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Example Issues in Nuclear Materials
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Point Defect Production and Annihilation
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Point Defect Production and Annihilation
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Nanostructured materials
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Nanostructured Alloys

Nanolaminates Oxide Dispersion Strengthened Self-Organizing Alloys
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1. Relatively thermally stable
2. High strength
3. High density of interfaces for point defect recombination



Nanostructured Alloys

Nanolaminates
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Size Effects (Nanograin) and Irradiation Induced
Creep (I1C)?

Mechanisms effected by size

TEMPERATURE, (
,200 O 200 400 600 800 1000 1200 KOO
e

C lDEAL snem sTnENGm - l_: PURE NICKEL . . . .
=5 A Mechanisms effected by irradiation
So? JEAST'CJY _— | - "°’§ 1400 _
w nz"c:‘&‘sﬂiusnlou\ § ‘FRACTURE STRESS : y ]
& 277 x } : : '
5 NN e 1200 b [PLASTICINSTABILITY| : I:
x N . _(H.T.CREEP) e (TWINS or CHANNELS) ! :
: 2 2
B o = . 1000 T z
: ; o R |
2 . & i g SN R ' i |
& | I | X » TRRTRERENT 3
% o | | o 800 B ;; LS :
‘ ; DIFFUSIONAL FLOW § |
o | | Jarrice oiFrdsiont 16' : 600 '
o 0.2 04 06 0.8 10 I
UALIAL ArALe TEuneERaTone T/ ‘ E :
TEMPERATURE,(T) P |
G 20 O 200 40 60 00 1000 1200 1490 ; 00 R !
L JDEAL snear sTRENGTHN | | PURE NICKEL 3 :
-] s ELASTIC
N PLASTICIT o' 200F-————— perormaTiON |— |
5 s DYNAMIC = i
. RECRYSTALLISATION 4 !
a TCY 2 ;
o P WFR-L 2 X o A b a4l bbb bbb Ao A 4l bbbl
= e 10°0
v '03 o
% \ & 0.0 00001 0001 0.01 0.1 1 10
u % !
o IFFUSIONAL o @ JDose dpa Y
w o 74
3 2
3 %
[+ 4 w
o 5

JIAINAN
LTI NS,

o o 0.2 0.4 o6 0.8 1.0
HOMOLOGOUS TEMPERATURE, V1,,

Frost and Ashby, Deformation-Mechanism Maps Byun et al. JNM (2006)




Nanocrystalline Irradiation Creep Mechanisms
Cu-W Thin Film Bulge test
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Nanopillar Experiments
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Experimental Challenges
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Experimental Challenges
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Measuring Irradiation Creep In-situ
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Goals and Experiments

 Can we measure |ICin the TEM (at high T)?

* Mechanical response of nanograin and
nanolaminate materials under irradiation

* Pillar size effect at high T in the sink limited
regime (Ag)



Sample Preparation and Testing
Multilayer Samples
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Irradiation Creep (4 MeV Cu3* 10 DPA/s)
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Comparison of Steady-State Creep Data
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High Temperature Experiments on Ag:
Approximating Temperature Regime
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Prior IIC on Ag
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Stress-Strain: Effect of Irradiation and
Temperature
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Steady-State Creep Rates in Ag
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Effects of Stress on IIC
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Effects of Pillar Size on |IC
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Size Effect in Sink Limited Regime
‘LO

Flux to the surface ~—  [Stressinduced
does not induce k\65'a3cr:\ncy preferential
creep Q adsorption to loops
induces creep
< >
)
<:></Ioops




Competition between Dislocations and
Interfaces
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Fit Predicted from S.S. Rate Equation
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Remaining Challenges

Determining temperature and limit the
temperature gradient i ®
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Conclusions

* |n situ TEM promising for small scale IIC
testing

* [ICin ‘large’ Ag samples comparable to bulk
measurements

 Competition between interfaces and loops as
point defect sinks quantified through pillar
size effects

 R.T. lIC rates may be high in high strength
nanostructured materials at a fraction of their
vield strengths



