ 0 . (5.28)

Thus, in our Kähler metric flow equations in (5.7)–(5.12), the remaining condition reads

(log g)i̄
Ki̄

=
(log g)k ¯̀

Kk ¯̀
, (5.29)

for arbitrary pairs (i̄), (k ¯̀) ∈ {(11̄), (12̄), (21̄), (22̄)}. In terms of the Ricci tensor and the

local metric on the four-manifold, this gives

Ri̄
gi̄

=
Rk ¯̀

gk ¯̀
. (5.30)

Therefore, we conclude that M(IR)
4 is as expected precisely Kähler-Einstein. The fact that

the ratio is independent of the r-coordinate follows from (5.10) and (5.11). Furthermore,

its independence of the local coordinates on the Kähler manifold is a consequence of taking

derivatives of (5.19).22

Now we would like to explicitly see if we can find an asymptotic (consistent) IR AdS3

solution, by considering perturbation theory. To leading order the physical IR asymptotic

behavior of the metric fields f and g should satisfy

f ∼ − log r , g ∼ − log r , (5.31)

as well as

h ∼ h0 ≡ constant , (5.32)

for r →∞. Thus, it follows that

eF ∼ cst · 1

r
+ o

(
1

r

)
. (5.33)

Similarly, there can be corrections to the Kähler potential, and we fix an ansatz of the form

K(r, z1, z̄1̄, z2, z̄2̄) = K(IR)
0 (z1, z̄1̄, z2, z̄2̄) +K(IR)

1 (z1, z̄1̄, z2, z̄2̄)
1

r
+ · · · . (5.34)

As mentioned above, the leading order K(IR)
0 is then required to be Kähler-Einstein with

some constant `0 ∈ R, i.e. (
K(IR)

0

)
i̄

= `0

(
R

(IR)
0

)
i̄
. (5.35)

The subleading contributions of the Kähler potential can be fixed order-by-order. By doing

so, we find an expansion consistent with the asymptotic behavior in (5.31) and (5.32). One

22There is a subtlety here in that the function s, defined in (5.15), is not well-defined for ∂rK ≡ 0.
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can check that by solving the equations (5.5), (5.6) and (5.19) (which determine Λ, H and

G) order-by-order, that the scalar λ obeys

λ ∼ λ0 + o

(
1

r

)
, (5.36)

where λ0 is a finite constant. Thus, the divergence, λ → ∞, observed in [15] seems to

be avoided in this expansion. The main difference is that the Kähler potential-dependent

terms in equations (5.6) and (5.19) add more degrees of freedom, which allow us to cancel

the apparent unphysical behaviour of λ. For instance, in equation (5.6), the K-dependent

piece starts contributing at leading order, i.e. at order O (1/r). If we fix the “bulk” K to be

independent of r, this term will be absent, and solutions will require unphysical asymptotic

behavior for the scalar λ [15].23

This works for the asymptotic Kähler-Einstein metric K(IR)
0 being positively curved,

i.e. having `0 > 0 in (5.35). However, when `0 < 0, we require imaginary λ0 in (5.36),

to have a consistent set of asymptotic solutions. Of course none of this means that there

are any global solutions for `0 > 0 or `0 < 0, and it would be desirable to derive full

global solutions for either of those cases using our set of equations. We leave this for

future investigation.

Finally, let us briefly dwell on the observation that the infrared metric is Kähler-

Einstein. In the mathematics literature, Kähler-Ricci flows have been an active area of

research for some time now (see for instance [50] for a nice review). An important fact

which was proved in [51] is that for non-positive first Chern-class — and after proper

normalization — the Kähler-Ricci flow converges to a Kähler-Einstein metrics (as a “by-

product”, the author was able to re-prove the famous Calabi-Yau theorem [52]). However,

if the first Chern class of the Kähler manifold is positive, the Kähler-Ricci flow may not

converge to a Kähler-Einstein metric (there exist compact Kähler manifolds of c1 > 0 which

do not admit a Kähler-Einstein metric [53, 54]). It is rather interesting, that we seem to

find somewhat complementary data, i.e. from a physical perspective, when `0 > 0, we find

evidence for “well-behaved” IR Kähler-Einstein fixed points and when `0 < 0, we have

to consider a “complex” scalar (of course, from a mathematical perspective the physical

validity of the fixed points might not be relevant). The known mathematical results are

suggestive that there might exist global flows in the case of `0 < 0. Either way we believe

that our set of equations could be an interesting alternative way to study four-dimensional

Kähler manifold flows and we hope to return to that in the future.

