UCRL-TR-204783

SYMTRAN - A Time-
dependent Symmetric
Tandem Mirror Transport
Code

D.D. Hua, T.K. Fowler

June 14, 2004

=
W

Department of Enargy

Law rence
Livermore
Mational
Laboratory

=g

Annraved for nuiblic release: fiirther dissemination ninlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-mail: orders@ntis.fedworld.gov
Online ordering: http:/ /www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http:/ /www.lInl.gov/tid / Library.html

SYMTRAN -- A Time-dependent Symmetric Tandem Mirror Transport Code
D. D. Hua* and T. K. Fowler
Department of Nuclear Engineering
University of California, Berkeley
June 14, 2004
*The work of Dr. Hua was funded by LLNL Grant B538660

1. Introduction

A time-dependent version of the steady-state radial transport model in symmetric
tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named
SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified
for tandem mirror physics. Motivated by Post’s new concept of kinetic stabilization of
symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting
radial transport [2], which successfully accounted for experimental results in TMX [3, 4].
The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT [5]
in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas
TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs
and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes
exhibit interesting but different non-linear behavior.

While pulsed operating scenarios may be of interest, we have first focused on
achieving a steady state reactor. We have also focused on classical diffusion which is
possibly achievable in tandem mirrors as noted below. Examples of ignited steady states
with classical radial diffusion are given in Sections 3 and 7. The highest fusion power gain
achieved so far, not yet optimized, is Q = 10.

Since it turns out that our highly non-linear tandem mirror model does not always
yield a steady state, a study has been undertaken to determine conditions for a steady state.
First, we note that convergence problems in our earlier steady state code [1] appear to be
solved in the time-dependent version. Secondly, we sometimes encounter thermal instability
common to all fusion reactors [6]. Criteria for thermal stability are developed that explain
the apparent stability of TMX and predict stable regimes for reactors. Finally, and most
importantly, we find that achieving steady state can require auxiliary heating that limits the
fusion power gain Q.

The requirement for auxiliary heating appears to arise from the properties of
classical transport near a cold boundary, usually at the plasma edge analogous to the
“scrapeoff” in a tokamak. However, unlike a tokamak in which the scrapeoff occurs at a

well-defined location outside the magnetic separatrix, in a tandem mirror scrapeoff-like

zones can also occur internally, yielding multiple hot cylinders separated by thin cold zones
where temperatures plunge and end plugging is lost. With further work, it may be possible
to provide the stabilizing power only by the end plugs, with externally controlled feedback
to prevent instability.

We have also considered design requirements to avoid plasma microinstabilities in
the end plugs and in the center cell, complimentary to other ongoing studies of MHD
stability employing kinetic stabilization of the end plugs [7]. Maintaining plug stability sets
requirements on the magnetic field and radius in the plug. For the center cell, the most
prominent microinstability known from tokamaks -- the ion temperature gradient (ITG)
mode -- is expected to be stabilized by the tandem mirror potential. The code includes a
model of electron thermal gradient (ETG) transport thought to persist in tokamaks free of
ITG.

This report is organized as follows. Equations solved by the code are given in
Section 2. Test runs calculating the evolution of temperatures with prescribed density
profiles are presented in Section 3 and analyzed in Section 4. Thermal stability, developed in
Appendix A, is discussed in Section 5 and applied to TMX in Section 6. Test runs with the
full set of equations, including an ignited steady state with Q = 10, are discussed in Section
7. Plasma stability requirements are discussed in Section 8 and buildup to ignition in
Section 9. Experimental tests of key issues are discussed in Section 10 and 11. Results are

summarized in Section 12. The code and use of the code is discussed in Appendix B.

2. Equations
The SYMTRAN code solves the equations of Ref. [1] with the addition of time

derivatives:

3/20(n T, /0t) + [nc(¢;+ T/t] - ! 9/9r (rny, 0T, /r)
= Po fot Py + (/T)(T, - T)) i €]

1]
a~;

3/20(n.T,/0t) + [n.(¢,+ T/] - r'9/or (r ny 0T, /9r)
=P (1 -)+ Pyey + Ppryg - /TN, - T) - g = P (2)

I(nc/at) + (ncfr) - 1'9/0r (1DIN/dr) = Sy = n.n,ov 3)

a(n, /) + (n, /t,) = S, = nNov @)

nT, = (et)L - (¢ + 0.) Eg]

08 = T, In(n,/n)

(. /T) exp (¢/T.)
=7, /t, {2L/RyL)(0 *nc) + n}H{QL/RyLon (v, /t,) + ne }
~ (m;/m,)" (T;/T)"*(¢, /T;) exp (¢;/T;)

P. = 1/4 n.* (0V)p,, E,

f, = 1. (<E>-T) {t,(<E>-T,) + 1, (<E>-T)}"

n.T, = 1.6 x 10'° <E >"*

T = exp (¢, /T){t; A(g; /T) + T}

7 = 3.6x10°R,L.T "

A = 147" [InQR, + D)I2R, /R, + 2)]"

n.T, = 1.6x 10'°T* = (m,/m)"*(T,/T) n-,

n.T, = 108 T

Phren = Zs 5x107 02T (watts/m™)

X = 0+ Xewo

I, = 6.5x 10° T,"’B,"

%o = (m,T, /mT)" r, %" + Yero

D = (m, T, /mT)"*r, " + 1/4 Yprs

Yere = CoT BT AT, - 1Lyl zeroif <0

P = 20 mT)R, (LA)E,

3

)

(6)

(7

®)

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

7)

(18)

(19)
(20)
21

(22)

Ry = (B,/B.) (23)

Subscript p denotes plug quantities and ¢ denotes central cell quantities. The
rationale for these equations is discussed in Ref. [1]. New features not in Ref. [1] include
direct heating of the ions by alphas by the fraction f_ in Eq. (9) with mean alpha energy
<E >=2000 KeV (>>T, and T,). Quasi-neutrality allows us to calculate a single center cell
particle density equation, Eq. (3). We also include Eq. (4) for the plug density. In Eq. (5),
we neglect plug ion scattering included in Ref. [2] and assume that the plug lifetime is
determined by electron drag at the center cell temperature. We do not include an energy
equation for the plug ions, but the factor [1 - (¢, + ¢.)/E;] in Eq. (5) accounts for plug ion
escape when their energy falls to the ambipolar hole energy (¢, + ¢,) [2]. Also in Eq. (5), N,
is the neutral beam density proportional to beam current; and ov is the ionization rate (ions
and electrons). In Eq. (3) n, is the gas feed density, treated more exactly in Ref. [2]. Unlike
Ref. [2], we do not yet include a separate equation for the alphas, so helium ash buildup is
not calculated.

Four power inputs not included in Ref. [1] are the auxiliary ion heating P, (which
can be turned on and off in feedback response to changes in the ion temperature) and ECH
heating of electrons Py, , which can be turned on or off, and bremstrahlung p;,.... , and P, ¢
representing heating of center cell electrons close-coupled to heating of electrons in the two
plugs by beam ions (diluted by 2R, (L, /L), the ratio of the volume of the two plugs of
length L to that of the center cell L..). Typically the plug length is L, =R, =R/ Ry,
where R, 1s the plug radius projected along field lines into the center cell (the plug
“shadow”). The auxiliary powers P, and P, can also be turned on temporarily to achieve
ignition if plug heating P, . is insufficient to do this.

End loss formulas in SYMTRAN have been updated to be approximately those in
the TAMRAC code [2] and TMT code [5]. Eq. (11) is a composite formula, the first term
being the Pastukhov formula applicable for mean free path greater than L and the second
term being that for short mean free path, proportional to the free flow lifetime t,. When the
mean free path is small but the end plug potential is large, the only ions experiencing free
flow are those in the combined loss cone due to R, and ¢, [2, 9], giving the factor R,; in T4
and an additional factor exp ¢. /T, out front that also applies to the Pastukhov term. The
formula is still valid in a cold “scrapeoff” zone where exp ¢, /T, = 1 and endplugging is
ineffective, in which case the mirror ratio factor in T still applies, since the useful plug

radius is smaller than the mirror throat so that scrapeoff power flows through the mirror. To

include such scrapeoff zones, in the code we set ¢, = 0 if n. = n,. Then Eq. (11) covers all
regimes.

We will assume that the end plugs are stable to mirror loss cone instabilities,
applicable only if scenarios yield ratios of plug radius to plug ion Larmor radius > X to
avoid DCLC instability, where X is of order 40 in a reactor [10]. (Stream stabilization by
end losses from the center cell is inconsequential for reactor parameters.) We assume the
Alfven Ion Cyclotron (AIC) mode is stabilized by aiming the neutral beams to produce
“sloshing ions” [8].

We generally assume classical radial transport, with classical particle transport in D
equal to the classical electron thermal diffusivity in . . However, we have provided an
option to include turbulent transport, ;. due to electron temperature gradient (ETG)
instability. The MHD-stable symmetric tandem mirror with no internal currents is not likely
to suffer magnetic turbulence, and the strong ion temperature gradient (ITG) mode is
probably stabilized by the tandem mirror potential profile, as it can be in tokamaks in the H
mode; H-mode-like behavior has been reported in tandem mirrors [11]. However, evidence
in tokamaks suggests that the electrostatic ETG mode may persist. The term ., , with a
threshold at a critical temperature gradient L, = 3/2 | (n/(9n/dr) | [12], accounts for this
possibility, with a coefficient Cy to turn it on or off. Consistent with experimental evidence
in DIIID, we apply the same ;. to electrons and to ions and 1/4 . to the particle
diffusion coefficient D [13]. In Egs. (1) and (2), we have neglected dn/dr’s in classical heat
flow, taken as I" = - nydT/ar (correct for ETG).

The potentials are calculated assuming ambipolarity, in contrast with the careful
attention to non-ambipolarity for tandem mirrors with yin-yang plugs in Ref. [5]. We
Justify this in the symmetric tandem mirror since, aside from transport by neutrals which we
neglect, collisional (Coulomb) transport in a symmetric tandem mirror is inherently
ambipolar (as is ETG transport mentioned above). The ambipolar potential on each flux
surface is calculated using Eqgs. (6) and (7), where Eq. (7) balances end losses of ions and
electrons (in the limit of long mean free path). In assuming ambipolarity, we are neglecting
weak non-ambipolar currents due to ionization in the presence of a radial electric field.
These weak currents may be essential in shaping the plasma potential to avoid rotational
instability (see Section 8).

Early in our work, we decided to approximate ¢, by the expression farthest to the
right in Eq. (7), appropriate for the core of a long tandem mirror reactor dominated by the
center cell. We will make a different approximation in the scrapeoff, where the Pastukhov

term is small, and in Section 11, where the plugs dominate.

The boundary conditions employed are standard, with zero derivatives at the origin
and temperatures and densities set at low values at an outer boundary that defines the plug

shadow.

3. Test Runs with Fixed Density Profiles

In this section we discuss test runs of the code, first using only Egs. (1) and (2) with
specified density profiles for the plug and center cell. Initial conditions on T(1/R.) for both
ions and electrons have the form:

T(/Re) = T(1) + [T(0) - T(D][1 - (t/R.)*]

where T(0) =0.002 and T(1) = 0.001.

Table 1. Test Runs with Prescribed Density Profiles

Run Prcy n, C, f, Stable

1 10 10 0 0 No

2 0 10 7 0 No

3 50 10 7 Eq.9 No

4 70 10 7 Eq9 Q=23
5 50 25 7 Eq9 Q=54
6 70 40 7 Eq9 Q=23

Parameters for six test runs are listed in Table 1. In all runs, B=1,R,=9.2,E; =
1000, L. =30,L, =R. R and R. = 1.5. Also, in all runs ignition is initiated by a short
power burst P, = 1000 added to Eq. (2), until T, at r = 0 reaches 40 KeV. This is followed
by steady P..; where indicated in the table (and P, ,; = 0). Here and hereafter, powers are
in code units, wherein energies and temperatures are in KeV and all terms of Egs. (1) - (4)
are divided by 10* , giving densities in units 10°° m™. Other units are MKS. The radial
variable r is scaled to R.. by dividing diffusion coefficients by R..’.

The center cell density n.. is constant in Runs 1 - 5. For these cases, the scrapeoff is
defined by setting ¢, = 0 and ¢, = 4T in a fixed zone 0.98 < 1/R.. < 1. This ¢, is typical of
free flow.

For Run 6, both n, and n.. have parabolic form withn. =1 atr=0:

n, =n, [1-C,T/E]-@R)] n. =[1- (/RY)’]

For this case, the scrapeoff is defined as in the general case in Section 2, by setting ¢, = 0 if
n. = 1. Having approximated ¢, in the Pastukhov limit in Eq. (7), setting ¢, = O incorrectly
gives ¢, = 0 by Eq. (7) and hence an underestimate of electron heat loss.

For Runs 1 -5, n_ is given by:
n = n,, [1-C.TJ/Eg]

Here the factor in brackets is obtained from the steady state of Eq. (4) with potentials in
Eq. (5) approximated by ¢, + ¢, = C,T,. This factor applies stabilizing feedback as we shall
see.

Runs that did not reach steady state are indicated by “No” under the heading
“Stable” in Table 1. Stable runs are identified by the fusion power gain Q obtained in

steady state, where:
Q = [Jrdr 5P, /frdr Py (24)

The alpha power was applied only to electrons in Runs 1 and 2, but split between electrons
and ions using f from Eq. (9) in Runs 3 - 6.

Figure 1 shows results for Run 1 in which plug feedback is negated by setting C,, =
0. Weak ECH power P, = 10 is applied after the initial kick to ignition. Ignition is in full
swing (T > 10 KeV) by t = 1 s. However, without plug feedback, T, runs away to extreme
values, causing decoupling from the ions, so that T, begins to drop around t = 8 s.

Figures 2 - 5 show results from Run 2 in which plug feedback is applied, with C;, =
7 (but no ECH power after the initial “kick” to ignition). Now runaway of the electron
temperature is prevented, as seen in Figure 2. Nonetheless, core temperatures crash att = 2
s. The progression of the crash is seen in Figure 3, two cold boundaries having developed
by t = 2.7 yielding two scrapeoff zones in Figure 4. Figure 5 shows results of an attempt to
prevent the crash by supplying extra ECH to maintain the scrapeoff in its initial location.
However, the crash persists.

Figures 6 - 7 show results of Run 3, which differs from Run 2 only by restoring
constant P, = 50 after the initial kick. A crash still occurs, now with a scrapeoft-like zone
appearing internally, around r/R. = 0.3 as seen in Figure 6, with a corresponding local
increase in end losses, as seen in Figure 7.

Figures 8 - 12 show results of Run 4, which reaches a stable steady state, as seen in

Figure 8. This run differs from Run 3 only in that the auxiliary power is increased to Py, =

7

70, which proves to be sufficient to stabilize the system. Profiles of temperatures and
potentials are smooth (except at the edge) as seen in Figures 9 and 10. Figure 12 gives the
instantaneous fusion power gain Q. The steady state value, Q = 2.3, is to be compared with
Q =10 to 20 for cases in Ref. [1] in which radial transport was omitted and alpha power
alone was sufficient to balance end losses, so that Q increases with reactor length. The lower
Q here arises from the spatial average of P_ and, most importantly, the requirement for a
minimum power density P, to maintain a stable state.

Continuing with our examples, Figures 13 - 16 show results of Run 5, which is
similar to Run 4 except that the ratio of end plug and center cell densities is higher and the
power required for stability is less, giving a higher Q = 5.4.

Figures 17 - 20 show results of Run 6, which is similar to Run 5 except that now the
density profiles are parabolic. Parabolic averaging and higher auxiliary power reduces the Q

back to Q = 2.3, as seen in Figure 20.

4. Discussion of Test Runs: Tandem Mirror Edge Physics

Test Runs 1, 2 and 3 indicate that sometimes there is no steady state for our model
equations, or, if there is a steady state, this state is unstable. These results concern two
physical phenomena. First, like all fusion reactors, tandem mitror reactors are subject to
thermal instability in the burning core, due to runaway alpha production as the ion
temperature increases [6]. In tandem mirrors this alpha-driven thermal instability is usually
overshadowed by end losses, destabilizing at fixed plug density (as found in Run 1) but
stabilized by plug feedback as discussed in Section 5.

The unexpected effect is thermal collapse at the edge or in the interior, present even
with plug feedback in Runs 2 and 3 and many other runs. There appear to be two main
points illustrated by the test runs.

First, auxiliary power is required to sustain the edge in steady state. While this
power would not be excessive applied only at the edge, the fact that it must be applied over
an appreciable portion of the volume to prevent collapse greatly exaggerates its influence on
Q, as found in the test runs. This appears to be a different kind of thermal instability arising
from the following. Unlike a tokamak, for which our boundary conditions would firmly fix
the scrapeoff region in space outside the magnetic separatrix, in the tandem mirror the large
end losses at the free flow rate characteristic of a scrapeoff region can occur wherever
temperatures fall low enough so that T, in Eq.(11) goes over to the free flow value T,
applicable to the scrapeoff. This appears to be what is happening in Run 3, Figures 6 and 7,
where as temperatures drop in the interior, end losses rise, causing a further drop in

temperature and eventual collapse. Something similar occurs in Run 2, where the edge

8

recedes inward and temperatures finally collapse in the interior as seen in Figure 3. In
Figure 5, the local application of power in the nominal scrapeoff region does not prevent the
collapse, indicating a tendency to recreate collapse in the interior.

Secondly, in interesting regimes that exploit the potential of tandem mirrors to
operate stably with classical diffusion, alpha power cannot supply the power required to
sustain the edge, so that plug heating or auxiliary heating must supply this power. This is
seen in all test runs shown in Section 3, evidenced by an outward rise in electron
temperature until it finally reaches a peak value near the edge where the nearby presence of a
cold boundary causes electron diffusion to become large. It is this peak in electron
temperature that blocks the outward flow of alpha heating in the interior to sustain the edge,
and, since T, > T, ions cannot heat the electrons. Hence the power to drive electron
diffusion near the edge must be supplied locally, either by electron heating by the end plugs,
or by auxiliary heating. This qualitative feature occurs in all test runs.

The following provides a qualitative understanding of these points.

First, we calculate the heat flux required to sustain the scrapeoff. End loss at the free
flow rate characteristic of the scrapeoff is triggered by a combination of low ion temperature
and strong coupling between ions and electrons giving small confinement enhancement by
the ion potential. This occurs not at a fixed position but roughly at the temperature T
obtained by setting T, = T, and 1, = T, (from Eqgs. (12) and (15)), giving:

T, = 0019 (n.RyL,)" (25)

For classical ion heat transport, giving a scrapeoff width A =yt , the heat flux I to the

scrapeoff is fixed at:
I's ~ A(nT/ty) ~ 5 (n.°/B.) (26)

where temperatures are evaluated at Tq. We will use this value of the heat flux to calculate
the Py, required to sustain the stable example in Run 4. All quantities are in code units,
discussed in Section 3.

Secondly, we can demonstrate why alpha heating and classical diffusion usually
yield the “hollow” T, profiles characteristic of all of the test runs in Section 3, in which the

peak of T, (r) occurs off-axis near the edge. An example is shown in Table 2.

Table 2. Approximate Analytical Temperature Profiles for an Ignited State
T./T, n/. T, T ¢, /T, ¢ /T, (O /an)/S.T; (& /T - ¢./T) T/t

1 €

3 54 22 66 50 7.2 ~0 22 0.39
4 4.3 17 68 58 7.6 +6 1.8 035
9 24 9 80 7.8 8.5 + 11 0.7 0.25
20 1.6 7 140 9.6 94 + 560 -0.2 0.20

Table 2 is calculated as follows. We omit both electron diffusion and particle
diffusion in the hot interior, where the Pastukhov term is dominant in Eq. (11). Then, for
given beam energy and density E; and Nj and given gas feed density n, (or fixed S, and S,
or fixed n /n.), the steady state versions of Egs.(3) - (7) uniquely determine the ratios ¢,/T},
¢, /T, and n /n. for given T, /T; if we approximate f, = 0. Using these ratios in the steady
state of Eq. (2) determines T,, from which T, and the potentials follow. Finally, inserting
these quantities into the steady state of Eq. (1) determines the ion heat flux I, = - ny,;0T;
/dr, from which profiles can be developed. When plug heating is included, there are two
solutions, one dominated by P, and another by p_,. We choose the latter, indicative of an
ignited state. In Table 2 below, we give numbers for this solution for fixed S, /S = 80 and
Pastukhov parameter A = 1.5. We only list values yielding outward diffusion (oI'; /or > 0),
from which a radial profile of T, and the other quantities could be constructed.

The top line of Table 2 is similar to the interesting reactor case of Ref. [1] yielding,
in the absence of diffusion, a 250 MWe reactor 30 m in length with Q = 10; and higher Q at
longer length and higher power. These values represent temperatures in the hot plasma core,
while those at successively lower T, represent entry into the pedestal. As can be seen from
the table, given our assumptions a T, decreasing outward requires an increasing T,. This
appears to be a characteristic of classical diffusion, evident in all test runs discussed in
Section 3. The last two columns in the table, relevant to thermal stability, will be discussed
in Section 5.

These results provide a semi-quantitative explanation of the stable test Run 4. For
this test run, n. =1, R. =1.5, B =1 and I'y = 5. As can be seen in Figure 11, end losses are
negligible where the electron temperature falls at the edge and electron-ion heat transfer is
small there also. Then we can ignore electron end losses and heat exchange other than Py,

and solve Eq. (2) analytically:

Te (I‘) = {(Te MA)()I/2 - (PECH /4IlCG)(I' - (R - 6))2}2 (27)

10

Here we used .= G/ T, with G = 0.0035 n./B?, and 8 is the width of the narrow region
where T, falls to T . Also, we have applied the boundary conditions T, =T, ,,x and I', = -
ncx 0T,/0r =0 atr =R - & where T, is maximum. Both 6 and P, are as yet undetermined.

We can determine 0 in terms of P, by the condition I', < I'g (= 5) at r =R, giving:

PECH 6

IA

T, (28)

Finally, the minimum P, is obtained in terms of T,,,, by introducing d from Eq. (28)

into Eq. (27) and requiring T, (R) =0, giving:
(Pecvm < ([A0 G T,) = 1800(n.*/ T, a0 (29)

In principle T, ,,« could be determined by matching T, (r) in Eq. (27), in which electron
diffusion dominates, to that from Table 2, where electron diffusion was neglected. Here we
will take the peak value T, ,,, = 130 KeV from the code results that agree qualitatively with
the Table. Then Eq. (29) gives a (Pop)yn < 157 versus (Pyop)yw = 70 found by the code.
The width 0 is also determined, giving /R = 0.03 similar to Figure 9.

5. Thermal Stability in Tandem Mirrors

Even when a steady state exists, our code (and a reactor) will fail to find it if this
state is thermally unstable [6]. Physically, stability of a state P = L (power = loss) requires
that any departure from steady state causes P - L to vary so as to push the system back to
steady state. For example, focusing on temperature, stability requires (P - L)/dT < 0 so that
an increase in temperature increases losses compared to power, thereby causing the

temperature to fall again, while a decrease in T gives excess power to make T rise.

A. Necessary Conditions for Thermal Stability of the Burning Core

Stability analysis can be formalized by linearizing the transport equations, Egs. (1) -
(4), again resorting to partial derivatives with respect to temperatures and densities to
explore around a steady state. This is most easily carried out ignoring radial diffusion,
applicable in the burning core of a tandem mirror reactor where we expect temperature
profiles to be relatively flat (equivalent to the TAMRAC rate equations of Ref. [2]). In the
spirit of WKB approximations, the stability criteria without diffusion can also be applied

locally to see effects of perturbing end losses at constant diffusion rates. The complete set

11

of linearized equations and our analysis is given in Appendix A. Here we summarize the
results.

