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Nanocrystalline (NC) Metals
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Jeong et al., Scripta Mat.(2001)

Wachsman and Lee, Science (2011)

Suzuki et al., Science (2009)

Hardness and Yield

Boyce and Padilla, Metall. Mat. Trans. A (2011)

Fatigue
Strain Rate

Wear (electrical contacts) Energy Devices (solid oxide fuel cells)

But …



The Case for NC Metals

o Excess free energy:
o Grain-growth and homogenization processes

§ Problem: High density of grain boundaries (GBs)

Vn = Mgb�gbK

�F = � (�A)
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Grain 1
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Grain 2
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§ Possible solution: Solute segregation to GBs

Weissmüller, Nanostruct. Mater. (1993)

Solute
Host

GB mobility
Solute drag

GB energy

o Solute atoms preferentially occupy GB sites
o Kinetic and/or thermodynamic stabilization



§ Free energy

Local energy density Gradient terms for
GBs and compositional damins

§ Dynamics
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Phase Field Formalism
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Mass conservation
Cahn-Hilliard Eq. 

Gradient flow
Allen-Cahn Eq. 
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o c(r,t): alloy concentration
o 𝛟i(r,t), {i = 1, …, n𝛟}: grain order parameters



GB Segregation Isotherm
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§ Gibbs adsorption eq.:

GB energy 𝜸gb= 𝜸gb(c, 𝛀gb)
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Dilute limit

Considerable 
reduction in 
GB energyAbdeljawad et al., Acta Mater. (2017)

Murdoch et al., Acta Mater. (2013)

c1 : Alloy concentration
⌦b :

⌦gb :

Bulk heat of mixing
GB heat of mixing

c1 :
⌦b :

⌦gb :

Large alloy concentration
+ve bulk heat of mixing
-ve GB heat of mixing

⌦gb � ⌦b ⌧ 0



§ Polycrystalline systems
o Initially (t=0): 1560 grains
o c(r, t = 0) = hci = 0.2

Normal grain growth
No segregation

With GB segregation and 
phase separation

Abdeljawad et al., Acta Mater. (2017)
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Observations
Atomistics: Pt-Au

Abdeljawad et al., Acta Mater. (2017)

Experimental: Pt-Au
Hybrid MC/MD, T = 775K, 15 at.% Au

Foiles et al., In preparation (2017)

Non FCC Pt

FCC Pt

Non FCC Au

FCC Au



Anisotropy: Link to Atomistics
§ GBs described by:GA

gb, G
B
gb,⌦gb
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Anisotropy: Half-loop Geometry
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§ 𝛀gb Uniformly drawn and randomly assigned (spatially)
⌦gb 2
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§ Regular solution model:

Equilibrium Properties

* McLean (1957) 
** Fowler and Guggenheim(1939)

Langmuir-McLean isotherm*

Fowler-Guggenheim isotherm**

§ Parallel tangent construction: Segregation isotherm
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Competing Processes

o Initially (t=0): 1560 grains

o (unstable alloy)

o Vary GB free energies

c(r, t = 0) = hci = 0.2 Initial (t = 0): Colors are for grain IDs 

⌥(t) =

R
dr c(r, t)P (~�)R

dr c(r, t)

hDi

§ Grain growth, GB segregation and phase separation

⌥ =

⇢
0, No solute at GBs

1, GBs saturated with solute

§ Metrics
o Average grain dimeter

o Define solute partitioning factor



Relation to Solute Drag
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Relation to Solute Drag

§ Solute drag model [ideal, dilute alloys]
Vn = Mgb

✓
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Kim and Park, Acta Mater. (2008)

§ Phase field sharp interface asymptotics (underway)

P ⇤(Vn)

: Curvature driven flow

: Drag pressure
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§ Concentration-dependent energy barrier:
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o Fix free energy model parameters
o Vary the initial alloy concentration



§ Parallel tangent construction

Segregation: Graphically
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