skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report 02-ERD-056 Active Load Control& Mitigation Using Microtabs: A Wind Energy Application

Technical Report ·
DOI:https://doi.org/10.2172/15004200· OSTI ID:15004200

With public concern over the security and reliability of our existing electricity infrastructure and the resurgence of wind energy, the wind industry offers an immediate, first point of entry for the application and demonstration of an active load control technology. An innovative microtab approach is being investigated and demonstrated for active aerodynamic load control applications under the mid-year LDRD (June-Sept. 2002) effort. With many of these million dollar turbines failing at only half the design lifespans, conventional techniques for stiffening rotors, enlarging generators and gearboxes, and reinforcing towers are insufficient to accommodate the demands for bigger, taller and more powerful turbines. The DOE through the National Renewable Energy Laboratory (NREL) supports R&D efforts to develop lighter, more efficient and longer lasting wind turbines and advance turbine components. However, as wind turbine systems continue to increase in size and complexity, fundamental research and technology development has not kept pace with needs. New technologies to increase turbine life spans and to reduce costs are needed to realize wind electricity generation potentials. It is becoming quite evident that without a better understanding of static and dynamic response to normal and abnormal operating loads coupled with sophisticated flow analysis and control techniques, large turbine operating life and component life will be severely limited. Promising technologies include active load control and load alleviation systems to mitigate peak loads from damaging key components. This project addresses science and engineering challenges of developing enabling technologies for active load control for turbine applications using an innovative, translational microtab approach. Figure 1.1 illustrates the microtabs as applied on a wind turbine system. Extending wind turbine operating life is a crucial component for reducing the cost of wind-generated electricity, enabling wind energy market penetration and improving the reliability of the nation's renewable electrical generation infrastructure. This project also provides enabling technologies for improving turbine efficiency and durability to support the DOE and NNSA missions of providing energy security and reliability without contributing to greenhouse gas emissions and for decreasing dependence on foreign fuel sources. In addition to wind generator applications, the realization of a ''smart'' controllable structure for load control using the microtab approach has the potential to revolutionize design of other complex systems. Driven by cost and safety, both passive and active flow control for steady and unsteady conditions have been actively investigated by NASA, DARPA, DOE and other research institutions for application on rotorcraft, UAVs, marine vessels and wind turbine applications. The potential to obtain revolutionary advances in aerodynamic hydrodynamic performance, safety, maneuverability and service life by decreasing loads is an attractive prospect across many industries.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15004200
Report Number(s):
UCRL-ID-151906; TRN: US201015%%413
Country of Publication:
United States
Language:
English