Our analysis of the resulting dispersion relation (quartic in p for quantities varying
as o exp pt) is carried out in terms of A,, the p’ coefficient equal to the negative sum of the
roots. Physically the real part of A, is the negative of the sum of growth rates and decay
rates of the densities and temperatures as if there were no coupling between them. A
necessary condition for stability is shown to be A, >0 (since otherwise some root has a

positive real part). In the reactor regime, this gives:
A, =~ - (1)@, /T, - ¢, /T,) + (1/t) > 0 (30)

Here T, is the plug ion lifetime and Ty is the ion energy confinement time in the center cell
given by:

1

T = T (¢/T + " (3D
We can also say that A; <0 guarantees instability:
A, < 0 sufficient condition for thermal instability (32)

The quantity A, includes the main source of thermal instability in tandem mirrors,
coming from the electron heat loss through the plugs (the term o ¢,). That the timescale is
numerically equal to the ion energy confinement time is an artifact of the Pastukhov formula
forT,.

Electron end loss is destabilizing because T, increases and the end loss decreases as
¢, o T, increases. With one exception, other physical effects identified in Appendix A --
including particle end losses (as distinct from energy losses) and both plug heating and
electron-ion energy exchange -- are all stabilizing. (The exception is alpha heating, which is
destabilizing in all fusion reactors for desirable ion temperatures < 50 KeV [6], but which is
roughly offset by stabilizing plug heating in a tandem mirror reactor.) However, despite the
many stabilizing effects, in the reactor regime the large value of ¢, required for good
confinement of electron energy dominates.

The dominant stabilizing effect is end plug losses (the 1/t, term in Eq. (30)), which
appears to be the main stabilizing effect useful in reactor design. Plug losses are stabilizing

because reducing n reduces ¢; « In n /n, .

12

Electron destabilization is partly offset by ion stabilization (the ¢, /T, term in Eq.
(30)), typically yielding (¢, /T, - ¢, /T,) = In [(m, /m,) (T, /T,)*”*] = 2.5. Then, Eq. (30)
becomes, using Eq. (5):

T = T, (/M) - (4 + 0)/ Eg 1 < 0.4 (33)

Though Eq. (30) is actually only a necessary condition for stability, we will apply it
as our rule of thumb to find stable solutions and reactor designs. This criterion, based on
stabilization by the end plugs, is advantageous to design. Whereas center cell losses have a
fixed ratio to alpha heating, energy losses in the plug can be offset by increasing the center
cell length L. to produce more alpha power. Thus thermal stabilization by the plugs only

sets the scale of tandem mirror reactors, not their ultimate feasibility.

B. Stability of the Pedestal

We have not attempted to carry out a compete thermal stability analysis including
the pedestal and scrapeoff, which requires finding both steady state profiles and spatial
eigenstates of the linearized equations including diffusion. Some light can be shed on
stability in the pedestal by returning to the example of Table 2. The last two columns in
Table 2 give quantities appearing in our thermal stability criterion, Eq.(30). Applying the
criterion locally, we see that T /T decreases and also (¢, /T; - ¢, /T,) decreases as ion
temperatures drop in the pedestal, indicating thermal stability. Thus if Eq. (30) is satisfied in
the core, it is satisfied locally in the pedestal. However, our stability analysis applies only in
the Pasthukov limit of 7, , leaving open the possibility of instability around a scraepoff
region where T, — Tt and ion end losses might become destabilizing. Also, the fact that a

constant P, (0P/dT = 0) is “stabilizing” may only indicate lack of equilibrium.

6. Thermal Stability in TMX

Plasmas in TMX experiments, discussed in Refs. [3], [4] and [8], appeared to be
thermally stable, with enough power to sustain the scrapeoff layer (referred to as the “halo”
in Ref. [8]). Also, since alpha heating was not involved, the solution for TMX analogous to
Table 2 is that dominated by P, which turns out not to exhibit the hollow electron
temperature profile that played a prominent role in our discussion of ignited test runs in
Sections 4 and 5.

With an available power typically > 100 kW in excess of losses by charge exchange,

ionization and radiation, and a surface area of order 4 m’ , there was an available heat flux up

13

to 25 kW/m?, versus < 1 kW/m? into the scrapeoff by Eq. (26) (times 16 to obtain kW with
n. =0.03, B =0.2). However, Eq. (26) applies to classical transport in axisymmetric
geometry. The actual radial heat flow in TMX was more typically 15 - 30 kW due to
asymmetry-induced “neo-classical” transport [8].

Concerning thermal stability, we first consider the following data from the most
detailed published power balance in TMX in Ref. [8]:

V. = 0.4 m’ center cell volume

\A = 0.003 m’ plug volume

L, = 0.4 plug length

R. = 0.2 center cell radius

B = 0.2 center cell field

n, = 0.15

ne = 0.03 (n/n. =5)

T, = 0.05 KeV center cell (0.09 KeV in plugs)
T, = 0.06 KeV

I = 200 A end plug neutral beam current
Ligap = ISA fraction trapped

E; = 13 KeV mean energy of trapped ions, 9 KeV

This gives energy stored in the center cell = 30 J. Power balance accounting for 85% of the
power showed end losses = 35 kW (1/3 of the net power excluding charge exchange,
ionization and radiation). Hence:

Ty

1

[\

T = (30J/35 kW) = 1 ms

To calculate the plug ion lifetime, we note that of the 15 A trapped, 5 A is lost to charge
exchange, leaving a net 10 A yielding a plug ion charge 0.007 Coulomb, hence:

T = (0.007C/10A)

p

0.7 ms

This T, is comparable to the calculated value from Eq. (5) giving T, = (n.t,,)/n, = 0.7ms at
the center cell electron temperature. Thus our simplified thermal stability criterion, Eq. (33),
was only marginally satisfied. The full criterion, Eq. (A24) in Appendix A, does indicate
stability, giving a destabilizing end loss term = - 4/t offset by a stabilizing plug heating

term 3/2 (Pp o/n.T,) = + 9/7), in addition to the term 1/, .

14

For this data, with n /n. =5, ion cyclotron noise was evident (adding to the heating
of center cell ions). However, the highest values of n.t, were obtained when n /n. <3
which suppressed ion cyclotron noise [4]. This is the regime to which our code model
applies.

Results in TMX were reproduced fairly well by the TAMRAC code [2] and
degradation of confinement when cyclotron noise was present was also accounted for based
on a theoretical model described in Ref. [14]. The TAMRAC rate equation code, to which
the analysis of Appendix A applies, initially encountered thermal instability of solutions but
final results including more physics were stable [15].

One feature of TAMRAC simulations of TMX not included in SYMTRAN was
stream stabilization of the DCLC mode. Stream stabilization was simulated by requiring that
the current escaping the center cell (plus any externally supplied stream) equal that required
to stabilize the DCLC mode, together with associated plug heating losses that perhaps
produced additional stabilizing plug-feedback.

Studies of alpha heating using TAMRAC also found stable solutions, one difference
being a focus on helium ash buildup in TAMRAC but not yet included in our code [2].

7. Test Runs with the Full SYMTRAN Code (Transport Egs. (1) - (4))

While test runs discussed above used only Egs. (1) and (2), the SYMTRAN code is
operative with the full set of equations that simultaneously calculate the time evolution of the
electron temperature, the ion temperature, the center cell density and the plug density.

Parameters for three test runs with the full code are listed in Table 3. Initial
conditions for temperatures are the same as those in Section 3, and initial conditions on
densities have the same form with n(0) = 0.02 and n(1) = 0.01 for n. and 1.2 times these
values for n,. Other parameters for these runs are B = 0.5, R. = 1.5, E; = 1000, and, in Egs.
(3)and (4), S,. =n,ov=>5and C , = Nyov=100. Also, now Py is activated in Eq. (2).
Using Eq. (22), we take Py, ;5 in the form:

Poue = X (n,” /n, T)E,
where for convenience X was a prescribed constant in Runs 7 and 8, but in Run 9 it is self-
consistently calculated as X =2 (V /V) = R, (L, /L) as in Eq. (22). Here we took L =

R/ Ry, . Including P, ;5 also gives a revised form for Q:

Q

{Jrdr 5P,/ [frdr[P,, s (1 - (@, + §)/Ey)" + Py l} (34)

15

Here the factor (1 - (¢, + ¢.)/E;)" accounts for the loss of plug ions at energy (¢, + ¢.) as in
Eq. (5), giving for Q the total fusion power divided by the sum of ECH power and the total
input power to the plug.

Table 3. Parameters for test runs of the full code, Egs. (1) - (4)

Run P.., Ry, L. X Stable
0 20 100 1.7x 107 No
2x 10* 20 100 1.7x 107 Q=10
9 2x 10* 9 80 Eq. (22) Q=95

Figures 21 - 23 show results for Run 7 with plug heating but no auxiliary heating.
This run, which crashed around 9.5 seconds, is to be compared with the unstable Runs 2
and 3 with plug feedback and prescribed density profiles. The additional equations for plug
and central cell densities have added richness in non-linear feedback giving results
reminiscent of Run 3, but with even more regions of temperature collapse in the interior as
seen in Figures 22 and 23.

As in the runs of Section 3 with prescribed density profiles, adding sufficient
auxiliary heating P, was found to stabilize the system. Best success was obtained if this
heating is delayed. In the examples below, ECH is turned on when the electron temperature
reaches T, = 60 KeV.

Figures 24 - 27 show results of Run 8 in which auxiliary heating added to Run 7
does stabilize the system. Here the final density ratio is n /n. = 6 at r = 0, similar to reactor
cases in Ref. [1] giving Q = 10 - 20. As seen in Figure 27, Run 8 gives an average Q = 10.
In this run, P, happened to be given a value inconsistent with the length and mirror ratio
used in calculating T4 (giving too low end loss at short mean free path). The stabilizing
power for this run is P, = 20,000, versus (P)y < 200,000 by the crude criterion of Eq.
(29) with n. = 40 and T, = 140 for this run.

In contrast with Run 7, for the stable Run 8 the density, temperature and potential
profiles are fairly smooth, as seen in Figures 25 and 26. However, note the persisting
temporal oscillations in Figure 24. The amplitude of oscillations is reduced as Py, is
increased, at some sacrifice in Q. Though the oscillating state appears to be stable through
the 20-second duration of the run, longer runs would be required to determine whether
oscillations eventually grow or damp (perhaps a moot point, since the burn cycle may

require periodic flushing of helium ash).

16

A different example with greater oscillation amplitudes but about the same average
Q was obtained in Run 9, shown in Figures 28 - 30. In Figure 28, note the limit-cycle
oscillation of n, versus T,, 180° out of phase. Aside from the densities, this run has reactor
parameters similar to those in Reference [1], with all quantities calculated consistently for
Ry =9,L,=80,R. =1.5and B, =0.5. However, the product B.R. =0.75 is not yet large
enough for plug stability (see discussion below).

Figures 31 and 32 show results of Run 10, which is identical with Run 9 except that
et has been applied to . only, with a coefficient C,; = 0.1. Also, to stabilize this run, the
ECH power is higher (P, = 5 x 10"), giving a lower Q ~ 4, and ECH had to be applied
earlier, when T first reaches 40 KeV. A lower C;; = 0.01 still gave Q = 10 with the lower
P.cy of Run 9, applied earlier. Temperatures in Figure 31 are similar to those of Run 9, but
the electron temperature profile is quite different, as seen in Figure 32. More work is needed
to understand ETG transport in tandem mirrors, both concerning the threshold for such
transport to occur (if any) and also the consequences of ETG transport if it does occur.

In all runs discussed here, achieving buildup to an ignited state required density
sources in Eqgs. (3) and (4) that give densities an order of magnitude above those for reactor
scenarios in Ref. [1]. However, the quasi-steady states achieved in Runs 8 and 9 can be
scaled to lower density since, in steady state, all terms in Egs. (1) - (4) scale as nC2 in the
Pastukhov limit, including the diffusion term for classical diffusion and also the required
auxiliary heating to prevent temperature collapse by Eq. (29). More realistic buildup

strategies are discussed in Section 9.

8. Plasma Stability Requirements

In addition to a favorable energy balance and thermal stability, suitable reactor
steady states must be stable to the DCLC mode in the end plugs and to MHD, rotational
and ITG modes in the center cell.

Stability to ion cyclotron modes must be maintained for the end plugs. Stream
stabilization utilized in TMX is not feasibile for reactors because streaming out of the center
cell is negligible compared to requirements for stream stabilization, and because external
streams would extract unacceptable power from the plugs or stream guns. Thus, in a reactor,
the DCLC mode must be stabilized, the condition being a plug radius R = 40 r, at reactor
densities (r;, = plug ion Larmor radius) [10]. This places conditions on the end plug field

as follows:

BR, = 4.6x10° R/)(ME)" DCLC stability (35)

17

where M is the ion mass in ratio to hydrogen (M = 2.5 for DT) and in a reactor E, = E;; , the
neutral beam injection energy.
Turning to center cell stability, other studies indicate that kinetic stabilization allows

a center cell beta up to 50% [7], which, for T/T, =2, gives for the ion beta:

B~ 13P

IA

0.15 MHD stability (36)

We can use this result to estimate requirements for stability against rotation due to the

plasma potential, giving stability if:

= [(E,/Bo)*/RcO,1"? <m(vy/Le)

m (v, /B, L) 37)

YroT

where 8 is a scale length for pressure. We estimate the electric field E, from ¢, « T, with T,
approximated by Eqgs. (27) - (29):

E = 4087 x{1- (/8% < TI0(E,) (38)

T

where on the far right we take ¢, (in volts) < 1000(1/2 E;(KeV)) and the extremum at x =
r-(R-9,) =39,/ 3,whereJ, is the potential scale length. Substituting Egs. (35), (36) and
(38) into Eq. (37) with v, =2.7 x 10> T, for DT fuel gives a rough criterion for rotational
stability consistent with DCLC stability and MHD stability:

L/R. = 2800(3,/R.)""*(8,/R)(T; /EyR)'"? Rotational stability (39)

In Sections 1 and 2 we mentioned the possibility that the ITG mode prominent in
tokamak radial transport analysis is prevented by the tandem mirror potential. A crude
criterion for electric shear suppression of the ITG turbulence is:

|0(E, /B..)/or > Yeor = Oge0rF = O (Vi /0 (40)

where a,;; < 1 and 9§, is the ion temperature gradient length. Using Eq. (38) and v, above

and taking the extremum value for 0E/dr , Eq.(40) gives:

0.2 R) = (0.05/0) (T,/EgR)™ TG stability (41)

18

Let us evaluate the stability criteria of Egs. (35), (36), (39) and (41) for typical
reactor parameters of Section 7 (T, =40, E; = 1000, Ry, =9) and R /r; , = 40. The results

are:

B.R, > 3 DCLC stability

B < 05 MHD stability
OSBR) < 080y ITG stability
L./R. < 190 (8,/R.)'"*(8,/R.) Rotational stability

The main constraint, in order to obtain interesting values of L./R_, is the criterion for
rotational stability, which requires relatively smooth potential and pressure profiles (/R =
1) whereas profiles for the runs of Section 7 are characterized by relatively flat regions
bounded by steep gradients. The pressure profile can be modified by aiming beams and
injecting gas (or pellets), represented in the model by spatial dependence of N; and n not
yet exercised in the code.

The potential profile can be modified to accomplish rotational stability by means of
bias fields, an example being the biased limiter of Ref. [11]. In principle, by segmenting the
end wall into concentric rings and applying different bias voltages to each segment, the
potential ¢(r) in the center cell can be modifield arbitrarily, at some cost in additional power
drawn from the bias power supplies that appears as ion heating. Approximately, ¢(r) = V(r)
+ ¢.(r) where V(1) is the bias applied to the segmented end wall and ¢,(r) is the potential as
currently calculated by SYMTRAN. The bias power can be estimated from the non-
ambipolar ion mobility current due to radial charge separation at ionization (neglected in
SYMTRAN) of order [16]:

I = enc(E,/B)/(0¢T) = (Scm, /B*)E, (42)
from which the bias power is much less than the end loss power:
Poas = V(GaRLo) = Piog 10(r; /R = 0.003 P oss (43)

where P o = Sc7t R.°Le. ¢, is the approximate end loss (neglecting ¢,). In estimating
numbers we took E, = ¢ /R, V =¢, = 10T, and R./r;; = 60 (consistent with R /r; , = 40 for
DCLC stability). For a 250KWe reactor, the bias power would be < 1 MW.

19

The feasibility of potential profile control by a segmented end wall depends on the
necessity to maintain sufficient plasma conduction to the wall versus engineering
requirements on heat loads, secondary emission, sputtering and other materials issues.
Similar considerations apply to ion sources to provide kinetic stabilization, possibly
allowing a design in which electrons and guns can be co-located. The engineering issues
suggest fanning the escaping field lines to dilute power loads, while conduction
requirements probably require gas feeds in the end region to supplement the low density
plasma escaping from the center cell of a high Q device. These issues await analysis beyond
the scope of this paper.

Another important constraint is B.R. > 3 to achieve DCLC stability. This is to be
compared with BR = 15 or so in ITER with H-mode confinement, thus implying the
necessity for near-classical confinement in the tandem mirror. There is some margin, in that
purely classical ion radial heat diffusion gives ignition at BR = 0.3 over a range of ion
temperatures. It is this margin whereby end losses, greater than radial losses, established the
nearly flat ion temperature profile in test Run 9 that contributes to the high Q of that run.
Also, it is the dominance of end losses and end plug feedback that can make the tandem
mirror a thermally stable system.

Finally, given stability to DCLC, MHD, rotational and ITG modes, we must deal
with the possibility of ETG transport and trapped particle modes. First tests of the
consequences of ETG transport were explored in Run 10 of Section 7. Trapped particle
modes in tandem mirrors were treated in Reference [17] but require more careful study for

the kinetically stabilized symmetric tandem mitrror.

9. Buildup

In Section 7, buildup to ignition was accomplished by plug heating, with
simultaneous buildup of plug density and center cell density. This strategy leads to a
minimum requirement on plug beam current, expressed through the parameter N,ov, in
order that the plugs be able to increase the electron temperature of a target plasma of initial
density n.. To calculate the minimum current, we take n, = (Nyov)n. T, from the steady state
of Eq. (4) (for ¢‘s << E;) and substitute this into Eq. (2) with no alpha or ECH heating and
neglecting the electron-ion transfer term. Then, at startup whent; — exp (¢, /T,)tg

~ T, We obtain:

3/2 d(n T,/ ot > [2R1\,1'1(LP/LC)EB](NB(SV)2 n.T, -ne (¢, + T)/tg (44)

20

where on the right hand side L, is the plug plasma length and E, the beam energy, coming
from P, in Eq. (22). Using Eq. (12), Eq. (44) says that achieving d(n.T,)/dt >0 so that

build up of T, can proceed requires:
Nzov > 73OO(nC/LPEB)” g (45)

This condition for buildup by plug heating alone is satisfied by TMX and by the
runs in Section 8. Using the TMX parameters from Section 6, Eq. (45) gives N ov > 500,
while the actual TMX beam current gives Nyov = 1390 (obtained from a trapped current of
10 A, plug volume V, = 0.003 and n, = 1.5 x 10" giving Nyov = (10/en,V,))). For reactor
cases in Section 7, with initial n. =0.02, L, =R/ Ry, =12,R.=15R,=9and E, =
1000, Eq. (45) gives Nyov > 46 compared to Nyov = 100 for these runs. Other
requirements, to insure that the electrons heat the ions, are generally less strenuous.

An alternative buildup strategy may be simultaneous plug injection and auxiliary
heating of the electrons in an initial target plasma of fixed density, followed by gas feed
after ignition. Constant auxiliary heating giving n.T, « Pt cannot increase the electron
temperature in competition with an exponentially increasing density, as we found in Section
7 in which it was necessary to delay the ECH heating eventually needed for thermal
stability. However, moderate ECH heating at fixed n.. can reach ignition. The auxiliary

heating required is:
Peew > (nc/t)) (¢, + T for buildup (46)

This is greatest initially when | = exp(¢;/T)) T =15 >0.001 and (¢, + T,) < 1 for typical
reactor parameters. Then Eq. (46) gives P, > 50 for a target density n. = 0.05, comparable
to steady state P.,; = 50 required for thermal stability in Runs 8 and 9.

Having first ignited at low density, the density can be increased by gas fueling. Then

alpha heating « n.’ can stay ahead of end losses even as n.. grows, given by:

3/2 d(n.T,)/ot = n.’ {1/4 (1 -£) ovyE, - (o, + T)/(ncT)} (47)
and similarly for the ions. Ignition temperatures will be sustained during density buildup if
fueling is increased slow enough to maintain the following restriction on the rate of density

rise:

21

an /ot < 2B3MITH{1/A(1-1,) oviE} (48)
or:
ne(t) < ngfl-tng, BTYA/AY1 -£) ovy B! (49)

For n., =0.05 and T, = 80 typical of runs in Section 7, the allowed rise time is of order =
30 seconds, compared to (n,0v)"' = 1 s to maintain reactor-level densities in steady state.
Thus the gas feed must be turned up gradually over a 30s or so startup time, during which

plug and auxiliary power (< 100 MW) must be supplied from the grid.

10. Experimental Tests

Many of the physics issues discussed above could be tested on neutral-beam
injection experiments, such as Gamma 10 reconfigured with kinetically-stabilized symmetric
end plugs. Pulsed experiments with timescales of many milliseconds would suffice.

Progress beyond earlier TMX and Gamma 10 experiments requires primarily access
to electron temperatures higher than the maximum 100 eV range achieved to date in all
mirror devices. The highest electron temperature one can expect in a single mirror or end
plug, even with purely classical processes, is < 10% of the ion energy due to the high
ambipolar potential required to confine the electrons in a mirror [18]. The tandem mirror
examples of Section 7 gave T, = 8% of E, = E; for classical end loss and radial transport.
By contrast, the electron temperatures obtained in devices like 2XIIB and TMX were =
1% E, , known to be limited by requirements of stream stabilization of ion cyclotron modes.
By Eq. (35), theoretical requirements to stabilize the DCLC mode without streaming depend
on the plug radius in ratio to the plug ion Larmor radius R /r, , [10]. In 2XTIB, with R /r, =
1, DCLC stability required streams essentially filling the ambipolar hole, and similarly for
TMX due to AIC modes [4]. In Ref. [19], with Rp/rLp ~ 7 and sloshing ions created by
trapping, requirements should have been less, and indeed that experiment achieved T, = 100
eV equaling 3% of E, = 3.6 KeV.

Our goal will be T, = 1 KeV, which we find to be attainable at low f3 in the plugs,
while low fields in the center cell can allow sufficient there to test kinetic stabilization.
There are several reasons to push T, to about 1 KeV if possible. First, this would greatly
exceed electron temperatures in previous mirror experiments and place tandem mirrors on a

footing with other approaches for which 1 KeV has marked a turning point. More

22

specifically, it could bring into play ETG transport in competition with classical transport as
discussed in Section 9. Secondly, achieving T, = 1 KeV would require attaining regimes of
stable mirror operation at densities far above the stable regimes of Baseball II. Thirdly, since
axial confinement would be very good giving little axial outflow, circular plugs could not
rely on gas-dynamic stabilization but would require the kinetic stabilization that is one of the
goals of the experiment.

The key to a feasible experiment is moderate density in the end plugs. The
theoretical value of R /r, required for DCLC stabilization by Eq. (35) depends on w,;*/o,;’
in the plug, the lowest occurring when m,* /w,;” is very large (> 10°) or very small (< 10%).
We will choose oopiz /w,” = 100, giving useful plug densities at high field and R/, =10
for stability [10]. With Rp/rLp = 10 and M = 2 for deuterium, Eq. (35) gives:

B R = 0.065 E.'”? to achieve T, = 1 KeV (50)

Providing fields to meet the criterion of Eq. (50) at the ion energies required to heat
electrons to 1 KeV should be less costly using kinetically stabilized circular plug coils,
compared to the yin-yang plugs of previous experiments. We have calculated parameters for
a neutral beam experiment like Gamma 10 equipped with high field circular plugs. Figures
33 - 35 give SYMTRAN results for a run with E; = 25 (40 KV beams) and beam source
C,, = 1750 which is turned off when n, = 0.4, after which the plug decays at constant B. In
this run, n. is held constant during the buildup of n , T; and T,. Other parameters are L, =
0.3,L.=3,R.=0.3,R,, = 10. Electrons are only heated by the plugs (P, =0), but edge
temperatues were set higher than other runs [T,(1) = T,(1) = 0.035]. The maximum core
electron temperature achieved is T, = 1.0, which occurs during the decay of the plug. A
lower E; = 13 (20 KV beams) gave T, = 0.6.

