s

_

Runtime HPC "\

System and Application

Performance
Assessment
and
Diagnostics /

o). Brandt?!, A. Gentilel, Jon Cook?, N
B. Allan?, Jea. Cook?, O. Aaziz?,
T. Tucker3, N. Naksinehaboon?3,
N. Taerat?, E. Ates?, O. Tuncer?,
M. Egele?, A. Turk? and A. Coskun?)

ovis-help@sandia.gov
Sandia National Laboratories, Albuquerque NM
New Mexico State University, Las Cruces NM
Open Grid Computing, Austin TX
Boston University, Boston MA

BOSTON
< 06

Sandia
National
Laboratories

Goal: Understand and Mitigate
Performance Variation
in Large Scale HPC Systems

Performance variation can come from a variety of sources
* Application code changes

* Compiler changes

» System hardware/software changes/faults

e Resource contention among applications
* Node, network, storage/file system, power, cooling, etc.

Approach: Use appropriate fidelity collection and
analysis of whole system information to reveal reasons
for variation and identify solutions to minimize both run
times and run time variation

End to End Sensor and Log Collection,
Analysis, and Visualization

-

Compute & Service Nodes

~

e

/ Aggregation & Analysis System \

Y
S

=

2

<
<

4 N
Support Sub-systems
* File systems
* Network
\ 4
4 . N
Facilities
* Power quality
* Cooling
- J

Whole System Analysis Overview

Scalable end-to-end tool chain for run time collection,
transport, and analysis of system wide information:

* Low-overhead, small footprint data collection and
transport (LDMS) - R&D 100 award winner

* Integration and joint analysis of numeric and log data
(Baler)

* Analysis pipeline (in situ, in transit, post-processing
with SciPy support)

 Storage (CSV, SOS) and external consumer feeds
(named pipe, AMQP)

e Visualization dashboards via Grafana and custom
visualization support

System Numeric Data Collection Features

* Synchronized system wide data sampling provides resource
utilization “snapshots”

Memory

Memory Bandwidth

Processor

Power

Network utilization and congestion parameters
I/O

* No significant impact on applications at collection rates (1Hz)
necessary for resolving resource utilization features
* Optimized data structures, RDMA
* Testing at scale on Blue Waters (27648 nodes) and Trinity (20,000 nodes)

* Runtime analysis of large data
e Custom performant database optimized for inserts and multiple index operations
across a variety of “data types” (e.g., scalars, vectors, log lines, binary blobs)

» ~ 5TB/day on Trinity

Unprecedented ability to collect system data at
resolutions necessary for detecting features and events
of interest and to respond on meaningful timescales

Network Congestion Visualizations

X+ Gemini Link: Percent Time Spent in Credit Stalls (1 min intervals)

30000

25000

20000

15000

Node Id

10000

5000

X+ Gemini Link Credit Stalls (%)

KN AP AENESENES

Time (min)

100

80

60

-~ 40

1 20

0

Z Mesh Coord

— time=1199 .
20
15
10
5
0
20
Y Mesh Coord 0 0 X Mesh Coord

NCSA’s Blue Waters (27,648 nodes), From: Lightweight Distributed Metric Service: A Scalable Infrastructure for
Continuous Monitoring of Large Scale Computing Systems and Applications, SC14

Minimize application impact by understanding and
responding to congestion evolution

Application Performance Insights

test/spapil505734446162: consistent, last update: Mon Sep 18 08:41:11 2017 [18361lus]

ue4 component_id 162

ub4 job_id 0

char[] Appname "lulesh"

ub4 Jobid 1186151

char[] Username "oaaziz"

us NumNodes 4

ud PPN 16

ud NumThreads 1

D u64[] Pid 17749,17750,17751,17752,17753,17754,17755,17756,17757,17758,17759,17760,17761,17762,
,0

D u64[] BR_INST_RETIRED:COND:precise=1:u=1 5481289172 ,5476439288,5479319975,5479187901 5476609604 , 5484115830, 5486034361, 54710
3680,5478787138,5478780103,0

D ue4[] BR_MISP_RETIRED:COND:precise=1:u=1 25062 ,28508,25330,28528,31715,24893,25337,41362,27098,25894,27211,30637,26173, 40281,
,0

D u64[] BR_INST_RETIRED:ALL_BRANCHES:precise=1:u=1 5539782057,5530226180,5535554031,5534985031,5531577864 ,5544667106 , 5546656936 , 548732
7217,5533621662 ,5534690788,0

D u64[] BR_MISP_RETIRED:ALL_BRANCHES:u=1 47739,52183,47813,52661,56491,47695,48067,70879,50684 ,48385,50565,54872,48977,69469 ,
,0

LDMS PAPI “Metric Set”

M
M
D
D
D
D
D
D

Domain-specific sensor data collection from Trinity testbed

Domain-specific sensor sets (e.g., BRANCH, INSTRUCTION, GENERAL)
selected at job launch time for use by application analysts

* Combined analysis with system-level data (e.g., network counters)

Combine application and system data to understand impact on
performance of applications, contention, and system state

{

“"mpi-rank" .0,

Application-Driven

VWA

"total-app-time" _: 21.935,

Information Integration

“total-non-kernel-times” ; 11.903,
"percent-in-kernels" _: 45.74,

"unique-kernel-cals” ;- 43, * Kokkos application kernel
Temelperkinfo” .| information collected and

"kernel-name" _: "ApplyMaterialPropertiesForElems C", tra nSpOFted aS LDMS SetS
"region"
“call-count" _: 50, ° .
"total-time" _;0.004121, Cha”enges'
::time-per-ca|lll\'l~;" 0.00008242,II ° Variable’ run-time data
kernel-type" _:"PARALLEL-FOR .

