skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficient Pumping Schemes for High Average Brightness Collisional X-ray Lasers

Conference ·
DOI:https://doi.org/10.1117/12.504918· OSTI ID:15009726

Advances in transient collisional x-ray lasers have been demonstrated over the last 5 years as a technique for achieving tabletop soft x-ray lasers using 2-10 J of laser pump energy. The high peak brightness of these sources operating in the high output saturation regime, in the range of 10{sup 24}-10{sup 25} ph. mm{sup -2} mrad{sup -2} s-1 (0.1% BW){sup -1}, is ideal for many applications requiring high photon fluence in a single short burst. However, the pump energy required for these x-ray lasers is still relatively high and limits the x-ray laser repetition rate to 1 shot every few minutes. Higher repetition rate collisional schemes have been reported and show some promise for high output in the future. We report a novel technique for enhancing the coupling efficiency of the laser pump into the gain medium that could lead to enhanced x-ray inversion with a factor of ten reduction in the drive energy. This has been applied to the collisional excitation scheme for Ni-like Mo at 18.9 nm and x-ray laser output has been demonstrated. Preliminary results show lasing on a single shot of the optical laser operating at 10 Hz and with 70 mJ in the short pulse. Such a proposed source would have higher average brightness, {approx}10{sup 14} ph. mm{sup -2} mrad{sup -2} s{sup -1} (0.1% BW){sup -1}, than present bending magnet 3rd generation synchrotron sources operating at the same spectral range.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15009726
Report Number(s):
UCRL-PROC-200323; TRN: US0406600
Resource Relation:
Journal Volume: 5197; Conference: SPIE, San Diego, CA (US), 08/03/2003--08/08/2003; Other Information: PBD: 7 Oct 2003
Country of Publication:
United States
Language:
English