11. Compression Experiment

As an alternative to neutral beams, recently Post and Coensgen have suggested that
pulsed plug coils can heat the plug ions by adiabatic compression, along the lines of Ref.
[19]. In the following, we will address requirements for a meaningful pulsed symmetric
tandem mirror experiment. Again our goal will be T, = 1 KeV.

The arrangement for a tandem mirror compression experiment would follow that of
Ref. [19] for each end plug. As described in that reference, magnetic compression has
produced deuterium ion energies of 3.6 KeV and T, = 100 eV [19]. The target plasmas for

compression are produced by deuterium-loaded titanium-washer-stack guns, one set for

23

each end plug. For the tandem mirror, there would be two sets of guns, one at each end to
produce energetic ions in the end plugs starting from a target plasma produced by the guns.
As described in Ref. [19], the target plasma is trapped by reflection from the inner plug
mirror (partially activated during injection) and a fast gate coil activated in time to prevent
escape of the returning plasma. Target plasmas with ion energy 1.3 KeV were obtained by
this method. Assuming similar performance in the pulsed tandem mirror experiment, in

order to obtain a final ion energy E, we require a compression ratio C given by:
C = B, (final)/B, (initial) = E; /1.3 = 0.77 E, to achive E; (51)

where here E; is achieved by compression.

We have written a version of our code called SYMTRAN-C to simulate a
compression experiment. For simplicity, we let the center cell density n. and the magentic
compression ratio C(t) be specified, and we neglect plug ion losses, giving for the plug

density:

n (t) = n, C(T) (52)
The plug ion energy E; is now a function of time given by:

dE;/dt = E, C'(dC/dt) - Ey/t, (53)

where the first term on the right describes compression. Note that compression requires that
C(t) rise faster than 1/t, calculated for the electron temperature of the initial target plasma.
The ion temperature in the center cell is still given by Eq. (1), while the electron

temperature is given by Eq. (2) with additional terms for compression in the plugs:

3/2 (KT, + n.T)/dt + (K/t, + no/t)@, + T,) - r'0/dr (r ng %, 9T,/r)
= 32KT,C'(dC/) + Py + Puoy - (0ot)(T, - T,) (54)

K = 2L /RyLy

2(n,, L, Ry, L) (55)
where in Eq. (54) we take T, to be the same in the plugs and center cell (close coupling) and

we now include a loss term for plug electrons omitted in Eq. (2). In Eq. (55), the factor K,

which arises from volume weighting for plug and center cell terms divided by the center cell

24

volume, is constant in time since C(t)’s cancel in n, = n,, C(t) and R, = R, C(t). Here we
will take:

() = 1+ (Cuu- DD (56)

where T is the compression rise time.
If we set n. =0, these equations represent the single mirror compression experiment
in Ref. [19]. If we neglect all loss terms (giving E; = E; C(t)), Eq. (54) can be integrated,

giving at the peak of compression (C = Cy,,):

T, = Cyax Ty {1 + 10/3 (B, /T,)(t,)1 + t/T,) 2 - 1137 (57)
where T, = T/(Cy,x - 1) and t, = (n.T,, /n,), is the initial drag time. For the initial parameters
in Ref. [19] (Ez, = 1.3KeV,n ,=0.06,and T, =0.007) and Cy;,x =3.5andt=5x 107
for this experiment, we obtain t, = 10 and T, = 0.16 compared with T, = 0.1 measured by
microwave noise. This electron temperature is 6 times that due to compression alone, due to
rapid heating while electron temperatures are low, even though at the final temperatures the
timescale for electron heating by the plugs is much longer than the plug duration.

Figure 36 gives results from SYMTRAN-C for the single mirror compression
experiment including the loss terms, for the same initial conditions and n. = 10 = 0 to
approximate a single mirror. Also, we do not solve Eq. (7) but instead take ¢, = 5T,
appropriate for a single mirror [18]. Now T, = 0.15 at the end of compression, slightly
below the lossless case and still in fair agreement with the experiment.

Having found satisfactory agreement with experimental results, we now use
SYMTRAN-C to calculate parameters for a compression tandem mirror experiment with the
goal of T, = 1 KeV. Figure 37 shows results for the same initial conditions in the plugs but
Cyax = 15 and T = 107, with n. = 0.025 and T, = T,, = 0.007. Agaain we approximate Eq.
(7) by ¢, = 5T, (plug dominated). For these parameters, the plug compression formula, Eq.
(57), would satisfy T, = 1 KeV. However, with density n. = 0.025 in the center cell, the
SYMTRAN-C gives only T,= 0.5 KeV.

The reason for lower electron temperatures in the tandem mirror case is the fact that
only the plug plasma is compressed, while collisions distribute the heat of compression
from the plugs into the center cell, thereby adding to the heat capacity. To increase the

electron temperature, we apply pulsed auxiliary electron heating in the center cell at the

25

same time that compression in the plugs is building the potential barriers that improve the
confinement time in the center cell.

Figure 38 shows a SYMTRAN-C tandem mirror result that achives the goal of T, =
1 KeV by applying pulsed Py, = 50 (in code units) in the center cell during the
compression cycle. In MKS units, this corresponds to 300 kW for 1 millisecond (300
joules). Note that high temperatures persist for several milliseconds, giving time for
transport measurements in the center cell (the magnetic field is assumed constant during this
time). The ion temperature (not shown) remains essentially at its initial value in the target
plasma (taken as 0.007 KeV). With 1 KeV electrons, the ions are not heated significantly,
the transfer time being t,, = 400 ms.

The following are example parameters for a compression experiment based on these
results:

Device parameters

L.=3 R.=0.2 B.=0.2 (adjustable)
L =03 R =0.08 B,=0.67 (at the onset of compression)
R =0.02 B, =10 (after compression: C = 15)

Initial target plasma (similar to Ref. [17])
n, =0.06 E;, =13 T, =0.007

Plasma after compression and pulsed ECH
n, =09 E; = 20 T, = 0.007 T, =5 ms
n.=0.025 T, =1 ¢, =3.6

With these parameters, end loss from the center cell is negligible, giving
opportunity to observe radial transport during the > 10 ms lifetime of the plugs (or the
magnetic field). The DCLC stability parameters are (oopiz/oociz)PLUG =170 for hydrogen and
R /r;; =10, giving stability with no streaming [18].

To estimate the plug coil energy, we take the plug mirror field to be 1.5 B =15
chosen to reduce plug loss by ion scattering as T, rises. We take as the coil inner radius R =
0.15 and we take the length L = 0.4. Then the stored energy E, is, crudely:

Beoy = m0.4)0.152[(15)°2u,] = 2.5MJ (58)

26

We conclude that a power source yielding a few MJ with a millisecond rise time
could drive a pulsed, compression-heated symmetric tandem mirror experiment capable of
exploring the main issues for the concept at electron temperatures of 1 KeV, unprecedented

in previous mirror experiments.

12. Summary

The time-dependent SYMTRAN code is now ready for Q optimization studies, with
various physical knobs discussed in the text. Steady state can be achieved or not, depending
on several physical effects included in the code that can cause macroscopic, or thermal,
instability of the system, as discussed in Sections 4 and 5. Thus far we have only found
stable steady states with constant auxiliary power that reduces Q.

Despite this need for auxiliary power to provide thermal stability to the system, test
runs to date show that Q = 10 or more can probably be achieved with classical radial
diffusion, similar to Q values shown to produce interesting steady state reactor parameters
in Ref. [1] where radial diffusion was neglected. An example is Run 9 (Figures 28 - 30)
which represents our most realistic attempt to date (when scaled to densities appropriate for
steady state, as discussed in Section 7). Strategies to achieve ignition at useful densities
using only the equipment needed to sustain the steady state are discussed in Section 9.

The remaining tasks are (1) to obtain results with SYMTRAN for an overall optimal
system, and (2) to do so consistent with plasma stability at the MHD and microscopic levels
as discussed in Section 8. In first tests reported in Section 7, some anomalous ETG electron
heat transport in addition to classical transport did not appear to be disastrous.

A key physics issue is the need for high electron temperature in order to achieve
high Q without recourse to thermal barriers, which in turn requires DCLC stability of the
plugs without recourse to stream stabilization. New experiments to test this point and kinetic
stabilization are suggested in Sections 10 and 11. A corollary to the requirement for DCLC
stability is high magnetic field in the end plugs, now feasible with circular plug coils and
kinetic stabilization [7].

References

[1] D. D. Hua and T. K. Fowler, “Calculations of Radial Transport in Symmetric
Tandem Mirrors,” Department of Nuclear Engineering, University of California, Berkeley,
September 30, 2003.

[2] R. H. Cohen, Nuclear Fusion 19, 1295 (1979).

27

[3] F. H. Coensgen et al. Phys. Rev. Letters 44, 1132 (1980).

[4] T. C. Simonen et al., “Plasma Confinement Experiments in the TMX Tandem
Mirror,” Brussels IAEA, 1980, paper IAEA-CN-38/F-1.

[5] A. A. Mirin, S. P. Auerbach, R. H. Cohen, J, M. Gilmore, L. D. Pearlstein and
M. E. Rensink, Nuclear Fusion 23, 703 (1983).

[6] R. W. Conn, “Magnetic Fusion Reactors,” in Fusion, E. Teller, Editor,
Academic Press, New York, 1981, Chapter 15, Vol. 1, Part B, Section V.

[7] R. F. Post, Trans. of Fusion Technology 39, 25 (2001); ongoing MHD studies
by J. Byers et al., private communication.

[8] T. C. Simonen et al., “TMX Tandem Mirror Experiments and Thermal-Barrier
Theoretical Studies,” Baltimore IAEA, 1982, paper IAEA-CN-41/G-1.

[9] T. G. Rognlien and T. A. Cutler, Magnetic Fusion Energy Quarterly Report
October-December 1978, Lawrence Livermore Laboratory, Calif., UCRL-50051-78-4
(1978), p. 4.

[10] D. E. Baldwin, Rev. Mod. Phys. 49, 317 (1977).

[11] O. Sakai, Y. Yasaka and R. Itami, Phys. Rev. Letters 70, 4071 (1993).

[12] W. Horton, “Electron Transport and the Critical Temperature Gradient,”
Review Talk F11 4, DPP/APS Albuquerque Oct. 2003.

[13] G. D. Porter and the DIIID Team, Phys. Plasmas 5§, 4311 (1998).

[14] T. D. Rognlien and Y. Matsuda, Nucl. Fusion 21, 345 (1981).

[15] R. H. Cohen, private communication March, 2004.

[16] A. J. Lichtenberg and M. A. Lieberman, Principles of Plasma Discharges and
Materials Processing, Interscience, New York, 1994, Chapter 2, Eq. (2.3.14).

[17] H. L. Berk, M. N. Rosenbluth, R. H. Cohen and W. M. Nevins, Phys. Fluids
28, 2824 (1985).

[18] T. K. Fowler, “Mirror Theory,” in Fusion, E. Teller, Editor, Academic Press,
New York, 1981, Chapter 5.

[19] F. H. Coensgen, W. F. Cummins, W. E. Nexen, Jr. and A. E. Sherman,
Nuclear Fusion: 1962 Supplement, Part 1, 125 - 133 (1962). [19] SPHERE -- “A
SPHeromak Experiment and Reactor Simulation Code,” Department of Nuclear
Engineering, University of California, Berkeley, UC-BFE-054. March 1, 2000.

[20] D. D. Hua, T. K. Fowler and E. C. Morse, “SPHERE — A SPHeromak
Experiment and Reactor Simulation Code,”Department of Nuclear Engineering, University
of California, Berkeley, UC-BFE-054, March 1, 2000.

28

Appendix A: Thermal Stability in the Tandem Mirror Core

Linearization of Egs. (1) - (4) without the diffusion terms gives:

32T, [p+n,9/T, (L, -P)] =
- (ne,/m)T, p + n. "X, 9/0X (P,-L,) (AD

32T, [p + 0. '9/0T, (L, - P))] =

- (ne,/m)T, p +n.'TX, 9/0X (P,-L) (A2)
ne,[p + d/dne (ne /v - Sp)l - = £ X, 9/0X (Sc - n¢ /1)) (A3)
n,,[p+d/dn,(n, /T, - S))] = 22X, 9/0X(S,-n, /t,) (A4)

where all perturbation quantities vary in time as exp pt. The input powers P, and P, were
defined in Egs. (1) and (2) and for later convenience the energy end loss terms have now
been labeled L, and L_ defined by:

L,

1

n.(¢; + T,)/t (A5)

L

€

(9, + T/, (A6)

The left hand sides of Egs. (A1) - (A4) give the response of each variable to its own sources
and end losses. The first term on the right hand sides of Egs. (A1) and (A2) gives the
density variation of kinetic energy. The summations on the right hand sides of Egs. (A1) -
(A4) give the other coupling terms with sums X running over the three perturbations
(labeled X,) not appearing on the left hand side.

The end loss derivatives, unique to tandem mirrors, are given as follows. With the

hot core of reactors in mind, we neglect the tg term in Eq. (11), giving:

dlone (ne/v)) =+ (g {2 + (T/TYI@, /T, + 1)/ ¢, /T,]} (A7)
81T, (ng /1)) = + (ng /5 (/T /T, - 172) } (A8)
91T, (n, /) = - (g /1 (T, /T, + 1) } (A9)

29

alon, (g /t) = - (L (T, /T)I(@ /T, + 1)/ ¢, /T }(n,/n)} (A10)

A. Sufficient Condition for Thermal Instability in the Core
The time constant p is found by eliminating the four perturbation quantities (with
subscript 1) from the four equations for p, Egs. (A1) - (A4) (by inverting a 4x4 matrix). The

resulting dispersion equation has the form:
p' + Ap + Ap + Ap + A, =0 (Al

Finding the p’s exactly with all the cross couplings is complicated. However, we can
learn something by examining only the signs of the coefficients. The coefficient A, in the
cubic term is the negative sum of the roots a, (A, =-2a,,1=1 to4). Stability requires A, >
0 (Z a, < 0) since otherwise some root must have a positive real part. Similarly, A, is a sum
of quadratic products of roots (A, = Za; a; all i < (six terms). Here A, is real. Then any
complex roots occur as conjugate pairs so that any negative product in A, is a product of
real parts of the roots. Stability requires A, > 0 since otherwise some product of real parts is
negative indicating that at least one root has a positive real part. Similar rules apply to A,
and A, which are cubic and quartic in the roots. We will restrict our attention to A, and A,.
Since both must A, and A, must be positive for stability, a sufficient condition for instability

is:
AsorA, <0 Sufficient condition for Thermal Instability (Al12)

Satisfying Eq. (A12) guarantees thermal instability. Violating Eq. (A12) leaves open the
possibility of stability, but even then stability is not assured.

To evaluate A; and A,, let us denote derivative terms in Eqgs. (A1) - (A4) by A,
equal to the X, derivative of (L - P); for heat terms and the equivalent loss minus source for
particles as indicated in Eqs. (A3) and (A4). The subscripts are labeled 1 for T, ; e for T, ; ¢

for n.. ; and p for n . With this notation, A, and A, are given by:

A,

{Ai +A.+ A +AS-{ A (T + A (T, /n)} (A13)

A2 = {Aii ACC + (Aee + App)(Aii + ACC) + (Aee App- Aep Ape}
-49 A A, -23A,A -23A, A +2/3A,A, (T, /ny)

30

+2/3 AgA, (T./ng) - Ay (A, + A,)T, ing) - A, (A + A)T/ (Al4)

Let us now evaluate A,. The second {...} bracket coming from the first terms on the
right in Egs. (A1) and (A2) is stabilizing but relatively small. Using end loss derivatives
from Eqgs. (A8) and (A9), we obtain:

-{A,(T/m)+A (T.nn)} = 312 (1K) (A15)
Substituting for this and the other A, ‘s gives for Eq. (A13):

A, = { n'[0/0T; (ne(¢; + T,))) - 0/0T, P] + n'[9/9T, (ne(¢, + TH/x,,)
-9/ aTe Pe] }TEMP
+{3/2 (1/x) - 8/on. (S¢ - ne /1)) - 9/9ng Se - 3/an.(S, - 1, /1) bpewsmry <O (A16)

where we have separated out thermal terms coming from Eqgs. (A1) and (A2) from center
cell and plug density terms coming from Egs. (A3), (A4) and (A15).
We can reduce Eq. (A16) to a more explicit expression using Egs. (A7) - (A10) and

other derivatives given exactly or approximately as follows:

9T, (¢, + T,) ~ 1 (A17)
AT, (¢, + T.) ~ (@JT.+ 1) (A18)
3/9T, P, = WIT.n(T.-T)x, = -n.(lx) (Al9)
/9T, P, = (k) GRT/T,-1/2) (A20)
3/0T, P* = -(lh) 32 P*T, (A21)
3/on. S¢ =+l (A22)

a/on (S, - n, /t,) - (k) (A23)

In Egs. (A22) and (A23) we use steady state results from Egs. (3) and (4).
Finally, Eq. (A16) becomes:

31

Ay = {UrY [-@ /T + (@, /T) + (¢, /T, + 1) (0, /T; - 172) + 1]} rppppmar
+{ (U 172 + (TSTHO /T; + D ¢ TH1 + (1T) sy
+{(Ar I TSI, + 32T, /T, 1} + {3/2 (P*/n.T,) }prus
+ alphas + aux.
< 0 (A24)

Negative terms are destabilizing while positive terms, which can cause this sufficient
condition to fail, would leave open the possibility of a stable system. The effect of heat end
losses (labeled Thermal), unique to tandem mirrors, is usually destabilizing while the
density terms -- both center cell and plug -- are stabilizing. The electron-ion heat exchange
term (labeled IE) and also the plug heating P* are stabilizing. Auxiliary heating effects are
case-specific; constant auxiliary power (no derivatives) would only affect stability through
its influence on the steady state.

The alpha terms in A, are given by:

alphas = - (f,/n.) 0P /T, + (P /n.) of, /0T, (A26)

of, /9T, ~ 32(/T)f,(1-1) (A27)
where Eq. (A27) follows from Eq. (9) if we drop temperatures compared to <E_>. The
interesting burn regime occurs around an ion temperature of 15 KeV where power density
is maximum for a given beta [4]. In this regime, (T, /P) 0P /0T, = 1, giving:

alphas (in A;) = - (P /T £ [T/T, -3/2(1 - f)] burn regime (A28)

Thus alpha heating is destabilizing.
Combining Eq. (A28) with the other heating terms in Eq. (A24) gives:

N = {(AIITST, +32T,/T. 1}s + {3/2 P*/n.T) Yorus
- (P/n.T) £ [TJT, -3/2(1 - £)] (A29)

Keeping only dominant terms in the rest of Eq. (A24) gives the main effects of end losses:
A ossis ~ - (U)@ /T, - ¢, /T (¢ /T + 1) + (L/x) (A30)

32

In some experiments the heating term may be important but in reactors it appears
that the IE term is small while the alpha destabilization roughly offsets the benefit of plug
heating stabilization at high Q, where P* = (5/Q) P_.

The main destabilizing contribution in A is due to electron end losses o ¢, in Eq.
(A30) while the main stabilizing effect is the plug term o 1/t , requiring as the approximate

condition for stability (only necessary):
T < [(¢e/Te_¢i/Ti)(¢i/Ti+ 1)]_ITH (A31)

Even if Eq. (A31) is satisfied, stability requires also B > 0 (again necessary, not

sufficient). Dominant terms appear to be:

A, ~ AL A, -49A_ A,) +AppA|.i + (A, App- Aep Ape)
~ (18,5 L@, /T, P [1 - 5/9 (@, /T)@ /T,] - @ /T /T,) - 32(TUT)} (A32)

Again stability requires sufficiently small t /1, .

33

APPENDIX B
1. Introduction

The symtran codes, symtran2.f, symtrand4.f and symtran.c.f are adapted from the
SPHERE code originally written to simulate spheromaks [20]. The code symtran2.f solves
Egs. (1) and (2) with n. set constant (temporally) and n, specified as a function of time
(but uniform spatially), while the code symtran4.f solves Eqs. (1) - (4). Finally, the
code symtran.c.f solves Egs. (1), and (52)-(54). All three codes use the parabolic partial
differential equation solver DO3PCF, while symtran2.f and symtran4.f also use the
root solver CO5AGF (for ¢, in Eq. (7)) from the Numerical Algorithm Group (NAG).
Detailed informations on both routines are available at NAG’s website: www.nag.com in

the fortran 77 numerical library.
To compile the codes and link them with the NAG library, type
£77 symtran2.f (or symtran4.f, or symtran.c.f) -dalign -lnagd

which produces an executable file a.out. Create (output) file names stat.dat, U.dat,
UO0.dat, Phi.dat, Power.dat and Endloss.x.dat (only need to create these output files

just once, not necessary to do so everytime), then type a.out to run.

For symtrand.f, to conform to specifications in DO3PCF, Egs. (1) to (4) are expressed

in the form:

OTi(p, 1) t) 10

P 1 P9 L u) = 52 RO B1)
re.y”e ety pay™e) om — L jpre) (82)
Py 1 Q) = 5RO (B3)
P50 Q) = o o) (B4)

where the radial coordinate p = (r/a) is normalized with respect to the minor radius a.

The various coefficients in the PDE’s are:

PL,1) = (3/2)nc(p,t) (B5)

34

P,3) = (/2)Ti(pt) (B6)

Q(l) = _[Pafa+ﬂon+%(Te_n)_:_L_;(d)i‘*‘Ti) (B7)
ne. 0T

R(1) = o) Xia—p (B8)

P(2,2) = (3/2)nc(p:t) (B9)

P(2,3) = (3/2)Tc(p,?) (B10)
Q(2) = - |:Pa(1_fa)+PECH+PPLUG_ %(Te_Ti) _PBrem

—ﬁ—f (e +To) (B11)

R(2) = % Xe aane (B12)

P(3,3) =1 (B13)

QB) = - [SN - ”—”] (B14)

one

R@E) = D (B15)

P(4,4) = 1 (B16)

QW) = - [sp - %l (B17)

R(4) = 0. (B18)

The substitutions T;(p,t) — U(1), Te(p,t) = U(2), nc(p,t) — U(3) and ny(p,t) — U(4)
are also made to conform to specifications in DO3PCF. All other relevant quantities are
defined previously in Egs. (5) - (23).

In symtran2.f, Eq. (/) is not used, whereas in symtran.c.f, Eq. (4) is replaced by
Eq. (53) (with appropriately defined P(4,4), Q(4) and R(4) to match Eq. (53), and
the substitution Eg — U(4)). To keep n.(p,t) constant in time in both symtran2.f
and symtran.c.f, let P(3,3) =1, Q(3) =0 and R(3) = 0.

The boundary conditions in symtrand.f are: at p = (r/a) =0, (01;/0p) = (0T /9p) =
(0e/0p) = (Ony/0p) = 0; and at p = (r/a) = 1, T; = Ti|,_,, To = T.|

and ny, = ny| b1 The boundary conditions in symtran2.f and symtran.c.f are similarly

p=1> e = nc|p:1

defined, and hence not shown explicitly. The boundary conditions are expressed in the

form:

35

AR(I) = ~(1) (B19)
BRRE2) = ~(2) (B20)
BRIREB) = 1(3) (B21)
BARE) = v(4) (B22)

where R(1) - R(4) are defined in Egs. (B8), (B12), (B15) and (B18) respectively. y(i)’s are
defined in Table 1.