6 Discussion and outlook

In this paper we initiated the study of Kähler four-manifold flows by treating renormaliza-

tion group flows across dimensions from holography. We started by setting up a physically

sensible ansatz for the case of M5-branes wrapping a Kähler four-manifold, which is a

23Let us stress here that we do not recover the setting in [15] from our set of equations (5.7)–(5.12). This

is due to the fact that if the Kähler potential is independent of r everywhere, the functions s and t are not

well-defined (see for instance equations (B.40) and (B.40)).
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calibrated cycle inside a Calabi-Yau threefold. This ansatz is taken in the local picture of

gauged seven-dimensional supergravity. We then went ahead and imposed 1
2 -BPS condi-

tions on the Killing spinors, and solved all the constraints coming from the supergravity

theory. This left us with a system of partial differential equations purely in terms of

the four-dimensional Kähler metric (5.7)–(5.12). We then provided evidence that these

equations should describe some sort of higher dimensional analogue of uniformization of

the four-manifold, by taking expansions around the ultraviolet and infrared (physically

motivated) boundary conditions. We argued that in the ultraviolet one may start with

an arbitrary Kähler metric, and in the infrared it should uniformize to a Kähler-Einstein

(constant curvature) metric. In particular, both the UV and IR expansions seem to be

physically well-behaved.

We shall now present a rather extensive list of interesting future directions.

To begin with, an interesting problem is to study and analyze our equations (5.7)–

(5.12) in more detail. To do so, it might be useful to write down a “covariantized” version

of them. It is possible that this requires us to relax some assumptions in our ansatz;

for instance we suspect that when we “gauge-fix” the composite scalars to be diagonal

(see (4.22)), we also “pick a gauge” in a possible more general “covariantized” version of

the metric flow equations, such that they reduce to the ones we found. More precisely we

could imagine that fixing the composite scalars to this diagonal form might have drawn

us to a specific representation of more general “covariantized” flow equations for Kähler

four-manifolds.

Along the same lines, it would also be very interesting to attempt to show uniformiza-

tion for Kähler four-manifolds similar to the discussion in [22]. Given the form of our

equations (5.7)–(5.12), this looks like a rather daunting task. More realistically, it would be

nice to find and discuss (simple) examples of such Kähler flows and observe uniformization-

behavior on a case-by-case basis. Similarly, it would be intriguing to analyze possible finite-

time singularities, which are ubiquitous in Ricci flows, for our Kähler metric flow equations.

If such singularities appear, there might be a way to understand them physically. Finally,

it is important to find global solutions interpolating between the AdS7 and AdS3 boundary

conditions. As we have seen, such solutions would require the Kähler four-cycle metric to

explicitly depend on the radial coordinate, i.e. ∂rKi̄ 6= 0.

Another generalization to consider in the future is to treat metric RG flows for other

examples of calibrated four-cycles. The case we aspire to the most would be to understand

M5-branes wrapping a coassociative cycle inside a G2 manifold. This example is interesting,

because for any choice of the four-manifold, the G2-manifold looks locally like the bundle of

self-dual two-forms over the calibrated coassociative cycle (see for instance [55]). Following

the logic advertised in the current paper, and in particular the fact that we work completely

locally, we would expect that starting from any four-manifold in the ultraviolet we would

get some uniformized version of the initial UV four-manifold in the infrared.24 Therefore,

the answer to finding such flow equations might hint towards many interesting and largely

24From the known solution in [15], in which the metric on the four-manifold is kept fixed, we expect that

in the infrared the metric is conformally half-flat, i.e. the Weyl tensor is anti-self-dual (e.g. see [56]).
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unexplored questions in the mathematics of four-manifolds. As a matter of fact, the current

paper is supposed to represent a stepping stone towards that goal. On the field theory side,

one expects that the two-dimensional theory preserves N = (2, 0) supersymmetry, and a

study of the two-dimensional theories and their relation to four-manifold geometry was

performed in [40].

Let us now briefly mention some observations about the coassociative four-cycle flows.

