skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radial Reflection Diffraction Tomography

Technical Report ·
DOI:https://doi.org/10.2172/15009729· OSTI ID:15009729

We develop a wave-based tomographic imaging algorithm based upon a single rotating radially outward oriented transducer. At successive angular locations at a fixed radius, the transducer launches a primary field and collects the backscattered field in a ''pitch/catch'' operation. The hardware configuration, operating mode, and data collection method is identical to that of most medical intravascular ultrasound (IVUS) systems. IVUS systems form images of the medium surrounding the probe based upon ultrasonic B-scans, using a straight-ray model of sound propagation. Our goal is to develop a wave-based imaging algorithm using diffraction tomography techniques. Given the hardware configuration and the imaging method, we refer to this system as ''radial reflection diffraction tomography.'' We consider two hardware configurations: a multimonostatic mode using a single transducer as described above, and a multistatic mode consisting of a single transmitter and an aperture formed by multiple receivers. In this latter case, the entire source/receiver aperture rotates about the fixed radius. Practically, such a probe is mounted at the end of a catheter or snaking tube that can be inserted into a part or medium with the goal of forming images of the plane perpendicular to the axis of rotation. We derive an analytic expression for the multimonostatic inverse but ultimately use the new Hilbert space inverse wave (HSIW) algorithm to construct images using both operating modes. Applications include improved IVUS imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts with existing access holes.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15009729
Report Number(s):
UCRL-TR-200707; TRN: US0406601
Resource Relation:
Other Information: PBD: 10 Oct 2003
Country of Publication:
United States
Language:
English