The initial conditions are written as

Ti(pt=0) = [Li(p=0,t=0)-Tl,] (1-0*)+ Tl (B23)
T(pt=0) = [Telp=0,t=0)-T|,_,] (1- %) + T,y (B24)
ne(pit=0) = [nelp =0, =0) = nel,, | (1=4%) + nel,, (B25)
(ot =0) = [npp=0,t=0)—nyl,] (1-p?) +myl,_, (B26)
Ep(pt=0) = [Ep(p=0,t=0)— Ep|,_,] (1) + npl,_, (B27)

Hence, either flat or parabolic profiles could be imposed by choosing whether F'(p = 0,t = 0)
equal F| ;.

36

Table 1: Coefficients for boundary conditions

p=0|p=1
py)y | 1 |0
w0 |0 UQA) =Tl ey
B(2) 1 0
Y1) |0 [UR) - Tefy)my
A(3) L]0
18) | 0 [UB) = nefpmy
BT 1 |0
Y@ 0 | U@ -y,

t3(4) and y(4) in tables are for symtran4.f, but they are not use in symtran2.f. In symtran.c.f,

Y(4) = UM) - C()Enl,_, at p= 1.

37

2. Tables of parameters and output files

Table 2: Numerical Parameters for symtran2.f symtran4.f and symtran.c.f

Input Symbol in symtran | Typical Values
starting time TS 0
time step DELTAT 107°
number of time steps NSTEP 10°
number of spatial profiles output! NWRITE 20
frequency of output for core values? NCORE 1000
accuracy® ACC 1.0 x 107*

fSpatial profiles are printed every (NSTEP/NWRITE) time-steps (e.g. in Tables 4, 6 and 8, t; =
N - [(NSTEP/NWRITE) - DELTAT]), for N = 1,2, ..., NWRITE).

tCore values (at (r/R) = 0) are printed every NCORE time-steps.

There is ~ 5% difference between solutions with ACC = 1.0 x 10~ and solutions with ACC =
1.0x 1077 in symtran2.f and symtran4.f. However, it requires longer time to find solutions with a
smaller ACC. For the case in which an analytic solution exist for symtran.c.f, an ACC = 1.0x 1077
is required so that the numerical differs from the analytic solution by < 1%. Hence ACC = 1.0x10~"7
is chosen for all runs using symtran.c.f. For more details on ACC, consult the specifications of

DO03PCF, available at www.nag.com’s fortran 77 numerical library.

38

Table 3: Physical Input Parameters for Symtran2.f

Input Symbol in Symtran2.f | Typical Values
Ti(p=1,1) Ti_EDGE 0.001
Te(p=1,1) Te_ EDGE 0.001
ne(p=1,1) den EDGE 1.0

Ti(p=0,t=0) Ti-O 0.002
Te(p=0,t =0) Te_O 0.002
ne(p=0,t =0) den_O 1.0
(mi/me) MR 4583
Npo N_P 10
- N_P_Cf 1,2,0r3
E, E_ALPHA 3520

(Eq) E_ALPHA_AV 2000
Z (in pBrem) Z_EFF 0
mirror Ratio R-M 9.2
minor radius RA 1.5

reactor length ZL 30
beam energy EB 1000
magnetic field BMAG 1.0
electron ECH power? P_ECH 1000 (i), 70 (f)
Te(p =0,t) to reduce ECH Te_crit 40
plug radius (normalized) X_PLUG 098 or > 1
Cera CETG 0

"In symtran2.f, choose N_P_C = 1 for n, = ny, N.P.C = 2 for n, = nyo(1 —77./EB) and N.P_C
=3 n, =nu(l —7T./EB)[1 — p?]. *In symgran2.f, AS is the ratio of P_.ECH input initially, and

AS1 is the ratio of P_.ECH input after core electron temperature has reached Te_crit.

39

Table 4: Example Output Files for symtran2.f

File Name Data Columns
U0.dat t T;(p =0,t) T.(p=0,t) ne(p=0,t) | Pucu
U.dat p Ti(p, t;) Te(p,t)) ne(p,t;) T
Phi.dat P di(p,t;) be(p,t;) error ratiof -
Power.dat | t | [y dp pPinput(p,t;) | Jo dp p[5Pa(p, ;)] Q Py
Endloss.x.dat | p | [nc(¢i +Ti)/7le=t; | [ne(Pi +T3) /7)e=¢, -

TTake V1 = (¢o/T.) explde/Te], and V2 = (m;/my) = [T;/Te)2 {(¢:i/T;) exp[¢i/Ti]}, then error ratio
=] [logV2—logV1]/logV1 |

40

Table 5: Physical Input Parameters for Symtran4.f

Input Symbol in Symtran4.f | Typical Values
Ti(p=1,1) Ti_EDGE 0.001
T.(p=1,t) Te_ EDGE 0.001
ne(p =1,t) den_ EDGE 0.010
ny(p = 1,t) N_P_EDGE 0.012

Ti(p=0,t =0) Ti_O 0.002
Te(p=0,t=0) Te_O 0.002
ne(p=0,t =0) den_O 0.020
ny(p =0,t=0) N_P_O 0.024
(mji/me) MR 4583
E, E_ALPHA 3520
(Eq) E_ALPHA_AV 2000
Z (in pBrem) Z_EFF 0
mirror Ratio R-M 20
minor radius RA 1.5
reactor length ZL 100
beam energy EB 1000
magnetic field BMAG 0.5
electron ECH power! P_ECH 0 (i), 2.0 x 10* (f)
Te(p =0,t) to turn on ECH Te_crit 60
CEera C.ETG 0
SN S_N 5.0
Sp C_1.N_P 100

'In symgran4.f, AS is the ratio of P_.ECH input initially, and AS1 is the ratio of P_LECH input

after core electron temperature has reached Te_crit.

41

Table 6: Example Output Files for symtran4.f

File Name Data Columns
U0.dat t T;(p =0,t) T.(p = 0,t) ne(p=0,t) | ny(p=0,t)
U.dat p Ti(p, t;) Te(p,t)) ne(p,t;) np(p; t5)
Phi.dat P di(p,t;) be(p,t;) error ratiof -
Power.dat | t | [y dp pPinput(p,t;) | Jo dp p[5Pa(p,t;)] Q Py
Endloss.x.dat | p | [nc(¢i + Ti)/7li=t; | [nc(Pi +T3)/7))e=¢, -

TTake V1 = (¢o/T.) explde/Te], and V2 = (m;/my) = [T;/Te)2 {(¢:i/T;) exp[¢i/Ti]}, then error ratio
=] [logV2—logV1]/logV1 |

42

Table 7: Physical Input Parameters for Symtran.c.f

Input Symbol in Symtran.c.f Typical Values
Ti(p=1,1) Ti_.EDGE 0.007
T.(p=1,1) Te_ EDGE 0.007
ne(p =1,t) den_.EDGE (i) 0.0 or (ii) 0.025
Ep(p=1,1) EB_EDGE 1.3
Ti(p=0,t=0) Ti_O 0.007
Te(p=0,t=0) Te_O 0.007
ne(p =0,t =0) den_O (i) 0.0 or (ii) 0.025
Ep(p=0,t=0) EB_O 1.3
E, E_ALPHA 3520
(Eq) E_ALPHA_AV 2000
Z (in pBrem) Z_EFF 0
initial plug density N_P 0.06
initial mirror Ratio R-MO 1
minor radius RA 0.2
reactor length ZL 3
magnetic field BMAG 1/R-MO
electron ECH power! P_ECH (i) 0 or (ii) 50
Cera C_ETG 0
C(t=0)f COM_0 1
Maximum CT COM_MAX (i) 3.5 or (ii) 15
Tdomp TAU_COM (i) 5x 107% or (ii) 1 x 1072 s

fC(t)

= COM.0 + [(COM_MAX - COM.0)/TAU_COM] - ¢t for t < Teomp, and C(t) = 0 for ¢ > Teomp-

Table 8: Example Output Files for symtran.c.f

File Name

Data Columns

U0.dat t | Ti(p

= Oat) Te(p = Oat)

U.dat p | Ti(p,tj) Te(p,t;)

ne(p=0,t) | Eg(p=0,t) | C(t)

nc(ﬂ, tj) EB(P, tj) -

43

3. FORTRAN files for symtran2.f, symtran4.f and symtran.c.f

As written, symtran2.f runs case 4: Figures 8 - 10, symtrand4.f runs case 8: Figures

24 - 27, and symtran.c.f yields Figure 38.

3A. FORTAN code for symtran2.f

* Mark 15 Release. NAG Copyright 1991.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, INTPTS, ITYPE, NEQN, NIW, NWK, NW
PARAMETER (NPDE=3,NPTS=201, INTPTS=201,ITYPE=1,
+ NEQN=NPDE*NPTS,
+ NIW=NEQN+24,NWK=(10+6*NPDE) *NEQN,
+ NW=NWK+ (21+3*NPDE) *NPDE+7*NPTS+54)
* .. Scalars in Common ..

DOUBLE PRECISION N_P, E_ALPHA, Z_EFF, PA, BMAG, MR, R_M,

+ AS, RA, Ti_EDGE, Te_EDGE, den_EDGE,
+ Ti_0, Te_0, den_0, X_PLUG, PS_I,
+ ZL, PHI_E, P_ECH,
+ N_P_Ti, N_P_Te, EB, E_ALPHA_AV, C_ETG
INTEGER N_P_C
* .. Local Scalars

DOUBLE PRECISION ACC, HX, PI, PIBY2, TOUT, TS

DOUBLE PRECISION DELTAT, MR, N_P

DOUBLE PRECISION PHI_I, Vi, V2

DOUBLE PRECISION SIGV1i, SIGV2, SIGV3, SIGV4, SIGV5, SIGV6,

+ SV, P_ALPHA, PE1, PEIF, PI1, QN, QD, P_INP,
+ QF, QNT, QDT, N_PX, N_PU, TAU_II, TAU1, TAU2,
+ TAU, EL_I, EL_E, ELX_I, ELX_E, Te_crit, AS1
INTEGER I, IFAIL, IND, IT, ITASK, ITRACE, M
* .. Local Arrays
DOUBLE PRECISION U(NPDE,NPTS), UOUT(NPDE,INTPTS,ITYPE), W(NW),
+ X(NPTS), XOUT(INTPTS)
INTEGER IW(NIW)
INTEGER J, J1, J2, NSTEP, NWRITE, NCORE, K1
* .. External Functions
DOUBLE PRECISION XO1AAF
EXTERNAL X01AAF
* .. External Subroutines
EXTERNAL BNDARY, DO3PCF, DO3PZF, PDEDEF, UINIT
* .. Intrinsic Functions
INTRINSIC DSIN, DABS, DLOG, DEXP

2k sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok sk ok ok ok k ok ok sk ok ok ok ok ok ok ok ok ok ok ok 3k ok ok k ok ok ok k ok ok k ok k

2k sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok sk ok ok ok k ok ok sk ok ok ok ok ok ok ok ok ok ok ok 3k ok ok k ok ok ok k ok ok k ok k

44

* Root finding variables and parameters
* * .. Parameters
* * .. Local Scalars

DOUBLE PRECISION Z_A, Z_B, CEPS, ETA, H, Z1, 22, Z_X

DOUBLE PRECISION FR
DOUBLE PRECISION FACT, R_E, R_I, Vi, V2, R_D
INTEGER JFAIL
EXTERNAL FR
COMMON /root/Z1, Z2, PHI_I
sk ok ok sk ok sk o ok sk ok ok o ok sk ok sk o ok ok sk sk ok sk o o ok ok ok sk sk s sk o ok ok sk sk sk sk o o ok ok ok sk sk sk sk o ok ok ok sk ok ok sk o ok o K oK

2k sk ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok k ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok sk ok ok kok ok k

* .. Common blocks
COMMON /Diff/E_ALPHA, Z_EFF, PA, BMAG,
+ AS, RA, ZL, PS_I,
+ X_PLUG, P_ECH,
+ N_P, N_P_Ti, N_P_Te, EB, E_ALPHA_AV,
+ C_ETG, R_M, N_P_C
COMMON /P1/MR
COMMON /BCO/Ti_0, Te_0, den_0
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE
COMMON /diag/K1
*
* .. Executable Statements
* Opening a set of output files
* Running statistics
OPEN(UNIT=10, FILE=’stat.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=20, FILE=’U.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=30, FILE=’UO.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=40, FILE=’Phi.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=50, FILE=’Power.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=60, FILE=’Power.x.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=70, FILE=’Endloss.x.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=100, FILE=’diag.datl’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=110, FILE=’diag.dat2’,FORM=’FORMATTED’,
* STATUS=’0LD’)

WRITE (10,*) ’DO3PCF Example Program Results’

* Local Error parameter

45

ACC = 1.0D-4

Selecting spatial geometry

M = 0 (Cartesian),

M =1 (Cylindrical)
M = 2 (Spherical)
M=1

Program message control parameter
ITRACE = 0

Parameter used in PDE

Parameter starting the integration in time

IND = 0

Normal Computation of output values at t = TOUT
ITASK = 1

Various input parameters
Ion temperature at edge (r/R = 1) [KeV]
Ti_EDGE = 1.0D-3

Electron temperature at edge (r/R = 1) [KeV]
Te_EDGE = 1.0D-3

Density at edge (r/R = 1) [1E20/m*%3]
den_EDGE = 1.00D0

Initial ion temperature at origin [KeV]

Ti_0 = 2.0*Ti_EDGE

Initial ion temperature at origin [KeV]

Te_0 = 2.0xTe_EDGE

Initial density at origin [1E20/m%*3]
den_0 = den_EDGE

Mass ratio between DT nucleus and electron
MR = 4.583D3

Plug density magnitude [1E20/m"~3]
N_P = 10.0DO

Choosing functional dependence of the plug density
N_P_C =1 -> NPX = const
N_P_C =2 -> NPX = N_P*(1 - N_PU/EB)
N_P_C =3 -> NPX = N_P*(1 - N_PU/EB)*(1 - X*%2)

46

N_P.C =2

Coefficient for Ti used in the plug density
N_P_Ti = 0.0DO

Coefficient for Ti used in the plug density
N_P_Te = 7.0DO

Beam energy used in the plug density
EB = 1.0D3

Alpha energy [KeV]
E_ALPHA = 3.52D3

Average alpha energy used in the partition of alpha power
between ions and electrons
E_ALPHA_AV = 2.0D3

Z-effective for Bremstrahlun power

Z_EFF = 0.0DO

Mirror ratio

R_M = 9.2D0
Pashtukhov Constant
PA = (3.1415927D0)**(0.5D0)/4.0D0* (R_M+1.0D0)*

DLOG(2.0D0*R_M+2.0D0) /R_M

Radius [m]
RA = 1.5D0

Length of reactor [m]
ZL = 3.0D1

Magnetic field [T]
BMAG = 1.0D0O

Electron ECH [KeV*1E20]/[m**3*sec]
P_ECH = 1.0D3

Ratio of P_ECH power input
AS = 1.0D0O

Core electron temperature at which to change P_ECH

Te_crit = 4.0D1

Ratio of P_ECH after core electron temperature has reached

Te_crit

47

AS1 = 7.0D-2

*
* Ion external power [KeV*1E20]/[m**3*sec]
PS_I = 0.0DO
*
* Plug radius (normalized)
X_PLUG = 0.98D0
*
* Initial value of time-integrated numerator of Q
QNT = 0.0DO
*
* Initial value of time-integrated denominator of Q
QDT = 0.0DO0
*
* Coefficient for the ETG diffusion coefficient
C_ETG = 0.0DO
*
* Set spatial mesh points spacing using sine
*
* This is Pi/2
PIBY2 = 0.5D0*X01AAF(PI)
*
* This is step-size
HX = PIBY2/(NPTS-1)
*
* Starting and ending points
X(1) = 0.0D0
X(NPTS) = 1.0DO
*
* Do-loop for mesh points used in PDE
DO 20 I = 2, NPTS - 1
X(I) = DSIN(HX*(I-1))
20 CONTINUE
*
* Creating a set of output mesh points
*
* Starting and ending points
X0UT(1) = X(1)
XOUT(INTPTS) = X(NPTS)
*
* Do-loop for output points

DD 1000 J1 = 2, INTPTS - 1
X0UT(J1) = (J1 - 1)*(X(NPTS) - X(1))/(INTPTS-1)
1000 CONTINUE

*
* Set initial conditions
*

* Starting time

48

TS = 0.0DO

Time step

DELTAT = 1.0D-5

Number of time steps
NSTEP = 1000000

Number of times the spatial profiles are outputed
NWRITE = 20

The frequency of printing out core values (at (r/R) = 0)
NCORE = 1000

Starting number for which a diagnostic file is needed

Ki =1

Running statistics

WRITE (10,99999) ACC, E_ALPHA

Set the initial values
CALL UINIT(U,X,NPTS)

Writing initial values to file
WRITE (30,82000) TS, Ti_0, Te_0, den_0, AS*P_ECH

This is the main time do-loop
DO 40 IT = 1, NSTEP

Priting out error messsage parameter
IFAIL = -1

Definition of the next time-step
TOUT = IT*DELTAT

Control of P_ECH input
IF (UOUT(2,1,1).GT.Te_crit) THEN
AS = AS1
ENDIF
Calling the PDE solver subroutine
CALL DO3PCF(NPDE,M,TS,TOUT,PDEDEF,BNDARY,U,NPTS,X,ACC,W,NW, IW,
NIW,ITASK,ITRACE,IND,IFAIL)
Interpolate at required spatial points

CALL DO3PZF(NPDE,M,U,NPTS,X,X0UT,INTPTS,ITYPE,UOUT,IFAIL)

Writing results to output files

49

DO 1300 I = 1, NSTEP/NCORE
IF (IT.EQ.I*NCORE) THEN
WRITE (30,82000) TOUT, UOUT(1,1,1), UOUT(2,1,1),
+ U0UT(3,1,1), AS*P_ECH
ENDIF
1300 CONTINUE

DO 1200 J = 1, NWRITE
IF (IT.EQ.J*NSTEP/NWRITE) THEN

* Initializing the endloss spatial integration
ELX_I = 0.0DO
ELX_E = 0.0DO

* Time
WRITE (20,80000) TOUT
WRITE (40,80000) TOUT
WRITE (70,80000) TOUT

* Spatial values
DO 1100 J1 = 1, INTPTS

IF (DABS(UOUT(1,J1,1)).LT.1.0D-10) THEN
UouT(1,J1,1) = 0.0DO

ENDIF

IF (DABS(UOUT(2,J1,1)).LT.1.0D-10) THEN
UouT(2,J1,1) = 0.0DO

ENDIF

IF (DABS(UOUT(3,J1,1)).LT.1.0D-10) THEN
UouT(3,J1,1) = 0.0D0

ENDIF

* Calculating n_p
IF (XO0UT(J1).LT.X_PLUG) THEN
N_PU = (N_P_Ti*UQUT(1,J1,1) + N_P_TexUOUT(2,J1,1))
IF (N_P_C.EQ.1) THEN
N_PX = N_P
ELSE IF (N_P_C.EQ.2) THEN
N_PX = N_P%(1.0D0 - N_PU/EB)
ELSE IF (N_P_C.EQ.3) THEN
N_PX = N_P*(1.0D0 - N_PU/EB)#*(1.0D0-X0UT(J1)#%2.0D0)

ENDIF
ELSE
N_PX = 0.0DO
ENDIF
*
* Printing out Ti, Te, den, n_p

50

WRITE (20,81000) X0UT(J1), UOUT(1,J1,1), UOUT(2,J1,1),
UouT(3,J1,1), N_PX

Checking whether Phi_e and Phi_i satisfy condition
IF (XO0UT(J1).LT.X_PLUG) THEN

Z1 = U0UT(1,J1,1)

Z2 = UOUT(2,J1,1)

N_PU = (N_P_Ti*Z1 + N_P_TexZ2)
IF (N_P_C.EQ.1) THEN
N_PX = N_P
ELSE IF (N_P_C.EQ.2) THEN
N_PX = N_P*(1.0D0 - N_PU/EB)
ELSE IF (N_P_C.EQ.3) THEN
N_PX = N_P%(1.0D0 - N_PU/EB)#*(1.0D0-XOUT(J1)#*%2.0DO0)
ENDIF

IF (N_PX.GT.UQUT(3,J1,1)) THEN
PHI_I = Z2*DLOG(N_PX/UQUT(3,J1,1))
ELSE
PHI_I = 0.0DO
ENDIF

Step size for root search
H =1.0D-1

Error tolerance
CEPS = 1.0D-7

Closeness of FR to 0.0
ETA = 0.0DO

Root finding program progress monitor parameter
JFAIL =1

Factor used in initial root estimate
FACT = 1.0D0

Initial estimate for root

Z_X = PHI_I*(Z2/Z1)
CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
Checking if the root Z_X is correct

R_E = Z_X/Z2
R_I = PHI_I/Z1

Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG(MR)
+ 1.5D0*DL0OG(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

IF (Z_X.LE.0.0DO.OR.R_D.GT.1.0D-2) THEN

o1

FACT = FACT + 1.0D0

H = H + 10.0D0

Z_X = PHI_Ix(Z2/Z1)

CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
R_E = Z_X/Z2

R_I = PHI_I/Z1

Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DL0G (MR)
+ + 1.5D0*DL0G(Z1/22)
+ + DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)
ENDIF
*
PHI_E = Z_X
ELSE
PHI_I = 0.0DO
PHI_E = 4.0D0*U0UT(2,J1,1)
Vi = 0.0D0
V2 = 0.0D0
FACT = 0.0DO
ENDIF

WRITE (40,83000) X0UT(J1),PHI_I,PHI_E,R_D

* Writing End-loss terms to file

* Characteristics times
TAU_II = 1.6D16%U0OUT(1,J1,1)#**(1.5D0)/(UOUT(3,J1,1)%*1.0D20)
IF (PHI_I/U0UT(1,J1,1).LT.1.0D2) THEN
TAU1 = TAU_II*PA*PHI_I/UOUT(1,J1,1)*DEXP(PHI_I/UOUT(1,J1,1))

ELSE
TAUL = 1.0D43
ENDIF
TAU2 = 3.6D-6%R_M*ZL/UQUT(1,J1,1)**(0.5D0)
+ *DEXP(PHI_I/UOUT(1,J1,1))

TAU = TAU1 + TAU2

* End-loss terms
EL_I = UQOUT(3,J1,1)*(PHI_I + UQUT(1,J1,1))/TAU
EL_E = UOUT(3,J1,1)*(PHI_E + UOUT(2,J1,1))/TAU
IF (J1.LT.INTPTS) THEN
ELX_I = ELX_I + EL_I*XOUT(J1+1)*(X0UT(J1+1)-X0UT(J1))
ELX_E = ELX_E + EL_E#X0UT(J1+1)*(X0UT(J1+1)-X0UT(J1))
ENDIF

WRITE (70,86000) XOUT(J1), EL_I, EL_E

1100 CONTINUE

52

1200

WRITE (20,%)
WRITE (40,%)
WRITE (70,%)
ENDIF
CONTINUE

Calculating Q

Starting value for numerator of Q
QN = 0.0DO

Starting value for denominator of W
QD = 0.0DO

Doing the spatial and time integration of various powers
DO 1400 J2 = 1, INTPTS-1
<Sigma*Velocity>_fusion reaction
IF (UOUT(1,J2,1).GE.1.0D0.AND.UQUT(1,J2,1).LE.8.0D1) THEN
SIGV1 = (-2.138D1)*U0UT(1,J2,1)**(-2.935D-1)
SIGV2 = -2.520D1
SIGV3 = (-7.101D-2)*U0UT(1,J2,1)
SIGV4 = (1.938D-4)*U0UT(1,J2,1)%%2.0D0
SIGV5 = (4.925D-6)*U0UT(1,J2,1)%%3.0D0
SIGV6 = (-3.984D-8)*U0OUT(1,J2,1)%*%4.0D0
SV = (1.0D-6)*DEXP(SIGV1+SIGV2+SIGV3+SIGV4+SIGV5+SIGV6)
ELSE
SV = 0.0DO
ENDIF