To begin with, one can slightly simplify the problem by working with a generic Hermitian

four-manifold instead of a fully general one. Even the case of Hermitian four-manifold

flows is vastly unexplored (one of the main issues being that the Ricci flows does not

seem to preserve the Hermiticity along the flow). Restricting to Hermitian four-manifolds,

we are required to keep the full non-Abelian SU(2) gauge fields for the twist. This will

induce a large system of equations for the metric, when studying the gravitini and dilatini

variation of the maximal seven-dimensional gauged supergravity. To isolate the conditions

on the metric one needs to study their integrability conditions and remove all the remaining

components of the SU(2) gauge fields, which is very labor-intensive. Fortunately the S-

equations of motion for the three-form in the gauged supergravity are still trivially satisfied

by setting SI = 0, and so we still believe that such an approach is within the reach

of possibility.

An alternative approach is to rephrase the question inspired by intuition gained from

the “AGT — correspondence” [57].25 Namely, instead of dealing with a seven-dimensional

gauged supergravity, one truncates the supergravity ansatz to a five-dimensional theory,

which “lives” on the four-manifold together with the r-direction of AdS7. This five-

dimensional theory should then describe the metric RG flow. Ideally one would like to

map it to a familiar five-dimensional supergravity, and then use known results, such as the

study of allowed metrics on such theories to say something about the allowed metric RG

flows. Furthermore, having such a theory one could hope that there are quantities in the

theory that could serve as a “C-function”–analogue along the RG flow, and possibly make

a connection to the treatment in [26]. As a matter of fact, in [58] we employ this idea to

reformulate the supergravity solutions of a particular set of four-dimensional N = 1 super-

conformal field theories, which arise from compactifications of M5-branes on a Riemann

surface [59, 60]. We shall find that this leads to the relation between these fixed points

and the study of Morse theory on two-dimensional Yang-Mills [61], which was originally

observed in [62].

Finally, it would of course be nice to study three-manifold flow equations and AdS4

solutions arising from a similar setup, and see if one can observe behavior akin to the Ricci

flow for the metrics of the involved three-manifold.
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A Notation

Let us mention some notation that we employ throughout the paper. To begin with, we

use the following conventions for indices:

• We use capital Roman indices I, J, . . . ∈ {1, . . . , 5} to denote indices for the gauge

group SO(5)g. They are raised and lowered via δAB.

• Lower letter Roman indices i, j, . . . ∈ {1, . . . , 5} shall be used throughout as a label

for the gauge group SO(5)c. They are also raised and lowered via δij .

• Lower letter Greek indices µ, ν . . . ∈ {1, . . . , 7} denote spacetime indices and are

raised and lowered by gµν . Lower letter Roman indices from the latter part of the

alphabet, m,n, . . . ∈ {1, . . . , 7} denote vielbein indices which are raised and lowered

via ηmn of signature (−,+, . . . ,+). Notice that the time direction will always be at

µ = 1.

• We shall mostly avoid explicitly writing down spinor indices, however if we do they

will be labeled by lower case Roman letters from the beginning of the alphabet,

a, b, . . . ∈ {1, . . . , 4}.

Throughout the paper, capital letter Gamma matrices Γi are elements in Cliff(5, 0)

and in order to explicitly solve the supersymmetry constraints and integrability conditions,

we fix a particular basis, namely

Γi = −σ2 ⊗ σi , for i ∈ {1, 2, 3} , Γ4 = σ1 ⊗ 12 , Γ5 = σ3 ⊗ 12 . (A.1)

Lower case Gamma matrices γµ are elements in Cliff(6, 1). However, since there is a

four-dimensional part of the metric that is given by a Kähler metric, we have to pick the

following flat (frame) metric

gmn =



−1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0


. (A.2)

Similarly, we have to pick gamma matrices γm, which satisfy the gamma-matrix algebra

with this gmn, i.e.

