

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

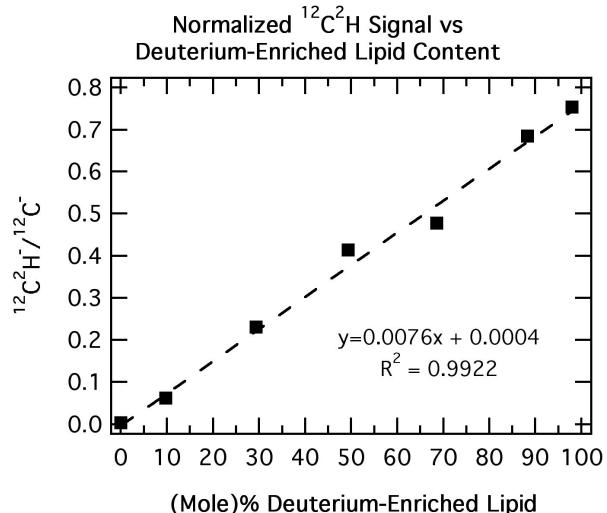
UCRL-CONF-207004

Quantitative Analysis of Membrane Composition by Secondary Ion Mass Spectroscopy

M. L. Kraft, C. G. Marxer, P. K. Weber, I. D.
Hutcheon, S. G. Boxer

October 4, 2004

Biophysical Society 49th Annual Meeting
Long Beach, CA, United States
February 12, 2005 through February 16, 2005


Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Quantitative Analysis of Membrane Composition by Secondary Ion Mass Spectroscopy

Investigations of the lateral organization within membranes hinge upon the ability to differentiate one component of interest from another. Typically, fluorophores are conjugated to specific components and the organization is probed with fluorescence microscopy. However, bulky labels may change the physical properties of the components they are attached to, and only the labeled component can be visualized. We have developed an approach to explore the lateral composition of supported lipid bilayers that employs an isotopic labeling strategy and high-resolution secondary ion mass spectroscopy (SIMS), which is performed with a NanoSIMS 50 (Cameca). Lateral resolution as high as 50 nm is possible with very high sensitivity. Here, we present a method to quantify isotopically labeled components within membranes. Homogeneous supported lipid bilayers that systematically varied in their deuterium-enriched lipid (1-palmitoyl-D₃₁-2-oleoyl-*sn*-glycero-3-phosphocholine) content were freeze-dried and examined with the NanoSIMS 50. The normalized ¹²C²H⁻ secondary ion signal intensity (¹²C²H⁻/¹²C⁻) had an excellent linear correlation with the amount of deuterium-enriched lipid within the sample (see figure). This relationship may be exploited to obtain quantitative information on microdomains within a membrane by creating similar calibration curves for multiple, unique, isotopically labeled components within the sample.

Authors:

Mary L. Kraft ^{*}, Carine Galli Marxer ^{*}, Peter K. Weber[§], Ian D. Hutcheon[§], Steven G. Boxer ^{*}

^{*}Department of Chemistry, Stanford University, Stanford CA 94305

[§]Lawrence Livermore National Laboratory, Livermore CA 94551

Work at LLNL performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.