Alpha Power
P_ALPHA = 0.25D20%U0UT(3,J2,1)*%(2.0D0)*SV+E_ALPHA

Input Powers
IF (XOUT(J2).LT.X_PLUG) THEN
PEIF = 1.0D0 - N_P_Te*UOUT(2,J2,1)/EB
PE1 = AS*P_ECH/PELF
PE1 = AS*P_ECH
PI1 = AS*PS_I

ELSE
PE1 = 0.0DO
PI1 = 0.0DO
ENDIF

Integration of Alpha Power
QN = QN + 5.0D0*(X0UT(J2+1)-X0UT(J2))*X0UT(J2+1)*P_ALPHA

Integration of input power
P_INP = PE1 + PI1

93

QD = QD + (XOUT(J2+1)-XOUT(J2))*X0UT(J2+1)*P_INP

* Writing to output file

* IF (J2.EQ.1) THEN

* WRITE (60,85000) TOUT, XOUT(J2), P_ALPHA, P_INP, QN, QD
* WRITE (60,85000) TOUT, XOUT(J2), P_ALPHA

* ENDIF

*

*

1400 CONTINUE

QNT = QNT + QN+DELTAT
QDT = QDT + QD*DELTAT
QF = QNT/QDT

DO 1500 I = 1, NSTEP/NCORE
IF (IT.EQ.I*NCORE) THEN
WRITE (50,84000) TOUT, QN, QD, QN/(QD+1.0D-5), AS*P_ECH
ENDIF
1500 CONTINUE

IF (IFAIL.EQ.3) THEN
WRITE (10,90000) °’IFAIL IS’, IFAIL, TOUT
ENDIF

40 CONTINUE

* Print integration statistics

WRITE (10,99997) IW(1), IW(2), IW(3), IW(5)
STOP
*
99999 FORMAT (//’ Accuracy requirement = ’,D12.5,/’ Parameter E_AL =,
+) ’,D12.3,/)
99997 FORMAT (’ Number of integration steps in time ’,
I4,/’ Number of residual evaluations of resulting ODE sys’,
’tem’,I4,/’ Number of Jacobian evaluations ’,
? >,I4,/’ Number of iterations of nonlinear solve’,
'r ’,14,/)
90000 FORMAT (1X,A,I1,D12.4)
80000 FORMAT (1X,D12.4)
81000 FORMAT (1X,5D12.4)
82000 FORMAT (1X,6D12.4)
*83000 FORMAT (1X,5D12.4,F7.2)
83000 FORMAT (1X,6D12.4)
84000 FORMAT (1X,6D12.4)
85000 FORMAT (1X,6D12.4)

+ o+ o+ o+

54

86000

20

70000

FORMAT (1X,5D12.4)
END

SUBROUTINE UINIT(U,X,NPTS)
Routine for PDE initial conditon
. Scalar Arguments
INTEGER NPTS
. Array Arguments
DOUBLE PRECISION U(3,NPTS), X(NPTS)
. Scalars in Common ..
DOUBLE PRECISION Ti_EDGE, Te_EDGE, den_EDGE,

+ Ti_0, Te_0, den_0
. Local Scalars
INTEGER I
. Common blocks
COMMON /BCO/Ti_0, Te_0, den_0
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE
. Intrinsic functions
INTRINSIC DLOG, DEXP

. Executable Statements
WRITE (10,%)
WRITE (10,%) ’Checking root finder’
WRITE (10,%)

DO 20 I = 1, NPTS

U(1,I) = (Ti_0-Ti_EDGE)*(1.0D0-X(I)**2.0D0)+Ti_EDGE
U(2,I) = (Te_0-Te_EDGE)*(1.0D0-X(I)**2.0D0)+Te_EDGE
U(3,I) = (den_0)*(1.0D0-X(I)**2.0D0)+den_EDGE

U(3,I) = (den_0-den_EDGE)*(1.0D0-X(I)*%2.0D0)+den_EDGE

Printing out the results
WRITE (10,70000) X(I), U(1,I), U(2,I), U(3,I)

CONTINUE
WRITE (10,%)
FORMAT (1X,4D12.4)
RETURN
END

DOUBLE PRECISION FUNCTION FR(Z_X)

* .. Scalar Arguments
DOUBLE PRECISION Z_X, Z1, Z2, PHI_I, MR
* .. Intrinsic Functions

INTRINSIC DEXP, DLOG, DABS

COMMON /P1/MR

95

+

+ o+ o+ o+ 4+

+

+

+

%k kK k ok

%k kK k ok

*

*

*

%k kK kK

ok kok ok %k k

*

COMMON /root/Z1, Z2, PHI_I

* .. Executable Statements

FR = Z_X/Z2*DEXP(Z_X/Z2) - MRx%(0.5D0)*(Z1/Z2)+%(1.5D0)
*(PHI_I/Z1)*DEXP(PHI_I/Z1)

RETURN

END

SUBROUTINE PDEDEF(NPDE,T,X,U,DUDX,P,Q,R,IRES)
. Scalar Arguments
DOUBLE PRECISION T, X
INTEGER IRES, NPDE
INTEGER K2
. Array Arguments
DOUBLE PRECISION DUDX(NPDE), P(NPDE,NPDE), Q(NPDE), R(NPDE),
U(NPDE)
DOUBLE PRECISION PHI_I, SIGV1, SIGV2, SIGV3, SIGV4, SIGV5,
SIGV6é, SV, P_ALPHA, P_BREM, TAU_II, TAU_IE,
TAU, R_LI, CHI_I, CHI_E, D_N, Qi1, Q12, Q21,
Q22, Q23, Q24, Q25, PHI_E, Q13,
N_PX, U30, N_PU, XOLD, TAU_A, F_A_I,
Q14, CHI_E_ETG, INV_L_CRIT
. Scalars in Common ..
DOUBLE PRECISION N_P, E_ALPHA, Z_EFF, PA, BMAG, MR,

AS, RA, X_PLUG, ZL, PS_I,
P_ECH, N_P_Ti, N_P_Te,
EB, E_ALPHA_AV, C_ETG, R_M
INTEGER K1, N_P_C
Intrinsic Functions
INTRINSIC DABS, DLOG, DEXP
KoK KoK KoK K K o KoK o KK oK o K K o K oK o KK oK o K oK o KK oK o K oK o KK ok ok oK oK o K oK o oK ok o K oK

stk sk ke ok ke sk ok sk ok sk ko ks ko ke sk sk ks ko ks ke ke sk sk ks ke sk sk ko ke sk sk ko ko ok
Root finding variables and parameters

* .. Parameters

* .. Local Scalars

DOUBLE PRECISION Z_A, Z_B, CEPS, ETA, H, Z1, Z2, Z_X

DOUBLE PRECISION FR

DOUBLE PRECISION FACT, R_E, R_I, Vi, V2, R_D

INTEGER JFAIL

EXTERNAL FR

COMMON /root/Z1, Z2, PHI_I
KoK K oK o KoK K K o KoK oK oK oK o K KoK o K oK o KK oK o K oK o K oK ok oK ok o K oK ok o K ok o KoK oK o K oK ok K K oK
ko ok ok sk ok ok o ok sk ok sk o ok ok ok o ok sk sk o ko o sk o s ok sk o sk ok s ks o e ok s sk sk o ks ok ok ok ok ok ok ok ok
. Common blocks
COMMON /Diff/E_ALPHA, Z_EFF, PA, BMAG,

o6

+ o+ o+ 4+

AS, RA, ZL, PS_I,
X_PLUG, P_ECH,
N_P, N_P_Ti, N_P_Te, EB, E_ALPHA_AV,
C_ETG, R_M, N_P_C
COMMON /P1/MR
COMMON /diag/K1

. Executable Statements
Variables and Parameters

U(1) = Ti(x,t), U(2) = Te(x,t), U(3) = n(x,t)

Preventing trouble when quantities become negative
IF (U(1).LE.0.0DO) THEN

U(1) = 1.0D-8
ENDIF

IF (U(2).LE.0.0DO) THEN
U(2) = 1.0D-8
ENDIF

IF (U(3).LE.0.0DO) THEN
U(3) = 1.0D-8
ENDIF

Ion potential

Finding density at (r/R) = 0
IF (X.LT.XOLD) THEN

U30 = U(3)
ENDIF

Definition of the plug density
N_PU = N_P_Ti*U(1) + N_P_TexU(2)

IF (N_P_C.EQ.1) THEN
N_PX = N_P
ELSE IF (N_P_C.EQ.2) THEN
N_PX = N_P%(1.0D0 - N_PU/EB)
ELSE IF (N_P_C.EQ.3) THEN
N_PX = N_P*(1.0D0 - N_PU/EB)#*(1.0D0O-X*%2,0D0)
ENDIF

IF (N_PX.GT.U(3)) THEN

PHI_I = U(2)*DLOG(N_PX/U(3))
ELSE

PHI_I = 0.0DO
ENDIF

Electron potential

o7

IF (X.LT.X_PLUG) THEN

Z1 = U(1)
22 = U(2)

Step size for root search
H =1.0D-1

Error tolerance
CEPS = 1.0D-7
Closeness of FR to 0.0
ETA = 0.0DO
Root finding program progress monitor parameter
JFAIL = 1
Factor used in initial root estimate
FACT = 1.0D0O
Initial estimate for root

Z_X = PHI_I*(Z2/Z1)

CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)

Checking if the root Z_X is correct
R_E = Z_X/U(2)
R_I = PHI_I/U(1)
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG(MR)
+ 1.5D0*DLOG(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

IF (Z_X.LE.0.0DO.OR.R_D.GT.1.0D-2) THEN
FACT = FACT + 1.0D0
H =H + 10.0D0
Z_X = PHI_I*(Z2/Z1)
CALL COS5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
R_E = Z_X/U(2)
R_I = PHI_I/U(1)
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG (MR)
+ 1.5D0*DL0OG(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

ENDIF
PHI_E = Z_X
ELSE
PHI_I = 0.0DO
PHI_E = 4.0D0*U(2)
Vi = 0.0DO
V2 = 0.0D0
FACT = 0.0D0

o8

ENDIF

<Sigma*Velocity>_fusion reaction

IF (U(1).GE.1.0D0.AND.U(1).LE.8.0D1) THEN
SIGV1 = (-2.138D1)*U(1)**(-2.935D-1)
SIGV2 = -2.520D1

SIGV3 = (-7.101D-2)*U(1)

SIGV4 = (1.938D-4)*U(1)*%2.0D0
SIGV5 = (4.925D-6)*U(1)*%*3.0D0
SIGV6 = (-3.984D-8)*U(1)*%4.0D0

SV = (1.0D-6)*DEXP(SIGV1+SIGV2+SIGV3+SIGV4+SIGV5+SIGV6)
ELSE

SV = 0.0D0
ENDIF

Alpha Power
P_ALPHA = 0.25D20%U(3)*%(2.0D0)*SV+E_ALPHA

Bremstrahlung

P_BREM = 0.3125D0*Z_EFF*U(3)*%(2.0D0)*U(2)*%(0.5D0)

Characteristic Times
TAU_II = 1.6D16xU(1)*x(1.5D0)/(U(3)*1.0D20)
TAU_IE = 1.0D18*U(2)**(1.5D0)/(U(3)*1.0D20)
IF (PHI_I/U(1).LT.1.0D2) THEN

TAU = TAU_II*PAxPHI_I/U(1)*DEXP(PHI_I/U(1))

+ + 3.6D-6%R_M*ZL/U(1)*%(0.5D0)*DEXP(PHI_I/U(1))
ELSE

TAU = 1.0D43
ENDIF

Fraction of alpha power going to the ions
TAU_A = 1.6D16+%E_ALPHA_AVx*(1.5D0)/(U(3)*1.0D20)

F_A_I = TAU_IE*(E_ALPHA_AV - U(1))
+ /(TAU_IEx(E_ALPHA_AV - U(1))
+ + TAU_A*(E_ALPHA_AV - U(2)))

F_A_I = 0.0D0O

Ion gyro-radius
R_LI = 6.4D-3*U(1)**(0.5D0)/BMAG

Diffusion coefficients

CHI_I = R_LI**(2.0D0)/TAU_II

CHI_E = MR**(-0.5D0)*(U(1)/U(2))**(0.5D0)*CHI_I
INV_L_CRIT = DABS(0.66667D0*DUDX(3)/U(3))

CHI_E_ETG = C_ETGxU(2)**(1.5D0)/BMAG**(2.0D0)

99

*(DABS(DUDX(2))/U(2) - INV_L_CRIT)

IF (CHI_E_ETG.LE.0.0DO) THEN
CHI_E_ETG = 0.0DO
ENDIF

D_N = CHI_E

Coefficients needed in the PDE solver

u(l) - T_i

Coefficients for time-derivatives
P(1,1) 1.5D0*U(3)

P(1,2) = 0.0D0

P(1,3) = 1.5D0*U(1)

Coefficients for sources (Q>0) and sinks (Q<0)

Q11 = U(3)*(U(2)-U(1))/TAU_IE
Q12 = -U(3)*(PHI_I+U(1))/TAU

IF (X.LT.X_PLUG) THEN
Q13 = AS*PS_I

ELSE
Q13 = 0.0DO

ENDIF

Alpha heating of the ions
Q14 = P_ALPHA*F_A_I

Q(1) = -(Q11+Q12+Q13+Q14)

Coefficients for space-derivatives
R(1) = U(3)*CHI_I/RA*%(2.0D0)*DUDX(1)

U(2) - T_e

Coefficients for time-derivatives
P(2,1) = 0.0D0

P(2,2) 1.5D0*U(3)

P(2,3) 1.5D0*U(2)

Coefficients for sources (Q>0) and sinks (Q<0)

Q21 = -U(3)*(U(2)-U(1))/TAU_IE

Q22 = -U(3)*(PHI_E+U(2))/TAU

Q23 = P_ALPHA%*(1.0D0 - F_A_I)

60

IF (X.LT.X_PLUG) THEN
Q24 = AS*P_ECH

ELSE
Q24

ENDIF

0.0D0

Q25 = -P_BREM
Q(2) = -(Q21+Q22+Q23+Q24+Q25)
Coefficients for space-derivatives

R(2) = U(3)*(CHI_E+CHI_E_ETG)/RA**(2.0D0)*DUDX(2)

U(3) - n

Coefficients for time-derivatives

P(3,1) = 0.0DO

P(3,2) =

0.0D0

P(3,3) = 1.0D0

Coefficients for sources (Q>0) and sinks (Q<0)
Q(3) = 0.0D0

Coefficients for space-derivatives
IF (X.LT.X_PLUG) THEN
R(3) = CHI_E/RAx*x(2.0D0)*DUDX(3)

ELSE

R(3) = 0.0DO
ENDIF
R(3) = 0.0DO

Printing out diagnostic files if needed

IF (T.GE.6.000D-1) THEN
K1 =K1l + 1
DO 2000 K2 = 1, 10

IF (K2.EQ.K1/1000) THEN

WRITE (100,60000) T, X, U30, N_PU, N_PX, PHI_I
WRITE (110,61000) T, X, Q22, Q23, Q24, Q(2)
60000 FORMAT (1X,6D12.4)

61000 FORMAT (1X,7D12.4)

ENDIF

2000 CONTINUE
ENDIF

X0LD = X

61

RETURN
END

SUBROUTINE BNDARY(NPDE,T,U,UX,IBND,BETA,GAMMA, IRES)
. Scalar Arguments
DOUBLE PRECISION T
INTEGER IBND, IRES, NPDE
DOUBLE PRECISION Ti_EDGE, Te_EDGE, den_EDGE
. Array Arguments
DOUBLE PRECISION BETA(NPDE), GAMMA(NPDE), U(NPDE), UX(NPDE)
. Common Blocks
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE
. Executable Statements
Boundary condition is defined in the form
BETA(I)*R(I) = GAMMA(I)
Usually R(I) is proportional to dU(I)/dr so that BC involving
df/dr has BETA(I) = 1.0
Dirichlet BC is usually set with BETA(I) = 0.0 and
GAMMA(I) = U(I) - U_BC
IBND = O denotes the left boundary point
IF (IBND.EQ.O) THEN
BETA(1) = 1.0D0
BETA(2) = 1.0D0
BETA(3) = 1.0D0
GAMMA(1) = 0.0DO
GAMMA(2) = 0.0DO
GAMMA(3) = 0.0DO

ELSE
BETA(1) = 0.0DO
BETA(2) = 0.0D0
BETA(3) = 0.0D0
GAMMA(1) = U(1) - Ti_EDGE
GAMMA(2) = U(2) - Te_EDGE
GAMMA(3) = U(3) - den_EDGE
END IF
RETURN
END

62

3B. FORTAN code for symtran4.f

* Mark 15 Release. NAG Copyright 1991.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, INTPTS, ITYPE, NEQN, NIW, NWK, NW
PARAMETER (NPDE=4,NPTS=201, INTPTS=201,ITYPE=1,
+ NEQN=NPDE*NPTS,
+ NIW=NEQN+24,NWK=(10+6*NPDE) *NEQN,
+ NW=NWK+ (21+3*NPDE) *NPDE+7*NPTS+54)
* .. Scalars in Common ..

DOUBLE PRECISION N_P, E_ALPHA, Z_EFF, PA, BMAG, MR, R_M,
AS, S_N, RA, Ti_EDGE, Te_EDGE, den_EDGE,
Ti_0, Te_0, den_0, PS_I,
ZL, PHI_E, P_ECH,
E_ALPHA_AV, C_ETG, Ci_N_P,
C2_N_P, N_P_EDGE, N_P_0, EB,
PSX

+ o+ o+ o+ o+ 4+

* .. Local Scalars ..
DOUBLE PRECISION ACC, HX, PI, PIBY2, TOUT, TS
DOUBLE PRECISION DELTAT, MR
DOUBLE PRECISION PHI_I, Vi, V2
DOUBLE PRECISION SIGV1i, SIGV2, SIGV3, SIGV4, SIGV5, SIGV6,

+ SV, P_ALPHA, PE1, PI1, PE2, QN, QD, P_INP,
+ QF, QNT, QDT, TAU_II, TAU1, TAU2,
+ TAU, EL_I, EL_E, ELX_I, ELX_E, TAU_IE,
+ PE1F, Te_crit, AS1
INTEGER I, IFAIL, IND, IT, ITASK, ITRACE, M
* .. Local Arrays
DOUBLE PRECISION U(NPDE,NPTS), UOUT(NPDE,INTPTS,ITYPE), W(NW),
+ X(NPTS), XOUT(INTPTS)
INTEGER IW(NIW)
INTEGER J, J1, J2, NSTEP, NWRITE, NCORE, K1
* .. External Functions
DOUBLE PRECISION XO1AAF
EXTERNAL XO01AAF
* .. External Subroutines
EXTERNAL BNDARY, DO3PCF, DO3PZF, PDEDEF, UINIT
* .. Intrinsic Functions
INTRINSIC DSIN, DABS, DLOG, DEXP

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k >k 3k 3k 5k 3k ok 3k 3k 3k ok 3k 3 >k 3k >k 5k %k 5k 3k ok 3k 5k 3k %k 3k 3k 5k 3k 5k 3k %k %k %k k% k kK k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k >k 3k 3k 5k 3k ok 3k 3k 3k ok 3k 3 >k 3k >k 5k %k 5k 3k ok 3k 5k 3k %k 3k 3k 5k 3k 5k 3k %k %k %k k% k kK k

* Root finding variables and parameters
* * .. Parameters
* * .. Local Scalars

DOUBLE PRECISION Z_A, Z_B, CEPS, ETA, H, Z1, Z2, Z_X

63

DOUBLE PRECISION FR
DOUBLE PRECISION FACT, R_E, R_I, Vi, V2, RD
INTEGER JFAIL
EXTERNAL FR
COMMON /root/Z1, Z2, PHI_I
skokokokokok ok koo ko ko ook koo ko o ook ko sk ok skok s ko ok o s ko ok ko o ok ok ko ok ok ok

3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 5k 3k 5k 3k ok 3k ok 3k ok 3k 3k ok 3k >k 5k %k 5k 3k 3k 3k 5k 3k >k 3k 3k 5k 3k 5k 3k %k %k % >k %k k k ok k >k

* .. Common blocks
COMMON /Diff/E_ALPHA, Z_EFF, PA, BMAG,
+ AS, S_N, RA, ZL, PS_I,
+ P_ECH,
+ N_P, E_ALPHA_AV,
+ C_ETG, R_M, C1_N_P, C2_N_P,
+ EB, PSX
COMMON /P1/MR
COMMON /BCO/Ti_0, Te_0, den_0, N_P_O
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE, N_P_EDGE
COMMON /diag/K1
*
* .. Executable Statements
* Opening a set of output files
* Running statistics
OPEN(UNIT=10, FILE=’stat.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=20, FILE=’U.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=30, FILE=’UO.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=40, FILE=’Phi.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=50, FILE=’Power.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=60, FILE=’Power.x.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=70, FILE=’Endloss.x.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=100, FILE=’diag.datl’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=110, FILE=’diag.dat2’,FORM=’FORMATTED’,
* STATUS=’0LD’)

WRITE (10,*) ’DO3PCF Example Program Results’

* Local Error parameter
ACC = 1.0D-4
*
* Selecting spatial geometry
* M = 0 (Cartesian),

64

1 (Cylindrical)
2 (Spherical)
1

Program message control parameter
ITRACE = 0

Parameter used in PDE

Parameter starting the integration in time
IND = 0

Normal Computation of output values at t = TOUT
ITASK = 1

Various input parameters
Ion temperature at edge (r/R = 1) [KeV]

Ti_EDGE = 1.0D-3

Electron temperature at edge (r/R = 1) [KeV]
Te_EDGE = 1.0D-3

Density at edge (r/R = 1) [1E20/m*x3]
den_EDGE = 1.0D-2

Plug density at edge (r/R = 1) [1E20/m**3]
N_P_EDGE = 1.2DO*den_EDGE

Initial ion temperature at origin [KeV]

Ti_0 = 2.0*Ti_EDGE

Initial ion temperature at origin [KeV]
Te_0 = 2.0xTe_EDGE

Initial density at origin [1E20/m%*3]
den_0 = 2.0DO*den_EDGE

Initial plug density at origin [1E20/m**3]
N_P_0 = 1.2DO*den_0

Mass ratio between DT nucleus and electron

MR = 4.583D3

Alpha energy [KeV]
E_ALPHA = 3.52D3

Average alpha energy used in the partition of alpha power

between ions and electrons

65

E_ALPHA_AV = 2.0D3

Z-effective for Bremstrahlun power

Z_EFF = 0.0DO

Mirror ratio
R_M = 2.0D1

Pashtukhov Constant
PA = (3.1415927D0)**(0.5D0)/4.0D0* (R_M+1.0D0)*
DLOG(2.0D0*R_M+2.0D0) /R_M

Radius [m]
RA = 1.5D0

Length of reactor [m]
ZL = 1.0D2

Beam energy used in PS_E

EB = 1.0D3

Magnetic field [T]
BMAG = 0.5D0

Factor in electron input plug power
PSX = 2.0D0*(RA/ZL)/R_M**(1.5D0)
PSX = 1.7E-3

Ion external power [KeV*1E20]/[m**3*sec]
PS_I = 0.0DO

ECH [KeV*1E20]/[m**3*sec]
P_ECH = 2.0D4

Initial factor of ECH power
AS = 0.0DO

Core electron temperature at which to change ECH power

Te_crit = 6.0D1
Factor of ECH power after core electron temperature has
reached Te_crit

AS1 = 1.0DO

Factor in external density source [1E20 particles/m~3/s]

S_N = 5.00D0

Initial value of time-integrated numerator of Q

66

QNT = 0.0DO

*

* Initial value of time-integrated denominator of Q
QDT = 0.0DO

*

* Coefficient for the ETG diffusion coefficient
C_ETG = 0.0DO

*

* Factor used in the plug density source term
C1_N_P = 1.00D2

*

* Factor used in the plug density loss term
C2_N_P = 1.0DO

*

* Set spatial mesh points spacing using sine

*

* This is Pi/2
PIBY2 = 0.5D0*X01AAF(PI)