{γm, γn} = 2gmn18 . (A.3)
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We start by choosing a standard set of gamma matrices, γ̃m with respect to the usual flat

seven-dimensional Euclidean metric g̃mn ≡ δmn,

γ̃1 = iγ̃2 · · · γ̃7 , γ̃2 = iσ2 ⊗ 14 , (A.4)

γ̃2+j = iσ2 ⊗ Γj , j = 1, . . . , 5 , (A.5)

where Γj are the five-dimensional gamma matrices in (A.1), and then use a transformation

matrix Pab, such that

g̃mnPp
mPq

n = gpq . (A.6)

The appropriate seven-dimensional gamma matrices are then obtained by

γm := Pm
qγ̃q . (A.7)

B The full solution

In this section we will provide some more details of the derivation of the equations (5.7)–

(5.12), discussed in the main part of the paper. We will mention here that most of this

rather involved computation is performed in Mathematica. As remarked in the main text,

we start by making a simplifying assumption, namely we define

Λ = λ− f , G = 4f + g , H = h− f , (B.1)

where the new functions Λ, G and H only depend on the r-direction

Λ ≡ Λ(r) , G ≡ G(r) , H ≡ H(r) . (B.2)

A priori, the function f = f(r, z1, z̄1̄, z2, z̄2̄) still depends on all the variables. Imposing

the 1
2 -BPS projection conditions (4.9) and (4.10), we can solve for H(r) and Λ(r) from the

supergravity equations as well as integrability conditions to find26

∂rΛ(r) =
1

2
meG+4Λ , (B.4)

∂rH(r) = ∂r

(
−1

4
log (K11̄Kr1̄2 −K1̄2Kr11̄) +

1

4
G(r) +

3

2
Λ(r)

)
. (B.5)

We can integrate the latter equation to find

H(r) = −1

4
log (K11̄Kr1̄2 −K1̄2Kr11̄) +

1

4
G(r) +

3

2
Λ(r) + h̃ (z1, z̄1̄, z2, z̄2̄) , (B.6)

where h̃ (z1, z̄1̄, z2, z̄2̄) is an arbitrary function in terms of the variables of the Kähler mani-

fold. We will not require to fix this function in the following. Finally, the function expG(r)

can be fixed in terms of the Kähler potential as well as Λ and H as we shall see below.

26Recall that we are employing the following shorthand notation throughout the paper

fr := ∂rf(r, zi, z̄ı̄, . . .) , fi̄ := ∂zi∂z̄̄f(r, zi, z̄̄, . . .) , etc , (B.3)

for an arbitrary function f depending on variables (r, zi, z̄̄, . . .) .
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We now fix the frame in (4.16) and (4.18). Given the ansatz for F 12 in equation (4.20),

and solving the gravitini and dilatini variations allows us to solve for the following compo-

nents of F 12,27

F34 = 5ie−7f−H(r)−6Λ(r) f1

(K11̄)1/2
, (B.7)

F36 = 5ie−7f−H(r)−6Λ(r) (f2K11̄ − f1K1̄2)

(K11̄)1/2 (K11̄K22̄ −K12̄K1̄2)1/2
, (B.8)

F45 =
i

4
e−2f−G(r)−6Λ(r)

[
−
(

3eG(r)+4Λ(r)m+G′(r)
)
− 2 ∂r logK11̄

+ ∂r log (K11̄Kr22̄ −K22̄Kr11̄)

]
, (B.9)

F46 = 0 , (B.10)

F47 =
ie−2f−G(r)−6Λ(r) (K12̄Kr11̄ −K11̄Kr12̄)

2K11̄ (K11̄K22̄ −K12̄K1̄2)1/2
, (B.11)

F56 =
ie−2f−G(r)−6Λ(r) (K11̄Kr1̄2 −K1̄2Kr11̄)

2K11̄ (K11̄K22̄ −K12̄K1̄2)1/2
, (B.12)

F67 = − i

4
e−2f−G(r)−6Λ(r)

[
−
(

3eG(r)+4Λ(r)m+G′(r)
)

+ 2 ∂r logK11̄

− 2 ∂r log (K11̄K22̄ −K12̄K1̄2) + ∂r log (K11̄Kr22̄ −K22̄Kr11̄)

]
. (B.13)

The remaining components of F 12, namely F35 , F37 and F57 can be fixed by first realizing

that there cannot be any z̄1̄z̄2̄-component

F57 = 0 . (B.14)

The remaining two components can be fixed by solving and combining several of the re-

maining equations. After a lengthy calculation, we find the rather simple solutions27

(F35)2 = −25 e−14f−2H(r)−12Λ(r) (f1̄)2

K11̄

, (B.15)

(F37)2 = 25 e−14f−2H(r)−12Λ(r) (f1̄K12̄ − f2̄K11̄)2

K11̄ (K12̄K1̄2 −K11̄K22̄)
. (B.16)

Finally it remains to isolate the function f , which still depends on all the coordinates.