) representation

{
"kernel-name" _: "CalcAccelerationForNodes", ° Data may be generated
"region” ;" asynchronously across all
“call-count" _: 50,
"total-time" _: 0.040885, ranks
"time-per-call”’ : 0.00081771, .
"kernel-type" _; "PARALLEL-FOR" o Ana|y5|s Output:

L

{ * Job-based performance
"kernel-name" _: "CalcEnergyForElems A",
regon re ports. |
"call-count” _; 1750, e Kokkos instrumentation
total-time" _:0.076308, .
“time-per-call" ; 0.00004360, relevant analysis (e.g., stats
"kernel-type" :"PARALLEL-FOR" on kernel behaviors)

b

Heartbeat Profiling and
Performance Prediction

* Assess performance sensitivity based
on heartbeat progress in user-
determined application regions

* Predict application runtime and
detect progress problems

2500 5
< Prediction ,o"
© Real ?
2000
g 1500+
> LAMMPS
E 10001 .
- runtime
5001 prediction
0+, ; ; : ;
0 10 20 30 40

L1CM_R_SD_8
L1CM_R_SD_7
L1CM_R_SD_6
LICM_R_SD_5
LICM_R_SD_4
ticm_R_so_3 -
L1ICM_R_SD_2
ticm R_so_1 -
tem_rM_s -
viem_R_M_7 -
LICM_R_M_6
ticm_R_M_s -
LICM_R_M_4
LICM_R_M_3
LICM_R_M_2
LICM_R_M_1 =

IPC_SD_8

IPC_SD_7

I
SlANAI IIIII
i

aoo- SN AN RERERAR

.

IPC_SD_2

I
rc_so_1 -JN I
IPC_M_8 I
rc_m_7 S S
PC_M 5-
ipc_v_s -
IPC_M 1--

s HARARA
wor WERERERE 00 CHRERERNR

miniFE IIIII

LAMMPS ~
Gadget”

Interval h/w counter
importance heatmap

Anomaly Detection and Problem Diagnosis

A features labels ML models
@ M o= B
L C = -
Cc Building
o - — % %
£ © Models
| - i =
O |._ o min =y -
training runs < v O
o 50
= i
c 0 S oSS Y
(@] X . .
() test run s ——— e -5 <& Diagnosis
& ==l Node[labels
£ o, [l 2 [cllabele
5 unhealthy node _
o d healthy node =y ' ‘

Detection and diagnosis of performance problems
 Machine learning models built offline are used for classifying observations at

runtime.
 Detect and diagnose behavioral differences due to: memory leaks, errant

processes, contention, etc...

From: Diagnosing Performance Variations in HPC Applications Using Machine Learning ISC 2017 -- Gauss Award Winner

Baler Log File Analysis
* Run time processing of message data to discover patterns
from messages

Timestamp * Component Message Text

2016/4/8 06:20 cl- | HWERR[c1-0¢2515n3][20531]:0x4d12:SSID RREQ A_STATUS_AT_BOUNDS_ERR
0c2s15n3 Error:Info1=0x82acc05020252:Info2=0x19¢0009736000:Info3=0x79091

Count * First Seen Last Seen Pattern

594579 2016/4/8 06:20 2016/4/14 07:28 | HWERR[hostl[dec]-hex:* * A_STATUS_AT_BOUNDS_ERR Error:*=hex *=hex *=hex

* Ease search space and discovery of similar and important
events: Trinity Phase 2: Five months 4.5 billion loglines -> 11K

patterns

e Supporting new systems or rare events where the messages are
unknown

* Determine fault propagation via Association Rule Mining

Discover system and application impacts of events via
integrated analysis of numeric data and log patterns

Analysis Framework

* Scalable Object Store (SOS) optimized for scalable storage
and analysis of HPC system and application information in
flexible formats

 SOS Data Access methods:

« Command line interfaces for querying data and exporting as Text,
CSV, or JSON

e SQLite command shell
* Native Application Programming Interfaces through C libraries

* SciPy & Numpy interfaces to access SOS object data as zero copy
ndarray: Arrays of data across components and time

» Supports continuous Analysis loop and/or post-processing
e Grafana visualization support of raw and derived quantities

Continuous analysis and visualization of integrated system
and application data, in numeric and log formats. Enables
run time understanding and response.

Feedback and Dynamic -
Response

Task remapping based on dynamic network
information in a congested environment *
recovered ~50% of the time lost to congestion.

4 / so,s;‘!,/ 9 W

r (_)@ 48,4

From: Demonstrating Improved Application Performance Using
Dynamic Monitoring and Task Mapping HPCMASPA 2014

Communication-heavy
application run time
affected by network
contention

Map tasks to nodes by
minimizing total cost of
communication

Graph analysis: network
architecture graph with
edges weighted by
congestion measures and
overlaid with application
communication patterns
and sizes

Use application+system information for intelligent scheduling
and task placement to improve runtime and throughput

Summary

Goal: Understand and mitigate performance variation through
collection, analysis, feedback, and response to application needs
and system conditions

* Unique ability to collect system data at resolutions necessary:
» for detecting features and events of interest
* to respond on meaningful timescales

* Analysis Challenges:

e Large — high dimension, many variable, many components, time
dependent

* Integrated analysis of numeric and log data

 Complex multi-subsystem interactions (facilities, network, filesystem)

* Dynamic application demands, system state, and shared resources

* Quantification of state variables on application performance unknown
(e.g., relationship between congestion measures and application
performance)

* Requires run time analysis and decision support