*

* This is step-size
HX = PIBY2/(NPTS-1)

*

* Starting and ending points
X(1) = 0.0DO
X(NPTS) = 1.0DO

*

* Do-loop for mesh points used in PDE

DO 20 I = 2, NPTS - 1
X(I) = DSIN(HX*(I-1))
20 CONTINUE

*
* Creating a set of output mesh points
*
* Starting and ending points

X0UT(1) = X(1)

XOUT(INTPTS) = X(NPTS)
*
* Do-loop for output points

DO 1000 J1 = 2, INTPTS - 1
X0UT(J1) = (J1 - 1)*(X(NPTS) - X(1))/(INTPTS-1)
1000 CONTINUE

*
* Set initial conditions
*
* Starting time

TS = 0.0DO
*
* Time step

67

DELTAT = 1.0D-5

Number of time steps

NSTEP = 2000000

Number of times the spatial profiles are outputed
NWRITE = 10

The frequency of printing out core values (at (r/R) = 0)
NCORE = 1000

Starting number for which a diagnostic file is needed
Ki =1

Running statistics

WRITE (10,99999) ACC, E_ALPHA, PSX

Set the initial values

CALL UINIT(U,X,NPTS)

Writing initial values to file
WRITE (30,82000) TS, Ti_0, Te_0, den_0, N_P_O

This is the main time do-loop
DO 40 IT = 1, NSTEP

Priting out error messsage parameter
IFAIL = -1
Definition of the next time-step
IF (TOUT.LE.1.0D0) THEN
TOUT = IT*DELTAT
ELSE
TOUT
ENDIF

IT*(DELTAT*1.0D1)

Control of external power input
IF (U0UT(2,1,1).GT.Te_crit) THEN
AS = AS1
ENDIF

Calling the PDE solver subroutine
CALL DO3PCF(NPDE,M,TS,TOUT,PDEDEF,BNDARY,U,NPTS,X,ACC,W,NW, IW,
NIW,ITASK,ITRACE,IND,IFAIL)

Interpolate at required spatial points

CALL DO3PZF(NPDE,M,U,NPTS,X,X0UT,INTPTS,ITYPE,UOUT,IFAIL)

68

1300

Writing results to output files

DO 1300 I = 1, NSTEP/NCORE
IF (IT.EQ.I*NCORE) THEN

WRITE (30,82000)

ENDIF
CONTINUE

TOUT, UOUT(1,1,1), UOUT(2,1,1),
UouT(3,1,1), UOUT(4,1,1)

DO 1200 J = 1, NWRITE
IF (IT.EQ.J*NSTEP/NWRITE) THEN

Initializing the endloss spatial integration

ELX_I = 0.0DO
ELX_E = 0.0D0O

Time
WRITE (20,80000)
WRITE (40,80000)
WRITE (70,80000)

Spatial values

TOUT
TOUT
TOUT

DO 1100 J1 = 1, INTPTS
IF (DABS(UOUT(1,J1,1)).LT.1.0D-10) THEN

UouT(1,J1,1)
ENDIF

= 0.0DO

IF (DABS(UOUT(2,J1,1)).LT.1.0D-10) THEN

UouT(2,J1,1)
ENDIF

= 0.0DO

IF (DABS(UOUT(3,J1,1)).LT.1.0D-10) THEN

UouT(3,J1,1)
ENDIF

= 0.0DO

IF (DABS(UOUT(4,J1,1)).LT.1.0D-10) THEN

UOUT(4,J1,1)
ENDIF

= 0.0D0

Stop running if numbers become negative

IF (UOUT(1,J1,1).
UouT(3,J1,1).
IT = NSTEP
ENDIF

Printing out Ti,

WRITE (20,81000)

Checking whether
Z1 = U0uUT(1,J1,

LT.0.0D0.0R.UOUT(2,J1,1).LT.0.0D0.0R.
LT.0.0D0.0R.UOUT(4,J1,1).LT.0.0D0) THEN

Te, den
X0uT(J1), UOUT(1,J1,1), UOUT(2,J1,1),
uouT(3,J1,1), UOUT(4,J1,1)

Phi_e and Phi_i satisfy condition

D)

69

Z2 = U0UT(2,J1,1)

IF (UOUT(4,J1,1).GT.UQUT(3,J1,1)) THEN
PHI_I = Z2xDLOG(UOUT(4,J1,1)/U0UT(3,J1,1))
ELSE
PHI_I = 0.0DO
ENDIF

Step size for root search
H = 1.0D-1

Error tolerance
CEPS = 1.0D-7

Closeness of FR to 0.0
ETA = 0.0DO

Root finding program progress monitor parameter
JFAIL =1

Factor used in initial root estimate
FACT = 1.0D0

Initial estimate for root

Z_X = PHI_Ix*(Z2/Z1)

CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)

Checking if the root Z_X is correct
R_E = Z_X/Z2
R_I = PHI_I/Z1
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG(MR)
+ 1.5D0*DL0G(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

IF (Z_X.LE.0.0DO.0R.R_D.GT.1.0D-2) THEN
FACT = FACT + 1.0DO
H = H + 10.0D0
Z_X = PHI_Ix(Z2/Z1)
CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
R_E = Z_X/Z2
R_I = PHI_I/Z1
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DL0G (MR)
+ 1.5D0*DL0G(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)
ENDIF

PHI_E = Z_X

70

WRITE (40,83000) X0UT(J1),PHI_I,PHI_E,R_D

* Writing End-loss terms to file

* Characteristics times
TAU_II = 1.6D16*U0UT(1,J1,1)**(1.5D0)/(UOUT(3,J1,1)*1.0D20)
IF (PHI_I/UOUT(1,J1,1).LT.1.0D2) THEN
TAU1 = TAU_II*PA*PHI_I/UOUT(1,J1,1)*DEXP(PHI_I/UOUT(1,J1,1))

ELSE

TAU1 = 1.0D43

ENDIF

TAU2 = 3.6D-6xR_M+ZL/UQUT(1,J1,1)*%(0.5D0)
+ *DEXP(PHI_I/UOUT(1,J1,1))

TAU = TAU1 + TAU2

* End-loss terms
EL_I = UOUT(3,J1,1)*(PHI_I + UOUT(1,J1,1))/TAU
EL_E = UOUT(3,J1,1)*(PHI_E + UOUT(2,J1,1))/TAU
IF (J1.LT.INTPTS) THEN
ELX_I = ELX_I + EL_I*XO0UT(J1+1)*(X0UT(J1+1)-X0UT(J1))
ELX_E = ELX_E + EL_ExXO0UT(J1+1)*(X0UT(J1+1)-X0UT(J1))
ENDIF

WRITE (70,86000) XOUT(J1), EL_I, EL_E

1100 CONTINUE

WRITE (20,%)

WRITE (40,%)
WRITE (70,%)

ENDIF
1200 CONTINUE
*
* Calculating Q at fixed time intervals

DO 1500 I = 1, NSTEP/NCORE
IF (IT.EQ.I*#NCORE) THEN

* Starting value for numerator of Q
QN = 0.0DO
*
* Starting value for denominator of W
QD = 0.0DO
*
* Doing the spatial and time integration of various powers

DO 1400 J2 = 1, INTPTS-1
* Checking whether Phi_e and Phi_i satisfy condition

Z1 = U0UT(1,J2,1)
Z2 = U0UT(2,J2,1)

71

*

IF (UOUT(4,J2,1).GT.UOUT(3,J2,1)) THEN

PHI_I = Z2+DL0G(UOUT(4,J2,1)/U0OUT(3,J2,1))
ELSE

PHI_I = 0.0DO
ENDIF

Step size for root search
H =1.0D-1

Error tolerance
CEPS = 1.0D-7

Closeness of FR to 0.0
ETA = 0.0DO

Root finding program progress monitor parameter
JFAIL = 1

Factor used in initial root estimate
FACT = 1.0DO

Initial estimate for root

Z_X = PHI_I*(Z2/Z1)

CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)

Checking if the root Z_X is correct
R_E = Z_X/Z2
R_I = PHI_I/Z1
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG(MR)
+ 1.5D0*DLOG(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

IF (Z_X.LE.0.0DO.OR.R_D.GT.1.0D-2) THEN
FACT = FACT + 1.0DO
H = H + 10.0D0
Z_X = PHI_I*(Z2/Z1)
CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
R_E = Z_X/Z2
R_I = PHI_I/Z1
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG(MR)
+ 1.5D0*DL0G(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

ENDIF

PHI_E = Z_X

<Sigma*Velocity>_fusion reaction

72

IF (UouT(1,J2,1).GE.1.0D0.AND.UOUT(1,J2,1).LE.8.0D1) THEN
SIGV1 = (-2.138D1)*U0UT(1,J2,1)**(-2.935D-1)

SIGV2 = -2.520D1

SIGV3 = (-7.101D-2)*U0UT(1,J2,1)

SIGV4 = (1.938D-4)*U0OUT(1,J2,1)*%*2.0D0
SIGV5 = (4.925D-6)*U0OUT(1,J2,1)%%*3.0D0
SIGV6 = (-3.984D-8)*UQUT(1,J2,1)**4.0D0

SV = (1.0D-6)+*DEXP(SIGV1+SIGV2+SIGV3+SIGV4+SIGV5+SIGV6)
ELSE

SV = 0.0DO
ENDIF

Characteristic time
TAU_IE = 1.0D-2%U0UT(2,J2,1)**(1.5D0)/U0UT(3,J2,1)

Alpha Power
P_ALPHA = 0.25D20%UQUT(3,J2,1)**(2.0D0)*SV*E_ALPHA

Input Powers
PEIF = 1.0D0 - (PHI_I + PHI_E)/EB
PE1 = PSX*(UOUT(4,J2,1)*%2.0D0)/(UOUT(3,J2,1)*TAU_IE)*EB/PELF
+ AS*P_ECH
PI1 = AS*PS_I

Integration of Alpha Power
QN = QN + 5.0DO0*(X0UT(J2+1)-X0UT(J2))*X0UT(J2+1)*P_ALPHA

Integration of input power
P_INP = PE1 + PE2 + PI1
QD = QD + (XOUT(J2+1)-X0UT(J2))*X0UT(J2+1)*P_INP

Writing to output file

IF (J2.EQ.1) THEN

WRITE (60,85000) TOUT, XOUT(J2), PHI_I, PHI_E, R_D
WRITE (60,85000) TOUT, XOUT(J2), P_ALPHA

ENDIF

CONTINUE

Calculating the time integral of
QNT = QNT + QN*DELTAT

QDT = QDT + QD*DELTAT

QF = QNT/QDT

Writing the output of various Q

WRITE (50,84000) TOUT, QN, QNT, QD, QDT, QN/(QD+1.0D-5)
WRITE (50,84000) TOUT, QN, QD, QN/(QD+1.0D-5), AS*P_ECH

73

ENDIF
1500 CONTINUE

IF (IFAIL.EQ.3) THEN
WRITE (10,90000) °’IFAIL IS’, IFAIL, TOUT
ENDIF

40 CONTINUE

* Print integration statistics

WRITE (10,99997) IW(1), IW(2), IW(3), IW(B)
STOP
*
99999 FORMAT (//’ Accuracy requirement = ’,D12.5,/’ Parameter E_AL =’,
+ ’ ’,D12.3,/)
99997 FORMAT (° Number of integration steps in time ’,
I4,/’ Number of residual evaluations of resulting ODE sys’,
’tem’,I4,/’ Number of Jacobian evaluations 2,
? >,I4,/’ Number of iterations of nonlinear solve’,
'r ’,14,/)
90000 FORMAT (1X,A,I1,D12.4)
80000 FORMAT (1X,D12.4)
81000 FORMAT (1X,5D12.4)
82000 FORMAT (1X,6D12.4)
*83000 FORMAT (1X,5D12.4,F7.2)
83000 FORMAT (1X,6D12.4)
84000 FORMAT (1X,6D12.4)
85000 FORMAT (1X,6D12.4)
86000 FORMAT (1X,6D12.4)
END

+ o+ o+ 4+

SUBROUTINE UINIT(U,X,NPTS)

* Routine for PDE initial conditon
* .. Scalar Arguments
INTEGER NPTS
* .. Array Arguments
DOUBLE PRECISION U(4,NPTS), X(NPTS)
* .. Scalars in Common ..
DOUBLE PRECISION Ti_EDGE, Te_EDGE, den_EDGE, N_P_EDGE,
+ Ti_0, Te_0, den_0, N_P_O
* .. Local Scalars
INTEGER I
* .. Common blocks
COMMON /BCO/Ti_0, Te_0, den_0, N_P_O
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE, N_P_EDGE

74

* .. Intrinsic functions
INTRINSIC DLOG, DEXP
* .. Executable Statements
WRITE (10,%)
WRITE (10,%) ’Checking root finder’
WRITE (10,%)

DO 20 I = 1, NPTS

U(1,I) = (Ti_D-Ti_EDGE)*(1.0D0-X(I)**2.0D0)+Ti_EDGE
U(2,I) = (Te_0-Te_EDGE)*(1.0D0-X(I)*%2.0D0)+Te_EDGE
U(3,I) = (den_0-den_EDGE)*(1.0D0-X(I)*%2.0D0)+den_EDGE
U(4,I) = (N_P_O-N_P_EDGE)*(1.0D0-X(I)*%2.0D0)+N_P_EDGE
*
* Printing out the results

WRITE (10,70000) X(I), U(1,I), U(2,I), U(3,I), U(4,I)

20 CONTINUE
WRITE (10,%)
70000 FORMAT (1X,5D12.4)
RETURN
END

DOUBLE PRECISION FUNCTION FR(Z_X)

* * .. Scalar Arguments
DOUBLE PRECISION Z_X, Z1, Z2, PHI_I, MR
* * .. Intrinsic Functions

INTRINSIC DEXP, DLOG, DABS

COMMON /P1/MR
COMMON /root/Z1, Z2, PHI_I

* * .. Executable Statements
FR = Z_X/Z2*DEXP(Z_X/Z2) - MR*%(0.5D0)*(Z1/Z2)**(1.5D0)
*(PHI_I/Z1)*DEXP(PHI_I/Z1)

RETURN
END

SUBROUTINE PDEDEF(NPDE,T,X,U,DUDX,P,Q,R,IRES)

* .. Scalar Arguments
DOUBLE PRECISION T, X
INTEGER IRES, NPDE
INTEGER K2

* .. Array Arguments

DOUBLE PRECISION DUDX(NPDE), P(NPDE,NPDE), Q(NPDE), R(NPDE),

75

+ U(NPDE)

DOUBLE PRECISION PHI_I, SIGV1, SIGV2, SIGV3, SIGV4, SIGV5,
SIGV6, SV, P_ALPHA, P_BREM, TAU_II, TAU_IE,
TAU, R_LI, CHI_I, CHI_E, D_N, Qi1, Q12, Q21,
022, Q23, Q24, Q25, Q31, Q32, PHI_E, Q13,
U30, XOLD, TAU_A, F_A_I,
Q14, CHI_E_ETG, Q41, Q42, Q42_1, INV_L_CRIT

* .. Scalars in Common ..

DOUBLE PRECISION N_P, E_ALPHA, Z_EFF, PA, BMAG, MR,

+ o+ o+ o+ 4+

+ AS, S_N, RA, ZL, PS_I,
+ P_ECH,
+ E_ALPHA_AV, C_ETG, R_M, C1_N_P,
+ C2_N_P, EB, PSX
INTEGER K1
* .. Intrinsic Functions
INTRINSIC DABS, DLOG, DEXP

2k sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok k ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok 3k ok ok k ok ok ok k ok ok k ok k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k >k 3k 3k 5k 3k ok 3k ok 3k ok 3k 3k >k 3k >k 5k 5k 5k 3k 5k 3k 5k 3k %k 3k 3k 5k %k ok 3k %k 5k %k k %k k k ok k

* Root finding variables and parameters
* * .. Parameters
* * .. Local Scalars

DOUBLE PRECISION Z_A, Z_B, CEPS, ETA, H, Z1, 22, Z_X

DOUBLE PRECISION FR
DOUBLE PRECISION FACT, R_E, R_I, Vi, V2, R_D
INTEGER JFAIL
EXTERNAL FR
COMMON /root/Z1, Z2, PHI_I
sk ke ok sk ok sk o ok sk ok ok o ok sk ok sk o ok ok sk ok sk o o ok ok sk sk s sk o ok ok sk sk sk sk o o ok sk sk sk sk sk o ok ok ok sk ok sk sk o ok ok K oK

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k ok 3k >k 5k 3k 5k 3k ok 3k ok 3k ok 3k 3k ok 3 >k 5k %k 5k 3k ok 3k 5k 3k >k 3k 3k ok 3k 5k 3k %k 5k %k %k k kK k >k

* .. Common blocks

COMMON /Diff/E_ALPHA, Z_EFF, PA, BMAG,

+ AS, S_N, RA, ZL, PS_I,

+ P_ECH,

+ N_P, E_ALPHA_AV,

+ C_ETG, R_M, C1_N_P, C2_N_P,

+ EB, PSX

COMMON /P1/MR

COMMON /diag/K1
* .. Executable Statements
* Variables and Parameters
* U(1) = Ti(x,t), U(2) = Te(x,t), U(3) = n(x,t), U(4) = n_p(x,t)
*
* Preventing trouble when quantities become negative

IF (U(1).LE.0.0DO) THEN
U(1) = 1.0D-8
ENDIF

76

IF (U(2).LE.0.0DO) THEN
U(2) = 1.0D-8
ENDIF

IF (U(3).LE.0.0DO) THEN
U(3) = 1.0D-8
ENDIF

IF (U(4).LT.0.0D0) THEN
U(4) = 1.0D-8
ENDIF

Ion potential
Finding density at (r/R) = 0
IF (X.LT.XOLD) THEN

U30 = U(3)

ENDIF

IF (U(4).GT.U(3)) THEN

PHI_I = U(2)*DL0G(U(4)/U(3))
ELSE

PHI_I = 0.0DO
ENDIF

Electron potential

Z1 = U(1)
Z2 = U(2)

Step size for root search
H =1.0D-1

Error tolerance
CEPS = 1.0D-7
Closeness of FR to 0.0
ETA = 0.0DO
Root finding program progress monitor parameter
JFAIL = 1
Factor used in initial root estimate
FACT = 1.0D0
Initial estimate for root
Z_X = PHI_I*(Z2/Z1)

CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)

Checking if the root Z_X is correct
R_E = Z_X/U(2)
R_I = PHI_I/U(1)
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG(MR)

77

+ + 1.5D0*DL0OG(Z1/Z2)
+ + DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

IF (Z_X.LE.0.0DO.OR.R_D.GT.1.0D-2) THEN
FACT = FACT + 1.0DO
H =H + 10.0D0
Z_X = PHI_I*(Z2/Z1)
CALL COS5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
R_E = Z_X/U(2)
R_I = PHI_I/U(1)
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG (MR)
+ + 1.5D0*DL0OG(Z1/Z2)
DLOG(R_I) + R_I
DABS ((V2-V1)/V1)

+
+

R_D

ENDIF

PHI_E = Z_X

* <Sigma*Velocity>_fusion reaction
IF (U(1).GE.1.0D0.AND.U(1).LE.8.0D1) THEN
SIGV1 = (-2.138D1)*U(1)**(-2.935D-1)
SIGV2 = -2.520D1
SIGV3 = (-7.101D-2)*U(1)
SIGV4 = (1.938D-4)*U(1)**2.0D0
SIGVS = (4.925D-6)*U(1)*%3.0D0
SIGV6 = (-3.984D-8)*U(1)**4.0D0
SV = (1.0D-6)*DEXP(SIGV1+SIGV2+SIGV3+SIGV4+SIGV5+SIGVE)
ELSE
SV = 0.0DO
ENDIF

* Alpha Power
P_ALPHA = 0.25D20*U(3)**(2.0D0)*SV+E_ALPHA

* Bremstrahlung

P_BREM = 0.3125D0*Z_EFF*U(3)#**(2.0D0)*U(2)**(0.5D0)

* Characteristic Times
TAU_II = 1.6D16*U(1)**(1.5D0)/(U(3)*1.0D20)
TAU_IE = 1.0D18*U(2)*%(1.5D0)/(U(3)*1.0D20)
IF (PHI_I/U(1).LT.1.0D2) THEN
TAU = TAU_II*PA*PHI_I/U(1)*DEXP(PHI_I/U(1))

+ + 3.6D-6%R_M*ZL/U(1)*%(0.5D0)*DEXP(PHI_I/U(1))
ELSE

TAU = 1.0D43
ENDIF

78

Fraction of alpha power going to the ions

TAU_A = 1.6D16*E_ALPHA_AV**(1.5D0)/(U(3)*1.0D20)
F_A_I = TAU_IEx(E_ALPHA_AV - U(1))

+ /(TAU_IEx(E_ALPHA_AV - U(1))

+ + TAU_A*(E_ALPHA_AV - U(2)))

Ion gyro-radius

R_LI = 6.4D-3%U(1)**(0.5D0)/BMAG

Diffusion coefficients
CHI_I = R_LI**(2.0D0)/TAU_II
CHI_E = MR**(-0.5D0)*(U(1)/U(2))**(0.5D0)*CHI_I

INV_L_CRIT = DABS(0.66667D0*DUDX(3)/U(3))
CHI_E_ETG = C_ETG*U(2)**(1.5D0)/BMAG**(2.0D0)
+ *(DABS(DUDX(2))/U(2) - INV_L_CRIT)

IF (CHI_E_ETG.LE.0.0DO) THEN
CHI_E_ETG = 0.0DO
ENDIF

D_N = CHI_E

Coefficients needed in the PDE solver

U(1) - T_i

Coefficients for time-derivatives
P(1,1) = 1.5D0*U(3)

P(1,2) = 0.0DO

P(1,3) = 1.5D0*U(1)

P(1,4) = 0.0D0

Coefficients for sources (Q>0) and sinks (Q<0)
Q11 = U(3)*(U(2)-U(1))/TAU_IE
Q12 = -U(3)*(PHI_I+U(1))/TAU

Q13 = AS*PS_I

Alpha heating of the ions
Q14 = P_ALPHA*F_A_I

Q(1) = -(Q11+Q12+Q13+Q14)

Coefficients for space-derivatives
R(1) = U(3)*CHI_I/RA*%(2.0D0)*DUDX(1)

79

U(2) - T_e
Coefficients for time-derivatives

P(2,1) = 0.0D0

P(2,2) = 1.5D0*U(3)
P(2,3) = 1.5D0*U(2)
P(2,4) = 0.0DO

Coefficients for sources (Q>0) and sinks (Q<0)
Q21 = -U(3)*(U(2)-U(1))/TAU_IE

Q22 = -U(3)*(PHI_E+U(2))/TAU

Q23 = P_ALPHA*(1.0D0 - F_A_I)

Q24 = PSX*U(4)*+*(2.0D0)/(U(3)*TAU_IE)*EB + AS*P_ECH

Q25 = -P_BREM

Q(2) = -(Q21+Q22+Q23+Q24+0Q25)

Coefficients for space-derivatives

R(2) = U(3)*(CHI_E+CHI_E_ETG)/RA%%(2.0D0)*DUDX(2)

U(3) - n

Coefficients for time-derivatives

P(3,1) = 0.0DO

P(3,2) = 0.0DO
P(3,3) = 1.0D0
P(3,4) = 0.0DO

Coefficients for sources (Q>0) and sinks (Q<0)
Q31 = S_N*U(3)

Q32 = -U(3)/TAU

Q(3) = -(Q31+Q32)

Coefficients for space-derivatives

R(3) = CHI_E/RA*x(2.0D0)*DUDX(3)

U(4) - N_P

Coefficients for time-derivatives

P(4,1)
P(4,2)
P(4,3)

0.0DO
0.0DO
0.0D0

80

P(4,4) = 1.0D0

Coefficients for sources (Q>0) and sinks(Q<0)
Q41 = U(4)*C1_N_P
IF ((PHI_I+ PHI_E).LT.EB) THEN

Q42_1 = 1.0D0 - C2_N_P*(PHI_I + PHI_E)/EB
ELSE

Q42_1 = 1.0D-6
ENDIF
Q42 = -U(4)*x(2.0D0)/(U(3)*TAU_IE)/Q42_1

Q(4) = -(Q41+Q42)

Coefficients for space-derivatives

R(4) = 0.0DO

Printing out diagnostic files if needed

IF (T.GE.1.1D0) THEN
K1 =K1l + 1
DO 2000 K2 = 1, 10

IF (K2.EQ.K1/1000) THEN

WRITE (100,60000) T, X, U(1), U(2), U(3), U(4), AS*P_ECH
WRITE (110,61000) T, X, Q21, Q22, Q34, Q24, Q(2)
60000 FORMAT (1X,7D12.4)

61000 FORMAT (1X,7D12.4)

ENDIF

2000 CONTINUE
ENDIF

X0LD = X

RETURN
END

SUBROUTINE BNDARY(NPDE,T,U,UX,IBND,BETA,GAMMA,IRES)
. Scalar Arguments
DOUBLE PRECISION T
INTEGER IBND, IRES, NPDE
DOUBLE PRECISION Ti_EDGE, Te_EDGE, den_EDGE, N_P_EDGE
. Array Arguments
DOUBLE PRECISION BETA(NPDE), GAMMA(NPDE), U(NPDE), UX(NPDE)
. Common Blocks
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE, N_P_EDGE
. Executable Statements
Boundary condition is defined in the form
BETA(I)*R(I) = GAMMA(I)

81

Usually R(I) is proportional to dU(I)/dr so that BC involving
df/dr has BETA(I) = 1.0
Dirichlet BC is usually set with BETA(I) = 0.0 and
GAMMA(I) = U(I) - U_BC
IBND = O denotes the left boundary point
IF (IBND.EQ.O0) THEN

BETA(1) = 1.0D0

BETA(2) = 1.0D0

BETA(3) = 1.0DO

BETA(4) = 1.0DO

GAMMA(1) = 0.0DO

GAMMA(2) = 0.0DO

GAMMA(3) = 0.0DO

GAMMA(4) = 0.0DO

ELSE
BETA(1) = 0.0DO
BETA(2) = 0.0DO
BETA(3) = 0.0D0
BETA(4) = 0.0D0
GAMMA(1) = U(1) - Ti_EDGE
GAMMA(2) = U(2) - Te_EDGE
GAMMA(3) = U(3) - den_EDGE
GAMMA(4) = U(4) - N_P_EDGE
END IF
RETURN
END

82

3B. FORTAN code for symtran4.f

* Mark 15 Release. NAG Copyright 1991.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, INTPTS, ITYPE, NEQN, NIW, NWK, NW
PARAMETER (NPDE=4,NPTS=201, INTPTS=201,ITYPE=1,
+ NEQN=NPDE*NPTS,
+ NIW=NEQN+24,NWK=(10+6*NPDE) *NEQN,
+ NW=NWK+ (21+3*NPDE) *NPDE+7*NPTS+54)
* .. Scalars in Common ..