A very lengthy and involved computation in which we use all the equations of motion,

Einstein equations, integrability conditions as well as Bianchi-identities, yields again a

rather simple solution27

fr = − 1

10

(
∂rG(r) + 2m

(
e−10f−6Λ + 3eG(r)+4Λ(r)

)
+ ∂r log (K1̄2K12̄ −K22̄K11̄)

− ∂r log (K1̄2Kr11̄ −K11̄Kr1̄2)

)
, (B.17)

fz1 = 0 , (B.18)

fz2 = 0 . (B.19)

27Notice here that we already use results which we will describe below, in order to simplify these equations.
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The remaining two components, namely fz̄1̄ and fz̄2̄ are unfixed, but nonzero. In principle,

by determining their derivatives with respect to the other variables, and then integrating,

one could fix them. However, for our purposes this is not necessary. It is however a crucial

and highly nontrivial constraint that the second order derivatives satisfy the “Schwarz inte-

grability conditions”. For instance, we can solve for frz̄1̄ from the supergravity constraints

and it is important that this gives the same result as ∂z̄1̄(fr), where we plug in fr from

equation (B.17). Similarly, we require this for the other cases.

Now finally we have isolated all the non-metric components of the system and we can

focus on the flow equations for the Kähler potential. Solving all the equations of motion

including integrability conditions and Bianchi identities yields a set of eight independent

order-four (i.e. maximum of four derivatives acting on the Kähler potential) and five “in-

dependent”28 order-five equations for the Kähler potential.

We start by writing down the order-four equations. To simplify the formulas, let us

first write down some definitions that we also use in the main text

eF := eG−2H+6Λ (B.20)

t := ∂r log (K11̄Kr1̄2 −K1̄2Kr11̄) , (B.21)

s := ∂r log (K11̄Kr12̄ −K12̄Kr11̄) . (B.22)

We furthermore will use

log g := log (K11̄K22̄ −K12̄K1̄2) . (B.23)

Then the first six order-four constraints read

s+ ∂r log [Kr1̄2] =
K1̄2 (Krr11̄Kr12̄ −Kr11̄Krr12̄)

Kr1̄2 (K11̄Kr12̄ −K12̄Kr11̄)
, (B.24)

(log g)r1̄ = 0 , (B.25)

(log g)r2̄ = 0 , (B.26)

eF (log g)1̄2

m
=

1

2

(
G′ + 3meG+4Λ

)
K1̄2 +Kr1̄2 −

1

2
sK1̄2 , (B.27)

eF (log g)12̄

m
=

1

2

(
G′ + 3meG+4Λ

)
K12̄ +Kr12̄ −

1

2
sK12̄ , (B.28)

eF (log g)11̄

m
=

1

2

(
G′ + 3meG+4Λ

)
K11̄ +Kr11̄ −

1

2
sK11̄ , (B.29)

eF (log g)22̄

m
=

1

2

(
G′ + 3meG+4Λ

)
K22̄ +Kr22̄ −

1

2
sK22̄ . (B.30)

Notice that final four equations imply

(log g)i̄
Ki̄

−
(log g)k ¯̀

Kk ¯̀
= me−F∂r log

(
Ki̄
Kk ¯̀

)
, i, k ∈ {1, 2} , ̄, ¯̀∈ {1̄, 2̄} . (B.31)

28It turns out that they are in fact not independent, but rather can be derived from the order-four

equations by taking derivatives.
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The remaining order-four equation reads[
(log g)11̄

K11̄

+
(log g)12̄

K12̄

]
eF

m
=
(
G′ + 3meG+4Λ

)
+ ∂r logK11̄K12̄

−(K11̄Krr22̄ −K22̄Krr11̄)

K11̄Kr22̄ −K22̄Kr11̄

. (B.32)

Thus together with our result from above, we find that

K12̄Krr11̄ −K11̄Krr12̄

K11̄Kr12̄ −K12̄Kr11̄

= −K11̄Krr22̄ −K22̄Krr11̄

K11̄Kr22̄ −K22̄Kr11̄

, (B.33)

and thus

s = ∂r log (K11̄Kr22̄ −K22̄Kr11̄) . (B.34)

