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Predicting Strain to Failure
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Equivalent strain to fracture
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Bao, Yingbin, and Tomasz Wierzbicki. "On fracture locus in the
equivalent strain and stress triaxiality space." International Journal of
Mechanical Sciences 46.1 (2004): 81-98.

Several studies in the past two decades
demonstrated that strain to failure decreases
for stress triaxialities below ~1/3
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Ghahremaninezhad, A., and K. Ravi-Chandar. "Ductile failure behavior of
polycrystalline Al 6061-T6 under shear dominant loading." International Journal of
Fracture 180.1 (2013): 23-39.

So what are we to do with the results of Ravi-
Chandar and coworkers? Does failure even
happen under shear?
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Proposed solutions: model the stress state more
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“The discrepancy between these models and our
experimental results is attributed to ... an inappropriately
large gage length over which the strain is measured in
conventional tests; in contrast, the present experimental
results use a gage-length that is based on the characteristic
microstructural length—the grain size.”

- Ghahremaninezhad, A., and K. Ravi-Chandar. "Ductile failure behavior
of polycrystalline Al 6061-T6 under shear dominant
loading." International Journal of Fracture 180.1 (2013): 23-39.




The strain to failure depends on the fracture mechanism, which is enpe

generally held to depend on the stress state Laboratories
Failure under shear- Failure under tensile-
-@> -1 |- dominated loading
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negative triaxiality for fracture." Engineering fracture mechanics 72.7 1768-1786.
(2005): 1049-1069.
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Failure Mechanisms )
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(a) Conventional Ductile Rupture (b) Void Sheeting (¢) Orowan Mechanism
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Hypothesis: the active failure mechanism also depends on void nucleation ) =,
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& ——_— Tierlinck ef al. proposed that void sheeting occurs when
L SiBin : A 1/m work hardening within the shear band cannot compensate
50| I m\ — = VN, for the increased shear stress associated with a loading
Y increment.
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etallurgica 36.5 (1988): 1213-1228 m, A — work hardening exponents

o — the von Mises stress
V — the volume of a void
N, — the density of spherical voids per unit volume
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Specimen Dominant Rupture Mechanisms Stress Triaxiality (o;,) Series of interrupted tensile tests were
4N-Al Sheet Necking to a Point High performed on hlgl.l—purlty CcOpper, nickel,
5N-Al Sheet N+G+C High and aluminum materials
SN-Cu Wire ~ N+G+C—Void Sheeting—Orowan Mech. High—Low—Low
3N-Cu Sheet ~ N+G+C—Void Sheeting—Orowan Mech. High—Low—Low These demonstrated the relationship
4N-Ni Wire N+G+C—Void Sheeting High—Low

between failure mechanism and void
nucleation 7
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Fracture in High-Purity Copper: Void Nucleation

(a) Voids in the Diffuse Neck
(a) 3N-Cu Sheet Material 60 UTS

Eventually strain localizes in a shear band.
Preexisting voids are elongated along the shear axis
and new voids nucleate within the shear band




Fracture in High-Purity Copper: Cav1ty Formation ()

(c) 3N-Cu Sheet Material 50 UTS

Preexisting voids in the shear band coales Microscale void-sheeting is an important coalescence mechanism

(e) 3N-Cu Sheet Material 30 UTS

(d) 3N-Cu Sheet Material 40 UTS

Eventually, a central, prismatic cavity forms It continues to grow by coalescing with preexisting voids
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Fracture in High-Purity Copper: Final Failure Nt
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(f) 3N-Cu Sheet Material 5 UTS §
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Copper is predicted to be relatively resistant to rupture
by “uncontrolled” void sheeting. Since the void volume
fraction decreases away from the center, the relative
importance of void sheeting also decreases...

As the cavity grows into areas where there are few or no
preexisting voids, the Orowan mechanism of growth

begins to dominate. Final fracture is controlled by this 10

I mechanism 1



Copper Fracture Surface - Sandia

The fracture surface of a
high-purity copper
specimen is shown.
Evidence of three failure
mechanisms can be seen.
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Fracture in High-Purity Nickel: Void Nucleation ) i

(a) 4N-Ni Sheet Material 50 UTS F STD

Void nucleation within the shear band is limited, and the two
halves of the specimen begin to slip past each other. This
creates a macroscopic crack




Fracture in High-Purity Nickel: Cavity Formation ) =,
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Eventually, enough voids nucleate to
allow coalescence by void sheeting,
and an “Orowan void” forms
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material was not controlled by void sheeting 13
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Fracture in High-Purity Nickel: Final Fracture

(d) 4N-Ni Sheet Material 10 UTS ;

Final fracture is controlled by the Orowan
mechanism as this cavity grows into essentially
void-free material

The active failure mechanism in nickel also
depended not only on the stress state but also on
the distribution of preexisting voids

The fracture surface of a
high-purity nickel
specimen is shown.
Evidence of two failure
mechanisms can be seen.




Fracture Mechanisms in Aluminum () o
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5N Al Sheet Material: Fracture 1s controlled 4N Al Sheet Material: Fracture is controlled
by pure plasticity (necking to a point)




Void nucleation in aluminum depends on grain size () i
(a) 5N Al Sheet Material (Polycrystallinc) [ (b) 4N Al Sheet Material (Oligacrystal)




Conclusions e
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