
Runtime	HPC	
System	and	Application	

Performance	
Assessment

and	
Diagnostics

SAND2018-2373C



J.	Brandt1,	A.	Gentile1,	Jon	Cook2,	
B.	Allan1,	Jea.	Cook1,	O.	Aaziz2,
T.	Tucker3,	N.	Naksinehaboon3,	
N.	Taerat3,	E.	Ates4,	O.	Tuncer4,	

M.	Egele4,	A.	Turk4,	and	A.	Coskun4

ovis-help@sandia.gov
Sandia	National	Laboratories,	Albuquerque	NM
New	Mexico	State	University,	Las	Cruces	NM

Open	Grid	Computing,	Austin	TX
Boston	University,	Boston	MA



Goal:	Understand	and	Mitigate	
Performance	Variation	
in	Large	Scale	HPC	Systems
Performance	variation	can	come	from	a	variety	of	sources
• Application	code	changes
• Compiler	changes
• System	hardware/software	changes/faults
• Resource	contention	among	applications
• Node,	network,	storage/file	system,	power,	cooling,	etc.

Approach:	Use	appropriate	fidelity	collection	and	
analysis	of	whole	system	information	to	reveal	reasons	
for	variation	and	identify	solutions	to	minimize	both	run	
times	and	run	time	variation



End	to	End	Sensor	and	Log	Collection,	
Analysis,	and	Visualization

Aggregation	&	Analysis

ComputeComputeCompute	&	Service	Nodes

Data	Sources:
• Kokkos
• OS
• Hardware
• Network

LDMS	
Daemon

Rsyslog
Daemon

Aggregator
Aggregation	&	Analysis	System

LDMS	
Daemon

SOS

Python	Class	Libraries

Web	Services SciPy

Baler	
Daemon

Support	Sub-systems
• File	systems
• Network

Facilities
• Power	quality
• Cooling



Whole	System	Analysis	Overview
Scalable	end-to-end	tool	chain	for	run	time	collection,	
transport,	and	analysis	of	system	wide	information:
• Low-overhead,	small	footprint	data	collection	and	
transport	(LDMS)	- R&D	100	award	winner
• Integration	and	joint	analysis	of	numeric	and	log	data	
(Baler)	
• Analysis	pipeline	(in	situ,	in	transit,	post-processing
with	SciPy	support)
• Storage	(CSV,	SOS)	and	external	consumer	feeds	
(named	pipe,	AMQP)
• Visualization	dashboards	via	Grafana	and	custom	
visualization	support



System	Numeric	Data	Collection	Features
• Synchronized	system	wide	data	sampling	provides	resource	
utilization	“snapshots”	
• Memory	
• Memory	Bandwidth	
• Processor	
• Power
• Network	utilization	and	congestion	parameters
• I/O

• No	significant	impact	on	applications	at	collection	rates	(1Hz)	
necessary	for	resolving	resource	utilization	features
• Optimized	data	structures,	RDMA
• Testing	at	scale	on	Blue	Waters	(27648	nodes)	and	Trinity	(20,000	nodes)

• Runtime	analysis	of	large	data
• Custom	performant	database	optimized	for	inserts	and	multiple	index	operations	
across	a	variety	of	”data	types”	(e.g.,	scalars,	vectors,	log	lines,	binary	blobs)

• ~	5TB/day	on	Trinity

Unprecedented	ability	to	collect	system	data	at	
resolutions	necessary	for	detecting	features	and	events	
of	interest	and	to	respond	on	meaningful	timescales



NCSA’s	Blue	Waters	(27,648	nodes),	From:	Lightweight	Distributed	Metric	Service:	A	Scalable	Infrastructure	for	
Continuous	Monitoring	of	Large	Scale	Computing	Systems	and	Applications,	SC14

Network	Congestion	Visualizations

Minimize	application	impact	by	understanding	and	
responding	to	congestion	evolution



Application	Performance	Insights

Domain-specific	sensor	data	collection	from	Trinity	testbed

Domain-specific	sensor	sets	(e.g.,	BRANCH,	INSTRUCTION,	GENERAL)	
selected	at	job	launch	time	for	use	by	application	analysts
• Combined	analysis	with	system-level	data	(e.g.,	network	counters)

LDMS	PAPI	“Metric	Set””