Now we turn to the order-five equations. They can be written as

0 =
1

2
K1̄2 (K11̄Kr1̄2 −K1̄2Kr11̄) 2

(
− t2 + 2 ∂rt− 4

(Krr11̄Kr1̄2 −Kr11̄Krr1̄2)

K11̄Kr1̄2 −K1̄2Kr11̄

− 2G′′ +
(
G′
)2 − 3m2e2G+8Λ

)
, (B.35)

0 = K1̄2 (K11̄Kr1̄2 −K1̄2Kr11̄) 2 · ∂1t+K11̄ (K11̄Kr1̄2 −K1̄2Kr11̄) 2 · ∂2t , (B.36)

0 = (K11̄Kr1̄2 −K1̄2Kr11̄) 2 · ∂2t , (B.37)

0 = (K11̄Kr1̄2 −K1̄2Kr11̄) 2 · ∂1̄t , (B.38)

0 = (K11̄Kr1̄2 −K1̄2Kr11̄) 2 · ∂2̄t . (B.39)

Hence, assuming that

(K11̄Kr1̄2 −K1̄2Kr11̄) = K11̄K1̄2∂r log

[
K1̄2

K11̄

]
6= 0 , (B.40)

we can integrate to find

t ≡ t(r) , (B.41)

i.e. t only depends on the r-coordinate.

Then equation (B.35) tells us that

t2 − 2t′ − 4s ∂r logK1̄2 = −2G′′ +G′2 − 3m2e2G+8Λ − 4Krr1̄2

K1̄2

, (B.42)

and (if we do a different replacement)

t2 − 2t′ − 4s ∂r logK11̄ = −2G′′ +G′2 − 3m2e2G+8Λ − 4Krr11̄

K11̄

. (B.43)

We notice that (B.24) can be written as

[
s− t(r)

](Kr11̄K1̄2 −Kr1̄2K11̄

Kr1̄2K11̄

)
= 0 . (B.44)
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We shall now further assume that(
Kr11̄K1̄2 −Kr1̄2K11̄

Kr1̄2K11̄

)
6= 0 , (B.45)

and hence

s ≡ s(r) ≡ t(r) . (B.46)

Independently, notice that the “Schwarz integrability conditions” for log g, i.e.

∂1 (log g)1̄2 = ∂2 (log g)11̄ , etc. (B.47)

imply that

∂is = 0 , i ∈ {1, 1̄, 2, 2̄} . (B.48)

Thus, this is consistent with (B.46).

Finally we can look at the constraints arising from ∂r (log g)i̄. We start by noticing

that we may rewrite (log g)i̄ as

(log g)i̄ =
{

2H ′(r) + ∂r logKi̄
}(
me−FKi̄

)
. (B.49)

Therefore, we obtain

∂r (logg)i̄ = 0 (B.50)

= ∂rr

[
1

2
(G+6Λ)+logKi̄−

1

2
log(K11̄Kr12̄−K12̄Kr11̄)

](
me−G+2H−6ΛKi̄

)
+∂r

[
1

2
(G+6Λ)+logKi̄−

1

2
log(K11̄Kr12̄−K12̄Kr11̄)

]
∂r
(
me−G+2H−6ΛKi̄

)
.

However, we also have

∂r
(
me−G+2H−6ΛKi̄

)
=

[
−1

2

(
G′ + 3meG+4Λ + t(r)

)
+ ∂r logKi̄

]
Ki̄me−G+2H−6Λ ,

(B.51)

as well as

Λ′′ =
1

2
m(G′ + 2meG+4Λ)eG+4Λ . (B.52)

Hence, we obtain

0 =
1

4

(
2G′′ −G′2 + 3m2e2G+8Λ + 4∂rr logKi̄ − 2 (t+ s) (∂r logKi̄) + 4 (∂r logKi̄)2

−2∂rs+ ts+
(
G′ + 3meG+4Λ

)
(s− t)

)
, (B.53)

and so it follows that

4∂rr logKi̄ = −2G′′ +G′2 − 3m2e2G+8Λ + 2 (t+ s) (∂r logKi̄)− 4 (∂r logKi̄)2

+2∂rs− ts−
(
G′ + 3meG+4Λ

)
(s− t) . (B.54)
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However given (B.46), we may write this as

t2 − 2t′ − 4t (∂r logKi̄) = −2G′′ +G′2 − 3m2e2G+8Λ − 4
Krri̄
Ki̄

. (B.55)

Now if we pick (i̄) = (1̄2) or (i̄) = (11̄), this is precisely what we found in (B.42)

and (B.43).