DOUBLE PRECISION N_P, E_ALPHA, Z_EFF, PA, BMAG, MR, R_M,
AS, S_N, RA, Ti_EDGE, Te_EDGE, den_EDGE,
Ti_0, Te_0, den_0, PS_I,
ZL, PHI_E, P_ECH,
EB, E_ALPHA_AV, C_ETG, L_CRIT,
EB_0, EB_EDGE, COM_O, COM_MAX,
TAU_COM, COM_K, COM_BC

+ o+ o+ o+ o+ 4+

* .. Local Scalars ..
DOUBLE PRECISION ACC, HX, PI, PIBY2, TOUT, TS
DOUBLE PRECISION DELTAT, MR, N_P
DOUBLE PRECISION PHI_I, Vi, V2
DOUBLE PRECISION SIGV1i, SIGV2, SIGV3, SIGV4, SIGV5, SIGV6,

+ SV, P_ALPHA, PE1, PI1, PE2, QN, QD, P_INP,
+ QF, QNT, QDT, N_PX, TAU_II, TAU1, TAU2,
+ TAU, EL_I, EL_E, ELX_I, ELX_E,
+ R_MO, L_P, COM, COMDOT
INTEGER I, IFAIL, IND, IT, ITASK, ITRACE, M
* .. Local Arrays
DOUBLE PRECISION U(NPDE,NPTS), UOUT(NPDE,INTPTS,ITYPE), W(NW),
+ X(NPTS), XOUT(INTPTS)
INTEGER IW(NIW)
INTEGER J, J1, J2, NSTEP, NWRITE, NCORE, K1
* .. External Functions
DOUBLE PRECISION XO1AAF
EXTERNAL XO01AAF
* .. External Subroutines
EXTERNAL BNDARY, DO3PCF, DO3PZF, PDEDEF, UINIT
* .. Intrinsic Functions
INTRINSIC DSIN, DABS, DLOG, DEXP

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k >k ok 3k 5k 3k ok 3k 3k 3k ok 3k 3k >k 3k >k 5k %k 5k 3k ok 3k 5k 3k %k 3k 3k 5k 3k 5k 3k %k %k %k %k %k k kK k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k >k ok 3k 5k 3k ok 3k 3k 3k ok 3k 3k >k 3k >k 5k %k 5k 3k ok 3k 5k 3k %k 3k 3k 5k 3k 5k 3k %k %k %k %k %k k kK k

* Root finding variables and parameters
* * .. Parameters
* * .. Local Scalars

DOUBLE PRECISION Z_A, Z_B, CEPS, ETA, H, Z1, Z2, Z_X

83

DOUBLE PRECISION FR
DOUBLE PRECISION FACT, R_E, R_I, Vi, V2, RD
INTEGER JFAIL
EXTERNAL FR
COMMON /root/Z1, Z2, PHI_I
skokokokokok ok koo ko ko ook koo ko o ook ko sk ok skok s ko ok o s ko ok ko o ok ok ko ok ok ok

3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 5k 3k 5k 3k ok 3k ok 3k ok 3k 3k ok 3k >k 5k %k 5k 3k 3k 3k 5k 3k >k 3k 3k 5k 3k 5k 3k %k %k % >k %k k k ok k >k

* .. Common blocks
CoMMON /Diff/E_ALPHA, Z_EFF, PA, BUMAG,
+ AS, S_N, RA, ZL, PS_I,
+ P_ECH,
+ N_P, EB, E_ALPHA_AV,
+ C_ETG, L_CRIT, R_M, COM_O, COM_MAX, TAU_COM,
+ COM_K
COMMON /P1/MR
CoMMON /BCO/Ti_0, Te_D, den_0, EB_O
CoMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE, EB_EDGE
COMMON /BC2/COM_BC
COMMON /diag/K1
*
* .. Executable Statements
* Opening a set of output files
* Running statistics
OPEN(UNIT=10, FILE=’stat.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=20, FILE='U.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=30, FILE='UO.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=40, FILE=’Phi.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=50, FILE=’Power.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=60, FILE=’Power.x.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=70, FILE=’Endloss.x.dat’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=100, FILE=’diag.datl’,FORM=’FORMATTED’,
* STATUS=’0LD’)
OPEN(UNIT=110, FILE=’diag.dat2’,FORM=’FORMATTED’,
* STATUS=’0LD’)

WRITE (10,%) ’DO3PCF Example Program Results’

* Local Error parameter
ACC = 1.0D-7
*
* Selecting spatial geometry

84

0 (Cartesian),
1 (Cylindrical)
2 (Spherical)

1

=R =R =
1]

Program message control parameter
ITRACE = 0

Parameter used in PDE

Parameter starting the integration in time

IND = 0

Normal Computation of output values at t = TOUT
ITASK = 1

Various input parameters
Ion temperature at edge (r/R = 1) [KeV]

Ti_EDGE = 7.0D-3

Electron temperature at edge (r/R = 1) [KeV]
Te_EDGE = 7.0D-3

Density at edge (r/R = 1) [1E20/m*%3]
den_EDGE = 2.5D-2

EB at edge (r/R = 1)
EB_EDGE = 1.30D0

Initial ion temperature at origin [KeV]

Ti_0 = Ti_EDGE

Initial ion temperature at origin [KeV]

Te_0 = Te_EDGE

Initial density at origin [1E20/m%*3]
den_0 = den_EDGE

Initial EB at origin [KeV]
EB_0 = EB_EDGE

Mass ratio between DT nucleus and electron

MR = 4.583D3

Initial Plug density [1E20/m"3]
N_P = 6.0D-2

Alpha energy [KeV]

85

E_ALPHA = 3.52D3

Average alpha energy used in the partition of alpha power
between ions and electrons

E_ALPHA_AV = 2.0D3

Z-effective for Bremstrahlun power

Z_EFF = 0.0DO

Initial Mirror ratio
R_MO = 1.0DO

Pashtukhov Constant
PA = (3.1415927D0)**(0.5D0)/4.0D0* (R_MO+1.0D0) *

DL0OG(2.0D0*R_MO+2.0D0) /R_MO
Radius [m]
RA = 0.2D0

Length of reactor [m]
ZL = 3.0D0

Length used in compression factor

L_P = 0.3D0

Magnetic field [T]
BMAG = 1.0DO/R_MO

Ion external power [KeV*1E20]/[m**3*sec]
PS_I = 0.0DO

ECH [KeV*1E20]/[m**3*sec]
P_ECH = 5.0D1

Factor to control external power
AS = 1.0D0

External density source [1E20 particles/m~3/s]
S_N = 0.00DO

Initial value of time-integrated numerator of Q

QNT = 0.0DO

Initial value of time-integrated denominator of Q

QDT = 0.0DO

Coefficient for the ETG diffusion coefficient
C_ETG = 0.0DO

86

* Critical length used in the ETG diffusion coefficient
L_CRIT = 1.0DO

*
* Compression Parameters
* Initial compression
COM_0 = 1.0DO
COM_BC = COM_O
*
* Maximum compression
COM_MAX = 1.5D1
*
* Compression time
TAU_COM = 1.0D-3
*
* Compression factor in electron heat equation
COM_K = 2.0D0*(L_P/ZL)*(N_P/R_MO)
*
* Set spatial mesh points spacing using sine
*
* This is Pi/2
PIBY2 = 0.5D0*X01AAF(PI)
*
* This is step-size
HX = PIBY2/(NPTS-1)
*
* Starting and ending points
X(1) = 0.0D0
X(NPTS) = 1.0DO
*
* Do-loop for mesh points used in PDE
DO 20 I = 2, NPTS - 1
X(I) = DSIN(HX*(I-1))
20 CONTINUE
*
* Creating a set of output mesh points
*
* Starting and ending points
X0UT(1) = X(1)
XOUT(INTPTS) = X(NPTS)
*
* Do-loop for output points

DO 1000 J1 = 2, INTPTS - 1
X0UT(J1) = (J1 - 1)*(X(NPTS) - X(1))/(INTPTS-1)
1000 CONTINUE

* Set initial conditions

87

Starting time
TS = 0.0DO

Time step

DELTAT = 1.0D-6

Number of time steps

NSTEP = 8000

Number of times the spatial profiles are outputed
NWRITE = 20

The frequency of printing out core values (at (r/R) = 0)
NCORE = 10

Starting number for which a diagnostic file is needed
Ki =1

Running statistics

WRITE (10,99999) ACC, E_ALPHA

Set the initial values

CALL UINIT(U,X,NPTS)

Writing initial values to file
WRITE (30,82000) TS, Ti_0, Te_0, den_0, EB_0, COM_O

This is the main time do-loop
DO 40 IT = 1, NSTEP

Priting out error messsage parameter
IFAIL = -1
Definition of the next time-step

TOUT = IT*DELTAT

Control of external power input
IF (TOUT.GT.TAU_COM) THEN
AS = 0.00DO
ENDIF

Defining compression parameter

IF (TOUT.LE.TAU_COM) THEN
COM = COM_O + (COM_MAX - COM_0)/TAU_COM*TOUT
COMDOT = (COM_MAX - COM_0)/TAU_COM
COM_BC = COM

ELSE
COM = COM_MAX
COMDOT = 0.0DO

88

COM_BC = COM
ENDIF

* Defining mirror ratio

R_M = R_MO*COM

* Pashtukhov Constant
PA = (3.1415927D0)**(0.5D0)/4.0D0*(R_M+1.0D0)*
+ DLOG(2.0DO*R_M+2.0D0) /R_M
*
* Calling the PDE solver subroutine
CALL DO3PCF(NPDE,M,TS,TOUT, PDEDEF,BNDARY,U,NPTS,X,ACC,W,NW, IW,
+ NIW,ITASK,ITRACE,IND,IFAIL)
*
* Interpolate at required spatial points

CALL DO3PZF(NPDE,M,U,NPTS,X,X0UT, INTPTS, ITYPE,UOUT,IFAIL)

* Writing results to output files

DO 1300 I = 1, NSTEP/NCORE
IF (IT.EQ.I*NCORE) THEN
WRITE (30,82000) TOUT, UOUT(1,1,1), UOUT(2,1,1),
+ UouT(3,1,1), UOUT(4,1,1), COM
ENDIF
1300 CONTINUE

DO 1200 J = 1, NWRITE
IF (IT.EQ.J*NSTEP/NWRITE) THEN

* Initializing the endloss spatial integration
ELX_I = 0.0DO
ELX_E = 0.0DO

* Time

WRITE (20,80000) TOUT
* WRITE (40,80000) TOUT
* WRITE (70,80000) TOUT
*
* Spatial values

DO 1100 J1 = 1, INTPTS
IF (DABS(UOUT(1,J1,1)).LT.1.0D-10) THEN
UOUT(1,J1,1) = 0.0DO
ENDIF
IF (DABS(UOUT(2,J1,1)).LT.1.0D-10) THEN
UOUT(2,J1,1) = 0.0DO
ENDIF
IF (DABS(UOUT(3,J1,1)).LT.1.0D-10) THEN

89

UOUT(3,J1,1) = 0.0DO

ENDIF

IF (DABS(UOUT(4,J1,1)).LT.1.0D-10) THEN
UOUT(4,J1,1) = 0.0DO

ENDIF

End program early when physical quantities become negative
IF (U0uT(4,J1,1).LT.0.0D0.0R.UOUT(2,J1,1).LT.0.0D0.0R.
UouT(3,J1,1).LT.0.0D0.0R.UOUT(4,J1,1).LT.0.0D0) THEN
IT = NSTEP
ENDIF

Printing out Ti, Te, den
WRITE (20,81000) X0UT(J1), UOUT(1,J1,1), UOUT(2,J1,1),
uouT(3,J1,1), UOUT(4,J1,1)

Checking whether Phi_e and Phi_i satisfy condition
Z1 = U0UT(1,J1,1)
Z2 = U0UT(2,J1,1)

N_PX = N_P*COM

IF (N_PX.GT.UOUT(3,J1,1)) THEN
PHI_I = Z2+DLOG(N_PX/UOUT(3,J1,1))
ELSE
PHI_I = 0.0DO
ENDIF

Step size for root search
H =1.0D-1

Error tolerance
CEPS = 1.0D-7

Closeness of FR to 0.0
ETA = 0.0DO

Root finding program progress monitor parameter
JFAIL = 1

Factor used in initial root estimate
FACT = 1.0D0

Initial estimate for root
Z_X = PHI_Ix*(22/Z1)

CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
Checking if the root Z_X is correct
R_E = Z_X/Z2

R_I = PHI_I/Z1
Vi = DLOG(R_E) + R_E

90

V2 = 0.50D0*DLOG(MR)
+ 1.5D0*DL0OG(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

IF (Z_X.LE.0.0DO.OR.R_D.GT.1.0D-2) THEN
FACT = FACT + 1.0DO
H =H + 10.0D0
Z_X = PHI_I*(Z2/Z1)
CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
R_E = Z_X/22
R_I = PHI_I/Z1
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DL0G (MR)
+ 1.5D0*DL0G(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)
ENDIF

PHI_E = Z_X

WRITE (40,83000) X0UT(J1), N_PX,PHI_I,PHI_E,R_D

Writing End-loss terms to file

Characteristics times
TAU_II = 1.6D16*U0UT(1,J1,1)**(1.5D0)/(UOUT(3,J1,1)*1.0D20)
IF (PHI_I/UOUT(1,J1,1).LT.1.0D2) THEN

TAU1 = TAU_II*PA*PHI_I/UOUT(1,J1,1)*DEXP(PHI_I/UOUT(1,J1,1))
ELSE

TAU1 = 1.0D43

ENDIF

TAU2 = 3.6D-6%R_M*ZL/UOUT(1,J1,1)**(0.5D0)

*DEXP (PHI_I/UOUT(1,J1,1))
TAU = TAU1 + TAU2

End-loss terms
EL_I = UQOUT(3,J1,1)*(PHI_I + UQUT(1,J1,1))/TAU
EL_E = UQOUT(3,J1,1)*(PHI_E + UQUT(2,J1,1))/TAU
IF (J1.LT.INTPTS) THEN
ELX_I = ELX_I + EL_I*XOUT(J1+1)*(XOUT(J1+1)-X0UT(J1))
ELX_E = ELX_E + EL_E#X0UT(J1+1)*(X0UT(J1+1)-X0UT(J1))
ENDIF

WRITE (70,86000) XOUT(J1), EL_I, EL_E, ELX_I, ELX_E

CONTINUE

WRITE (20,%)

91

WRITE (40,%)
WRITE (70,%)
ENDIF
CONTINUE

Calculating Q

Starting value for numerator of Q

QN = 0.0DO

Starting value for denominator of W

QD = 0.0DO

Doing the spatial and time integration of various powers
DO 1400 J2 = 1, INTPTS-1
<Sigma*Velocity>_fusion reaction
IF (UOUT(1,J2,1).GE.1.0D0.AND.UOUT(1,J2,1).LE.8.0D1) THEN
SIGV1 = (-2.138D1)*U0UT(1,J2,1)**(-2.935D-1)
SIGV2 = -2.520D1
SIGV3 = (-7.101D-2)*U0UT(1,J2,1)
SIGV4 = (1.938D-4)*U0OUT(1,J2,1)*%2.0D0
SIGV5 = (4.925D-6)*U0UT(1,J2,1)%%3.0D0
SIGV6 = (-3.984D-8)*UQUT(1,J2,1)*%4.0D0
SV = (1.0D-6)*DEXP(SIGV1+SIGV2+SIGV3+SIGV4+SIGV5+SIGV6)
ELSE
SV = 0.0DO
ENDIF

Alpha Power
P_ALPHA = 0.25D20*UQUT(3,J2,1)*%(2.0D0)*SV*E_ALPHA

Input Powers
PE1 = AS*P_ECH
PI1 = AS*PS_I

Integration of Alpha Power
QN = QN + 5.0D0*(X0UT(J2+1)-X0UT(J2))*X0UT(J2+1)*P_ALPHA

Integration of input power
P_INP = PE1 + PE2 + PI1
QD = QD + (XOUT(J2+1)-X0UT(J2))*X0UT(J2+1)*P_INP

Writing to output file

IF (J2.EQ.1) THEN

WRITE (60,85000) TOUT, X0UT(J2), P_ALPHA, P_INP, QN, QD
WRITE (60,85000) TOUT, XOUT(J2), P_ALPHA

ENDIF

92

1400 CONTINUE

QNT = QNT + QN*DELTAT
QDT = QDT + QD*DELTAT

QF = QNT/QDT
*
* DO 1500 I = 1, NSTEP/NCORE
* IF (IT.EQ.I*NCORE) THEN
* WRITE (50,84000) TOUT, QN, QNT, QD, QDT, QN/(QD+1.0D-5)
* ENDIF
* 1500 CONTINUE

IF (IFAIL.EQ.3) THEN

WRITE (10,90000) °’IFAIL IS’, IFAIL, TOUT

ENDIF

40 CONTINUE

* Print integration statistics

WRITE (10,99997) IW(1), IW(2), IW(3), IW(5)

STOP

*

99999 FORMAT (//’ Accuracy requirement =
+ ? ’,D12.3,/)

99997 FORMAT (’ Number of integration steps in time

+ o+ o+ o+

'r ’,14,/)
90000 FORMAT (1X,A,I1,D12.4)
80000 FORMAT (1X,D12.4)

81000 FORMAT (1X,5D12.4)

82000 FORMAT (1X,7D12.4)
*83000 FORMAT (1X,5D12.4,F7.2)
83000 FORMAT (1X,6D12.4)

84000 FORMAT (1X,6D12.4)

85000 FORMAT (1X,6D12.4)

86000 FORMAT (1X,5D12.4)

END

SUBROUTINE UINIT(U,X,NPTS)

* Routine for PDE initial conditon
* .. Scalar Arguments
INTEGER NPTS

* .. Array Arguments

’tem’,I4,/’ Number of Jacobian evaluations

’,D12.5,/’ Parameter E_AL =’,

>
’

I4,/’ Number of residual evaluations of resulting ODE sys’,

? >,I4,/’ Number of iterations of nonlinear solve’,

DOUBLE PRECISION U(4,NPTS), X(NPTS)

* .. Scalars in Common ..
DOUBLE PRECISION Ti_EDGE, Te_EDGE, den_EDGE, EB_EDGE,
+ Ti_0, Te_0, den_0, EB_D
* .. Local Scalars
INTEGER I
* .. Common blocks
COMMON /BCO/Ti_0, Te_0, den_0, EB_O
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE, EB_EDGE
* .. Intrinsic functions
INTRINSIC DLOG, DEXP
* .. Executable Statements

WRITE (10,%)
WRITE (10,%) ’Checking root finder’
WRITE (10,%)

DO 20 I = 1, NPTS

U(1,I) = (Ti_0-Ti_EDGE)*(1.0DO-X(I)**2.0D0)+Ti_EDGE
U(2,I) = (Te_0-Te_EDGE)*(1.0D0-X(I)*%2.0D0)+Te_EDGE

* U(3,I) = (den_0)*(1.0D0-X(I)**2.0D0)+den_EDGE
U(3,I) = (den_0-den_EDGE)*(1.0D0-X(I)**2.0D0)+den_EDGE
U(4,I) = (EB_D-EB_EDGE)*(1.0D0-X(I)**2.0D0)+EB_EDGE

*

* Printing out the results

WRITE (10,70000) X(I), U(1,I), U(2,I), U(3,I), U(4,I)

20 CONTINUE
WRITE (10,%)
70000 FORMAT (1X,5D12.4)
RETURN
END

DOUBLE PRECISION FUNCTION FR(Z_X)

* * .. Scalar Arguments
DOUBLE PRECISION Z_X, Z1, Z2, PHI_I, MR
* * .. Intrinsic Functions

INTRINSIC DEXP, DLOG, DABS

COMMON /P1/MR
COMMON /root/Z1, Z2, PHI_I

* * .. Executable Statements
FR = Z_X/Z2*DEXP(Z_X/Z2) - MR*%(0.5D0)*(Z1/Z2)**(1.5D0)

*(PHI_I/Z1)*DEXP(PHI_I/Z1)
RETURN

94

+

+ o+ o+ o+ 4+

+ o+ o+ 4+

ok kok ok %k k

%k kK k ok

*

*

*

ok kok ok %k k

%k kK k ok

*

+ o+ o+ o+ 4+

END

SUBROUTINE PDEDEF(NPDE,T,X,U,DUDX,P,Q,R,IRES)
. Scalar Arguments
DOUBLE PRECISION T, X
INTEGER IRES, NPDE
INTEGER K2
. Array Arguments
DOUBLE PRECISION DUDX(NPDE), P(NPDE,NPDE), Q(NPDE), R(NPDE),
U(NPDE)
DOUBLE PRECISION PHI_I, SIGV1, SIGV2, SIGV3, SIGV4, SIGV5,
SIGV6, SV, P_ALPHA, P_BREM, TAU_II, TAU_IE,
TAU, R_LI, CHI_I, CHI_E, D_N, Qi1, Q12, Q21,
Q22, Q23, Q24, Q25, Q31, PHI_E, Q13,
Q26, Q27, N_PX, U30, XOLD, TAU_A, F_A_I,
Q14, CHI_E_ETG, Q41, TAU_P, COM, COMDOT,
Q28
. Scalars in Common ..