Combine	application	and	system	data	to	understand	impact	on	
performance	of	applications,	contention,	and	system	state



• Kokkos application	kernel	
information	collected	and	
transported	as	LDMS	sets
• Challenges:
• Variable,	run-time	data	
representation
• Data	may	be	generated	
asynchronously	across	all	
ranks

• Analysis	Output:
• Job-based	performance	
reports
• Kokkos	instrumentation	
relevant	analysis	(e.g.,	stats	
on	kernel	behaviors)

Application-Driven	
Information	Integration



Heartbeat	Profiling	and	
Performance	Prediction

LAMMPS	
runtime	
prediction

Interval	h/w	counter	
importance	heatmap

• Assess	performance	sensitivity	based	
on	heartbeat	progress	in	user-
determined	application	regions
• Predict	application	runtime	and	
detect	progress	problems



Anomaly	Detection	and	Problem	Diagnosis

From:	Diagnosing	Performance	Variations	in	HPC	Applications	Using	Machine	Learning ISC	2017	-- Gauss	Award	Winner

Detection	and	diagnosis	of	performance	problems	
• Machine	learning	models	built	offline	are	used	for	classifying	observations	at	

runtime.
• Detect	and	diagnose	behavioral	differences	due	to:	memory	leaks,	errant	

processes, contention,	etc...



Baler	Log	File	Analysis
• Run	time	processing	of	message	data	to	discover	patterns	
from	messages

• Ease	search	space	and	discovery	of	similar	and	important	
events:	Trinity	Phase	2:	Five	months	4.5	billion	loglines	->	11K	
patterns
• Supporting	new	systems	or	rare	events	where	the	messages	are	
unknown
• Determine	fault	propagation	via	Association	Rule	Mining
Discover	system	and	application	impacts	of	events	via	
integrated	analysis	of	numeric	data	and	log	patterns



Analysis	Framework
• Scalable	Object	Store	(SOS)	optimized	for	scalable	storage	
and	analysis	of	HPC	system	and	application	information	in	
flexible	formats
• SOS	Data	Access	methods:

• Command	line	interfaces	for	querying	data	and	exporting	as	Text,	
CSV,	or	JSON	

• SQLite	command	shell
• Native	Application	Programming	Interfaces	through	C	libraries
• SciPy	&	Numpy	interfaces	to	access	SOS	object	data	as	zero	copy	
ndarray:	Arrays	of	data	across	components	and	time

• Supports	continuous	Analysis	loop	and/or	post-processing
• Grafana	visualization	support	of	raw	and	derived	quantities

Continuous	analysis	and	visualization	of	integrated	system	
and	application	data,	in	numeric	and	log	formats.	Enables	
run	time	understanding	and	response.



Feedback	and	Dynamic	
Response

Use	application+system	information	for	intelligent	scheduling	
and	task	placement	to	improve	runtime	and	throughput

• Communication-heavy	
application	run	time	
affected	by	network	
contention
• Map	tasks	to	nodes	by	
minimizing	total	cost	of	
communication	
• Graph	analysis:	network	
architecture	graph	with	
edges	weighted	by	
congestion	measures	and	
overlaid	with	application	
communication	patterns	
and	sizes	

Task	remapping	based	on	dynamic	network	
information	in	a	congested	environment	
recovered	~50%	of	the	time	lost	to	congestion.

From:	Demonstrating	Improved	Application	Performance	Using	
Dynamic	Monitoring	and	Task	Mapping	HPCMASPA	2014



Summary
Goal:	Understand	and	mitigate	performance	variation	through	
collection,	analysis,	feedback,	and	response to	application	needs	
and	system	conditions
• Unique	ability	to	collect	system	data	at	resolutions	necessary:

• for	detecting	features	and	events	of	interest	
• to	respond	on	meaningful	timescales

• Analysis	Challenges:
• Large	– high	dimension,	many	variable,	many	components,	time	
dependent

• Integrated	analysis	of	numeric	and	log	data
• Complex	multi-subsystem	interactions	(facilities,	network,	filesystem)
• Dynamic	application	demands,	system	state,	and	shared	resources
• Quantification	of	state	variables	on	application	performance	unknown	
(e.g.,	relationship	between	congestion	measures	and	application	
performance)

• Requires	run	time	analysis	and	decision	support