There are two remaining choices for (i̄) arising from this equation. The fact that

they are implied by the previous equations follows from the following: let (k, ¯̀) and (i̄) be

arbitrary, for consistency we require that

s2 − 2∂rs− 4s (∂r logKi̄)−
[
s2 − 2∂rs− 4s (∂r logKk ¯̀)

]
= −2G′′ +G′2 − 3m2e2G+8Λ − 4∂rr logKi̄ − 4 (∂r logKi̄)2

+
2K11̄

(Kr11̄K1̄2 −Kr1̄2K11̄)

[
1

2

(
G′ + 3meG+4Λ

)
− 1

2
s+ (∂r logKi̄)

]
−
[
− 2G′′ +G′2 − 3m2e2G+8Λ − 4∂rr logKk ¯̀− 4 (∂r logKk ¯̀)

2

+
2K11̄

(Kr11̄K1̄2 −Kr1̄2K11̄)

[
1

2

(
G′ + 3meG+4Λ

)
− 1

2
s+ (∂r logKk ¯̀)

] ]
, (B.56)

which can be rewritten as

1

2
[s+ t] [(∂r logKk ¯̀)− (∂r logKi̄)] = ∂rr logKk ¯̀− 4∂rr logKi̄

+
[
(∂r logKk ¯̀)

2 − (∂r logKi̄)2
]
. (B.57)

However, this is equivalent to

∂r (log g)i̄ − ∂r (log g)k ¯̀ = 0 = ∂rr log

(
Ki̄
Kk ¯̀

)
− 1

2
(t+ s) ∂r log

(
Ki̄
Kk ¯̀

)
+ (∂r logKi̄)2 − (∂r logKk ¯̀)

2 , (B.58)

and thus we showed that this is actually implied by our order-four equations.

B.1 Summary

Let us briefly summarize the independent metric flow equations arising from the analy-

sis of the solutions. The order-four constraints can be summarized to the following set

of equations

t = s , (B.59)

t = ∂r log (K11̄Kr22̄ −K22̄Kr11̄) , (B.60)

(log g)r1̄ = 0 , (B.61)

(log g)r2̄ = 0 , (B.62)

(log g)i̄
Ki̄

=

{
1

2

(
G′ + 3meG+4Λ

)
+ ∂r logKi̄ −

s

2

}
me−F , (B.63)(

(log g)i̄
Ki̄

−
(log g)k ¯̀

Kk ¯̀

)
= ∂r log

(
Ki̄
Kk ¯̀

)
me−F , i, k ∈ {1, 2} , ̄, ¯̀∈ {1̄, 2̄} . (B.64)
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The order-five constraints then imply that

s ≡ s(r) , (B.65)

as well as (independently from order-four)

t ≡ t(r) . (B.66)

The logic should be as follows. We solve (B.63) in terms of ∂rG and eF for different

choices of (i̄). In particular for fixed (i̄) and (k ¯̀) we can solve

G′ = −3meG+4Λ + 2
(log g)i̄
Ki̄

eF

m
− 2 ∂r logKi̄ + s . (B.67)

Plugging this into (B.63) removes that equation and leaves only (B.64). We can solve this

now for eF , to find

me−F =

(
(log g)i̄
Ki̄ − (log g)k ¯̀

Kk ¯̀

)
∂r log

(
Ki̄
Kk ¯̀

) . (B.68)

Our analysis shows that doing this is in fact consistent, i.e.

∂re
−F = (−G′ + 2H ′ − 6Λ′)e−F , ∂z1e

−F = 0 , etc. . (B.69)

Once we eliminate these functions, we find equations purely in terms of the Kähler potential.

Let us also mention here that equations (B.59) and (B.60) imply that the remaining

quantities are also equal, namely

s ≡ t = ∂r log (K12̄Kr22̄ −K22̄Kr12̄) (B.70)

= ∂r log (K12̄Kr1̄2 −K1̄2Kr12̄) (B.71)

= ∂r log (K1̄2Kr22̄ −K22̄Kr1̄2) . (B.72)

Finally, it is noteworthy that these functions might not be well-defined (e.g. when ∂rK ≡ 0).

In that case however we expect to get back to the solutions discussed in [15] (and one can

explicitly check that). It is the explicit purpose of the current paper to move away from

this case, and thus our equations correspond to a disjoint class of solutions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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