DOUBLE PRECISION N_P, E_ALPHA, Z_EFF, PA, BMAG, MR,

AS, S_N, RA, ZL, PS_I,

P_ECH,

EB, E_ALPHA_AV, C_ETG, L_CRIT, R_M,

COM_0, COM_MAX, TAU_COM, COM_K
INTEGER K1

Intrinsic Functions
INTRINSIC DABS, DLOG, DEXP
stk ok ok ok sk ok ok ok o ok sk ok ko o ok ok o ok ok sk ok ok o sk s o ok sk ok sk sk o ko o sk o s ok sk ok ko o sk ok ok ok
KoK KoK KoK K K o KoK o KK oK o K K o K oK o KoK oK o K oK o K K oK o K oK o KK ok ok oK oK o K oK o KoK ok o K oK
Root finding variables and parameters
* .. Parameters
* .. Local Scalars
DOUBLE PRECISION Z_A, Z_B, CEPS, ETA, H, Z1, Z2, Z_X

DOUBLE PRECISION FR
DOUBLE PRECISION FACT, R_E, R_I, Vi, V2, RD
INTEGER JFAIL
EXTERNAL FR
COMMON /root/Z1, Z2, PHI_I
sk ok ok ok sk ok ok o ok sk ok sk o ok ok ok o sk sk ok ko o sk o s ok sk ok o sk ok s sk o o ok sk sk sk o ks ok ok ok ok ok ok ok ok
KoK oK oK o KoK o K K o KoK oK oK oK o K KoK o K oK o KK oK o K oK o K oK o oK ok o K oK ok o K ok o KoK ok o K ok ok K K oK
. Common blocks
COMMON /Diff/E_ALPHA, Z_EFF, PA, BMAG,
AS, S_N, RA, ZL, PS_I,
P_ECH,
N_P, EB, E_ALPHA_AV,
C_ETG, L_CRIT, R_M, COM_O, COM_MAX, TAU_COM,
COM_K

95

COMMON /P1/MR
COMMON /diag/K1
. Executable Statements
Variables and Parameters

U(1) = Ti(x,t), U(2) = Te(x,t), U(3) = n(x,t), U(4) = EB

Preventing trouble when quantities become negative
IF (U(1).LE.0.0DO) THEN

U(1) = 1.0D-8
ENDIF

IF (U(2).LE.0.0DO) THEN
U(2) = 1.0D-8
ENDIF

IF (U(3).LE.0.0DO) THEN
U(3) = 1.0D-8
ENDIF

IF (U(4).LE.0.0DO) THEN
U(4) = 1.0D-8
ENDIF

Ion potential

Finding density at (r/R) = 0
IF (X.LT.XOLD) THEN

U30 = U(3)
ENDIF

Defining compression ratio
IF (T.LE.TAU_COM) THEN
COM = COM_O + (COM_MAX - COM_0)/TAU_COM*T
COMDOT = (COM_MAX - COM_0)/TAU_COM
ELSE
COM = COM_MAX
COMDOT = 0.0DO
ENDIF

Definition of the plug density
N_PX = N_P*COM

IF (N_PX.GT.U(3)) THEN

PHI_I = U(2)*DLOG(N_PX/U(3))
ELSE

PHI_I = 0.0DO
ENDIF

96

Electron potential

Z1 = U(1)
22 = U(2)

Step size for root search
H =1.0D-1

Error tolerance
CEPS = 1.0D-7
Closeness of FR to 0.0
ETA = 0.0DO
Root finding program progress monitor parameter
JFAIL = 1
Factor used in initial root estimate
FACT = 1.0D0O
Initial estimate for root

Z_X = PHI_I*(Z2/Z1)

CALL CO5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)

Checking if the root Z_X is correct
R_E = Z_X/U(2)
R_I = PHI_I/U(1)
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG(MR)
+ 1.5D0*DLOG(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)

IF (Z_X.LE.0.0DO.OR.R_D.GT.1.0D-2) THEN
FACT = FACT + 1.0D0
H =H + 10.0D0
Z_X = PHI_I*(Z2/Z1)
CALL COS5AGF(Z_X,H,CEPS,ETA,FR,Z_A,Z_B,JFAIL)
R_E = Z_X/U(2)
R_I = PHI_I/U(1)
Vi = DLOG(R_E) + R_E
V2 = 0.50D0*DLOG (MR)
+ 1.5D0*DL0OG(Z1/Z2)
+ DLOG(R_I) + R_I
R_D = DABS((V2-V1)/V1)
ENDIF

PHI_E = Z_X

<Sigma*Velocity>_fusion reaction

IF (U(1).GE.1.0D0.AND.U(1).LE.8.0D1) THEN
SIGV1 = (-2.138D1)*U(1)**(-2.935D-1)
SIGV2 = -2.520D1
SIGV3 = (-7.101D-2)*U(1)

97

+

+

+

SIGV
SIGV
SIGV
SV =
ELSE
SV =
ENDIF

Alpha
P_ALPH

Bremst
P_BREM

Charac
TAU_II
TAU_IE
TAU_P
TAU_P

IF (PH
TAU

ELSE
TAU

ENDIF

Fracti
TAU_A

F_A_I

F_A_I

Ion gy
R_LI =

Diffus
CHI_I

CHI_E

CHI_E_

4 = (1.938D-4)*U(1)#*%2.0D0
5 = (4.925D-6)*U(1)*%3.0D0
6 = (-3.984D-8)*U(1)*x4.0D0
(1.0D-6)*DEXP (SIGV1+SIGV2+SIGV3+SIGV4+SIGV5+SIGV6)

0.0D0

Power
A = 0.25D20*U(3)**(2.0D0)*SV*+E_ALPHA

rahlung
= 0.3125D0*Z_EFF*U(3)**(2.0D0)*U(2)**(0.5D0)

teristic Times

= 1.6D16%U(1)**(1.5D0)/(U(3)*1.0D20)

= 1.0D18%U(2)**(1.5D0)/(U(3)*1.0D20)

= U(3)*TAU_IE*(1.0D0 - 5.0D0x*U(2)/U(4))/N_PX
= 1.0D9

I_I/U(1).LT.1.0D2) THEN
= TAU_II*PA*PHI_I/U(1)*DEXP(PHI_I/U(1))
+ 3.6D-6*%R_M*ZL/U(1)#*%(0.5D0)*DEXP(PHI_I/U(1))

= 1.0D43

on of alpha power going to the ions
= 1.6D16*E_ALPHA_AV*x(1.5D0)/(U(3)*1.0D20)

= TAU_IE*(E_ALPHA_AV - U(1))
/(TAU_IEx(E_ALPHA_AV - U(1))
+ TAU_A*(E_ALPHA_AV - U(2)))
= 0.0D0

ro-radius
6.4D-3*U(1)**(0.5D0) /BMAG

ion coefficients
= R_LI**(2.0D0)/TAU_II
= MR*x(-0.5D0)*(U(1)/U(2))**(0.5D0)*CHI_I

ETG = C_ETG*U(2)**(1.5D0)/BMAG**(2.0D0)
*(DABS(DUDX(2))/U(2) - 1.0DO/L_CRIT)

IF (CHI_E_ETG.LE.0.0DO) THEN

CHI_
ENDIF

E_ETG = 0.0DO

98

D_N = CHI_E

Coefficients needed in the PDE solver

U(1) - T_i

Coefficients for time-derivatives
P(1,1) = 1.5D0*U(3)

P(1,2) = 0.0D0

P(1,3) = 1.5D0*U(1)

P(1,4) = 0.0DO

Coefficients for sources (Q>0) and sinks (Q<0)

Q11
Q12

Q13

Alpha

Q14

U(3)*(U(2)-U(1))/TAU_IE
-U(3)*(PHI_I+U(1))/TAU

AS*PS_I

heating of the ions

P_ALPHAXF_A_TI

Q(1) = -(Q11+Q12+Q13+Q14)

Coefficients for space-derivatives

R(1) = U(3)*CHI_I/RA**(2.0D0)*DUDX(1)

U(2) - T_e

Coefficients for time-derivatives
P(2,1) = 0.0D0

P(2,2) = 1.5D0%U(3) + 1.5D0*COM_K
P(2,3) = 1.5D0*U(2)

P(2,4) = 0.0DO

Coefficients for sources (Q>0) and sinks (Q<0)

Q21

Q22

Q23

Q24

Q25

Q26

Q27

-U(3)*(U(2)-U(1))/TAU_IE

-U(3)*(5.0D0*U(2)+U(2))/TAU

P_ALPHA*(1.0D0 - F_A_I)

COM_K*N_PX/(U(3)*TAU_IE)*U(4)

-P_BREM

ASxP_ECH

1.5D0*COM_K=*U(2)*COMDOT/COM

99

Q28 = -COM_K*(5.0D0*U(2)+U(2))/TAU_P

Q(2) = -(Q21+Q22+Q23+Q24+Q25+Q26+Q27+Q28)

Coefficients for space-derivatives
R(2) = U(3)*(CHI_E+CHI_E_ETG)/RA**(2.0D0)*DUDX(2)

U@) - n

Coefficients for time-derivatives
P(3,1) 0.0D0

P(3,2) 0.0DO

P(3,3) 1.0D0O

P(3,4) = 0.0D0

Coefficients for sources (Q>0) and sinks (Q<0)
Q31 = S_N

Q(3) = -(Q3L)
R(3) = 0.0DO
U(4) - EB

Coefficients for time-derivatives
P(4,1) = 0.0D0
P(4,2) = 0.0DO
P(4,3) = 0.0DO
P(4,4) = 1.0D0

Coefficients for sources (Q>0) and sinks(Q<0)
Q41 = U(4)*COMDOT/COM

Q42

-U(4)/TAU_P

Q(4) = -(Q41+Q42)

Coefficients for space-derivatives

R(4) = 0.0DO

Printing out diagnostic files if needed

IF (T.GE.0.0DO) THEN
K1 =K1l + 1
DO 2000 K2 =1, 10

IF (K2.EQ.K1/1000) THEN

WRITE (100,60000) T,X,P(2,2),N_PX,COM,Q24,Q27
WRITE (110,61000) T,X,COM,U(4),Q41,Q(4),R(4)
WRITE (110,61000) T,X,U(2),U(4),TAU_P,Q28,Q42

100

60000 FORMAT (1X,7D12.4)
61000 FORMAT (1X,7D12.4)
ENDIF

2000 CONTINUE

ENDIF

X0LD = X

RETURN
END

SUBROUTINE BNDARY(NPDE,T,U,UX,IBND,BETA,GAMMA, IRES)
. Scalar Arguments

DOUBLE PRECISION T

INTEGER IBND, IRES, NPDE
DOUBLE PRECISION Ti_EDGE, Te_EDGE, den_EDGE, EB_EDGE,
COM_BC

. Array Arguments
DOUBLE PRECISION BETA(NPDE), GAMMA(NPDE), U(NPDE), UX(NPDE)
. Common Blocks
COMMON /BC1/Ti_EDGE, Te_EDGE, den_EDGE, EB_EDGE
COMMON /BC2/COM_BC
. Executable Statements
Boundary condition is defined in the form
BETA(I)*R(I) = GAMMA(I)
Usually R(I) is proportional to dU(I)/dr so that BC involving
df/dr has BETA(I) = 1.0
Dirichlet BC is usually set with BETA(I) = 0.0 and
GAMMA(I) = U(I) - U_BC
IBND = O denotes the left boundary point
IF (IBND.EQ.O) THEN
BETA(1) = 1.0D0
BETA(2) = 1.0D0
BETA(3) = 1.0D0
BETA(4) = 1.0D0

GAMMA(1) = 0.0DO
GAMMA(2) = 0.0DO
GAMMA(3) = 0.0DO
GAMMA(4) = 0.0DO
ELSE
BETA(1) = 0.0DO
BETA(2) = 0.0DO
BETA(3) = 0.0D0
BETA(4) = 0.0D0
GAMMA(1) = U(1) - Ti_EDGE
GAMMA(2) = U(2) - Te_EDGE
GAMMA(3) = U(3) - den_EDGE

101

GAMMA(4) = U(4) - COM_BC*EB_EDGE
END IF
RETURN
END

102

CoreTe T

< CoreTi
10° | 7
10" | :
10° |
10" ‘ ‘ ‘

0.0 5.0 10.0 15.0
time [s]

Figure 1: Run 1 - T; and T, at (r/R)

20.0

= 0 versus time.

—— CoreTi
400 1 - CoreTe il
300 | ,
20.0 ~ 4
10,0 |]
00 L L L
0.0 0.5 1.0 1.5 2.0 25

time [s]

Figure 2: Run 2 - T; and T, at (r/R)

103

= 0 versus time.

Teatt=12s
30.0 | R
20.0 P
Teatt:”2.75
Tiatt=12s
10.0 R
Tiatt=27s
0.0 : : : i
0.0 0.2 0.4 0.6 0.8 1.0

(/R)

Figure 3: Run 2 - T; and T, versus (r/R) at t = 1.2 and 2.7 s.

200.0
lon endloss
- Electron endloss
att=27s i
150.0 - i R
100.0 |- ‘ 1
50.0
0.0 . . .
0.0 0.2 0.4 0.8

(/R)

Figure 4: Run 2 - ion endloss, n.(¢; + T;)/7 and electron endloss, n.(¢. + T,)/T versus
(r/R) at t = 2.7 s.

104

2000.0

lon endloss
-~ Electron endloss
att=32s
1500.0 -
1000.0 -
500.0
0.0 I I J g \
0.0 0.2 0.4 0.6 0.8 1.0

(/R)

Figure 5: Run 2 - (extra Ppcg = 200 applied from 0.95 < (r/R) < 0.98) ion endloss,
ne(¢; + T;) /7 and electron endloss, n.(¢e + T¢)/7 versus (r/R) at t = 3.2 s.

150.0
— Ti
- Te
att=22s
100.0 -
50.0
00 I I I I i
0.0 0.2 0.4 0.6 0.8 1.0

(FR)

Figure 6: Run 3 - T; and T, versus (r/R) at t = 22 s.

105

150.0

lon endloss
- Electron endloss

att=22s

100.0 |]

(/R)

Figure 7: Run 3 - ion endloss, n.(¢; + T;)/7 and electron endloss, n.(¢. + T,)/T versus
(r/R) at t =22 s.

120.0

—— CoreTi
- CoreTe

1000 | |

60.0 |/ 1

400 | 1

00 I I I
0.0 5.0 10.0 15.0 20.0

time [s]

Figure 8: Run 4 - T; and T, at (r/R) = 0 versus time.

106

150.0

—
- Te
att=20s
100.0 |- [
50.0 | |
0-0 L L L L i
0.0 0.2 04 06 08 10

(/R)

Figure 9: Run 4 - T; and T, versus (r/R) at and ¢ = 20 s.

800.0
— Phii
~ Phi_e
att=20s
600.0 b
Max(Phi_e) = 2.1E4
400.0 q
200.0 E
0.0 ‘ \/\
0.0 0.2 0.4 0.6 0.8 1.0

(r/R)

Figure 10: Run 4 - ¢; and ¢, versus (r/R) at t = 20 s.

107

150.0

lon Endloss
- Electron Endloss
att=20s
IS . max = 830
100.0 |- e]
50.0]
0.0 | | | | i ;
0.0 0.2 04 0.6 0.8 1.0

(r/R)

Figure 11: Run 4 - ion endloss, n¢(¢; + T;)/7 and electron endloss, n.(¢. + T¢)/7 versus
(r/R) at t = 20 s.

25

20 |

1.5

05 |

00 I I I
0.0 5.0 10.0 15.0 20.0

time [s]

Figure 12: Run 4 - Q versus time.

108

—— CoreTi |
- CoreTe

120.0 -

1000 | e d

40.0

20.0

0.0 . . .
0.0 10.0 20.0 30.0 40.0

time [s]

Figure 13: Run 5 - T; and T, at (r/R) = 0 versus time.

150.0

— T

L

att=40s
100.0 o
50.0 - (.

0.0 w s ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

(r/R)

Figure 14: Run 5 - T; and T, versus (r/R) at t = 40 s.

109

150.0

lon endloss
-~ Electron endloss
att=40s Maximum at 740
100.0 - i
500 | i
00 L L L L 4
0.0 0.2 04 0.6 0.8 1.0

(r/R)

Figure 15: Run 5 - ion endloss, n¢(¢; + T;)/7 and electron endloss, n.(¢. + T¢)/7 versus
(r/R) at t =40 s.

6.0

4.0

3.0 -

20 |

0.0

| | |
0.0 10.0 20.0 30.0 40.0
time [s]

Figure 16: Run 5 - Q versus time.

110

140.0

1200 F el 1

100.0 |]

—— CoreTi
- CoreTe

0.0 10.0 20.0 30.0 40.0
time [s]

Figure 17: Run 6 - T; and T, at (r/R) = 0 versus time.

140.0
1200 | e
100.0 -
80.0
60.0
40.0
— i
20.0 e Te b
att=40s
00 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

(r/R)

Figure 18: Run 6 - T; and T, versus (r/R) at t = 40 s.

111

200.0

lon endloss
-~ Electron endloss
att=40s
150.0 -
100.0 -
50.0 | E
00 L L L L
0.0 0.2 04 0.6 0.8 1.0

(r/R)

Figure 19: Run 6 - ion endloss, n¢(¢; + T;)/7 and electron endloss, n.(¢. + T¢)/7 versus
(r/R) at t =40 s.

25

20 |

1.5

05 |

0.0

| | |
0.0 10.0 20.0 30.0 40.0
time [s]

Figure 20: Run 6 - Q versus time.

112

oo T T <
SRR >
= T S

i «;
Qe T T - wJ
S T T T X
O oz~ 7° ‘

[T ITI==)

oo - ¢ o

T 2 T
=izt <
o= ¢
)
Yo,
(
‘e
I5<]
10 12
. <
/
\

2.0

300.0

, , , , , o
o
o o o o o o
(=3 o o o o o
Yol o v o 0
N N — ~—

time [s]

Figure 21: Run 7 - T}, T,, n. and n, at (r/R) = 0 versus time.

250.0

(F/R)

Figure 22: Run 7 - T, T,, n. and n, versus (r/R) at t =9 s.

113

800.0

—— Phi_i
~ Phi_e
att=9s
600.0 -
400.0 ¢

200.0

0.0

(r/R)

Figure 23: Run 7 - ¢; and ¢, versus (r/R) at t =9 s.

300.0
} Coren_p
T T T e TN T T S S TN T S ST ST S e s T e
250.0 ' R
|
|
200.0 R
l
f
150.0 - ‘ R
]
J
1000 -, b
S L
500 | CoreTi
-7 coenc T T
00 "’ L L L
0.0 5.0 10.0 15.0 20.0

time [s]

Figure 24: Run 8 - T}, T,, n. and n, at (r/R) = 0 versus time.

114

300.0

L. PR
250.0 + \\ 1
att=20s \
\
200.0 + N
\\
\
150.0 V]

100.0 | P

(r/R)

Figure 25: Run 8 - Tj, T, n. and n, versus (r/R) at t = 20 s.

—— Phi_i
800.0 e Phi €
att=20s
600.0
400.0
200.0 E

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(r/R)

Figure 26: Run 8 - ¢; and ¢, versus (r/R) at t = 20 s.

115

12.0

100 |-
8.0 |
6.0 |-
40
20
0.0 ‘ ‘
0.0 5.0 10.0 15.0 20.0
time [s]
Figure 27: Run 8 - Q versus time.
300.0
| "
by had \ B \
2500 1yl A w ‘\M,’“f‘ﬂﬂﬁw “‘\" ‘M‘\‘W\M i ji\r‘};‘w‘lﬁ
e HEEERRH w“!‘f\w\wf il
[et o b e b
i ! “Ui"i['\ 'l‘muU‘\HHJ\HNH”-‘iH‘H‘[\,‘H‘HH\‘\J\‘MWH‘\‘
2000 L i A T
ot Sl ety e &
P AR TR thwnv \mw,.w\‘”'\
RN R R R
mv R A N N N
ly li ! T d”m"“‘u Rt
Al V Vol ety
150.0 iEE i h A AT
i t i
1
1000 | i
CoreTi
?r (\ﬂ/VW//V\/Jv\/fu/um/m\/%\/CJV\//J\/JV\/Jv\jxﬂ/ww\\wu
i oren_c
5.0 10.0 15.0 20.0

time [s]

Figure 28: Run 9 - Tj, T¢, n. and n, at (r/R) = 0 versus time.

116

250.0 -

200.0 -

150.0 |

1000 [

Te

(r/R)

Figure 29: Run 9 - T}, T,, n. and n, versus (r/R) at ¢t = 20 s.

12.0

8.0

6.0

4.0

20 |

0.0

0.0

5.0 10.0 15.0 20.0
time [s]

Figure 30: Run 9 - Q versus time.

117

250.0 | .
) CoreTi
! -~ CoreTe
‘\ ——- Coren_c
200.0 | —-— Coren_p
|
i
150.0 | !
)
i
1
100.0 - A
I,
I
4.0 6.0 8.0 10.0
time [s]

Figure 31: Run 10 - Tj, Te, n, and ny at (r/R) = 0 versus time. Run 9 shares the same
parameters with Run 10 except for (i) ETG diffusion activated for T, (with numerical

coefficient 0.1), and (ii) Pzcg = 5.0 x 10* and turned on for core T, > 40.

2500 F T T T T T T T T = ~-_
— Ti \\\
- Te \
——-nc \
2000 —-— np \
att=10s \
\
150.0 - \
\
‘\
\
100.0 - \
- T s B TN) ‘\
- ‘\

(r/R)

Figure 32: Run 10 - Tj, T¢, n. and n, versus (r/R) at t = 10 s. Run 9 shares the same
parameters with Run 10 except for (i) ETG diffusion activated for 7, (with numerical

coefficient 0.1), and (i) Pzcg = 5.0 x 10* and turned on for core T, > 40.

118

1.0 ; —
CoreTe _..—="

sl j
06 i |
04 1

time [s]

Figure 33: Pulse experiment - T;, T¢, n. and n, at (r/R) = 0 versus time.

— N
e Te \
08F ——-nc ; R
—— np :
att=0.07s
0.6 | R
04 | P
0.2 .

Figure 34: Pulse Experiment - T}, T, n. and n, versus (r/R) at t = 0.07 s.

119

12.0

—— Phi_i
100 - - Phi_e i
att=0.07s
8.0 |]
6.0]
4.0 | R
20 | R
00 L L L L
0.0 0.2 04 0.6 0.8 1.0

(r/R)

Figure 35: Pulse Experiment - ¢; and ¢, versus (r/R) at ¢t = 0.07 s.

10
) EB

10° - ¢ E

10" CoreTe :

107 .

0'3 | | | |

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010

time [s]

Figure 36: Simulation of single mirror compression experiment: Prog = 0, Chper = 3.5,
Tecomp = 50,&3, RMO = 1, Npo = 0.06, EB() = 1.3 and TeO = 0.007.

120

10
,,,,,,,,,, c

1 s i

10 - £B
,/"/‘v‘
7
10° | e
CoreTe

10" b E
107 | E
10° | | | |

0.0000 0.0010 0.0020 0.0030 0.0040

time [s]

Figure 37: Simulation of tandem mirror compression experiment: Ppog = 0, Cpee = 15,
Teomp = 0.001 5, Rpro = 1, nyo = 0.06, neo = 0.025, Epp = 1.3 and T = 0.007.

P_ECH turned off for t > 0.001 s

10° | | | | | |
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
time [s]

Figure 38: Simulation of tandem mirror compression experiment: Ppopg = 50, Cher = 15,
Teomp = 0.001 5, Rpro = 1, nyo = 0.06, neo = 0.025, Epp = 1.3 and T = 0.007.

121

