

The Many Roles of Data Analysis in Planning for Hurricane Impacts

Andrea Staid

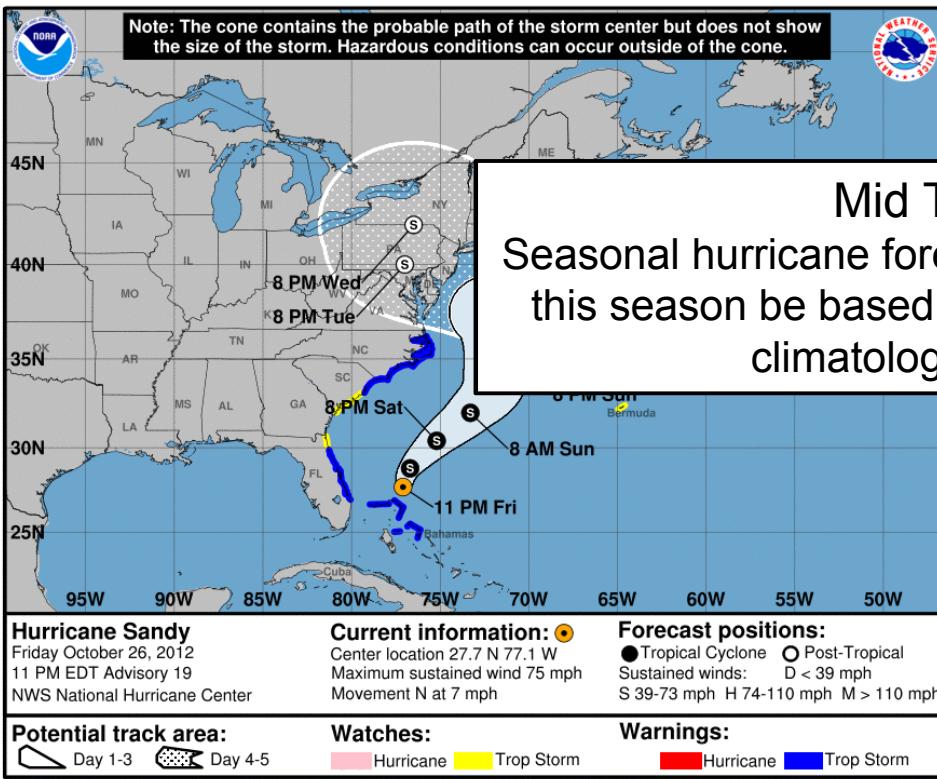
Conference on Data Analysis

March 7, 2018

What is the planning horizon?

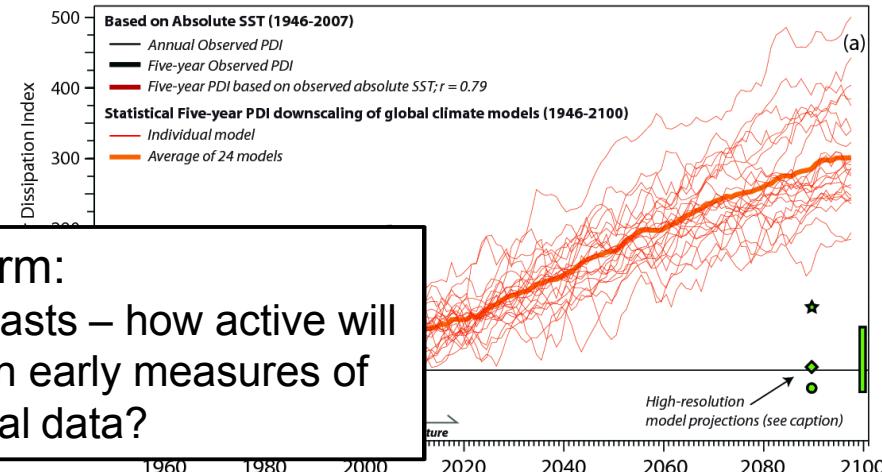
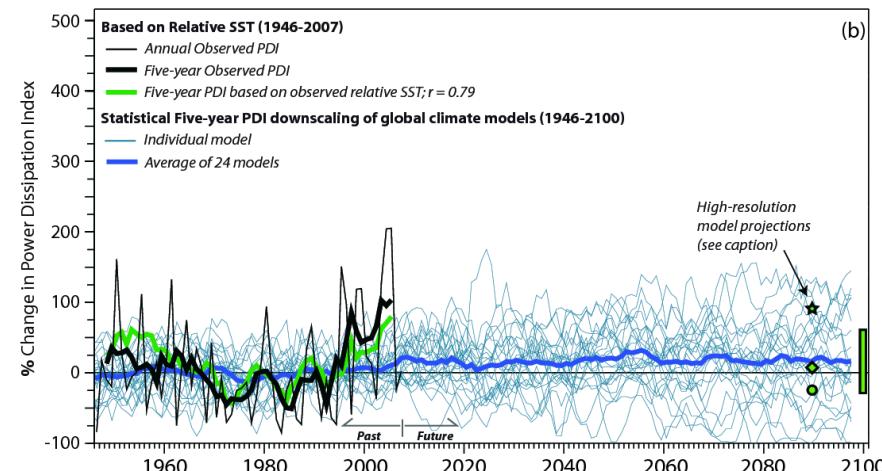
Short Term:

There's a storm coming, with uncertain track and intensity estimates.



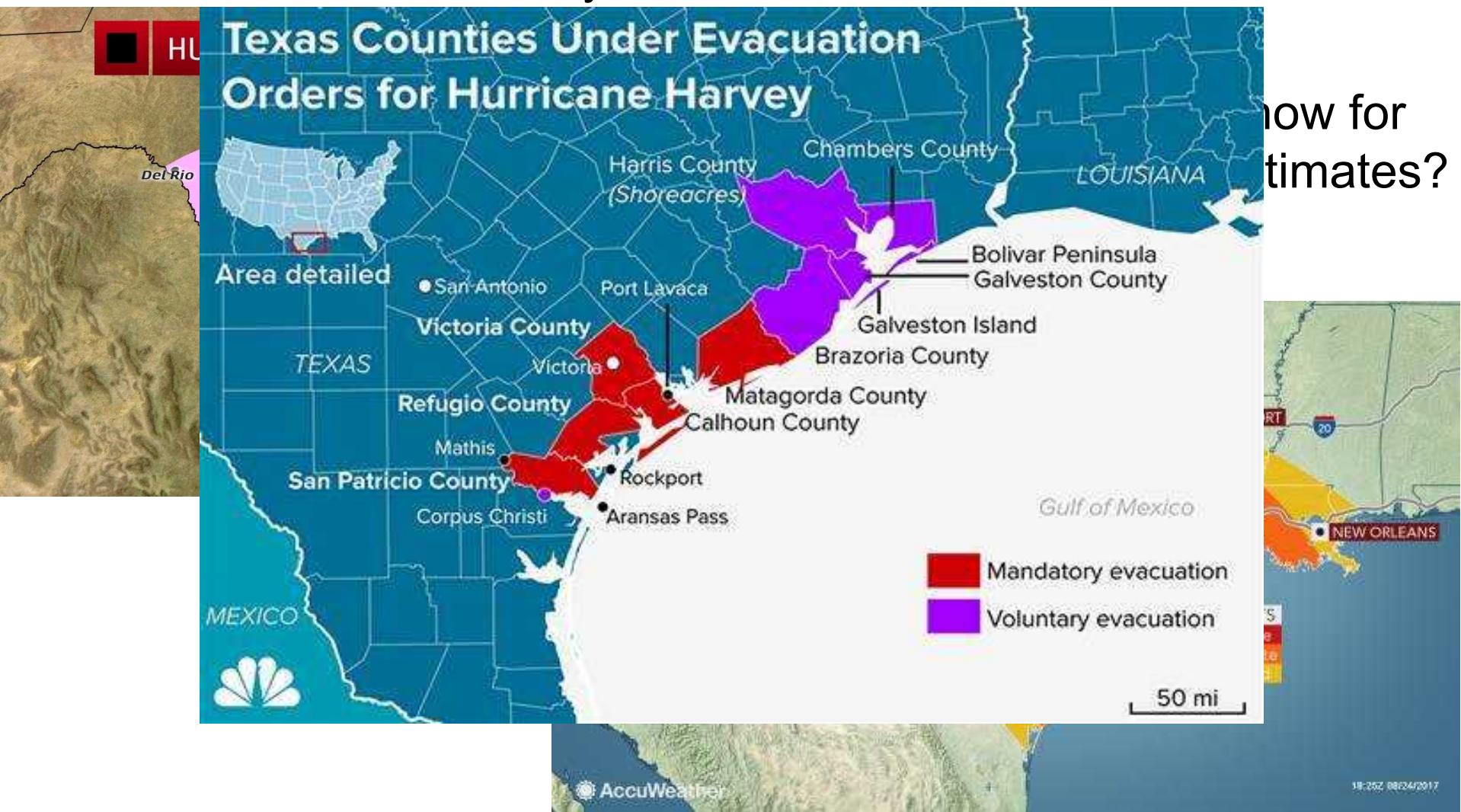
Long Term:

Climate is changing, and there is uncertainty as to how future hurricanes will behave.



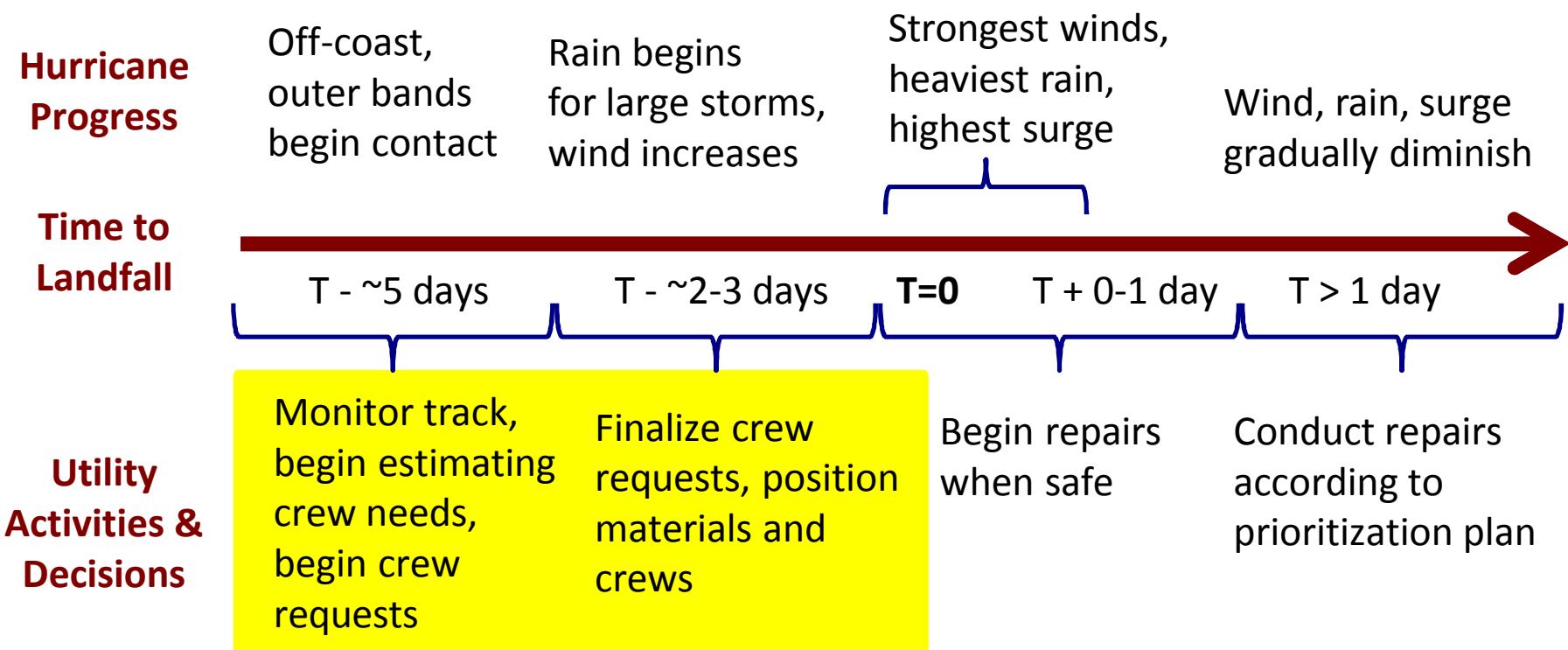
Short Term Planning

Surely we can do better!



Power Outage Prediction

- Anticipating number and location of outages allows utilities and emergency responders to plan ahead
- Use best storm track projections and intensity forecasts to develop real-time outage predictions



Outage Prediction Model

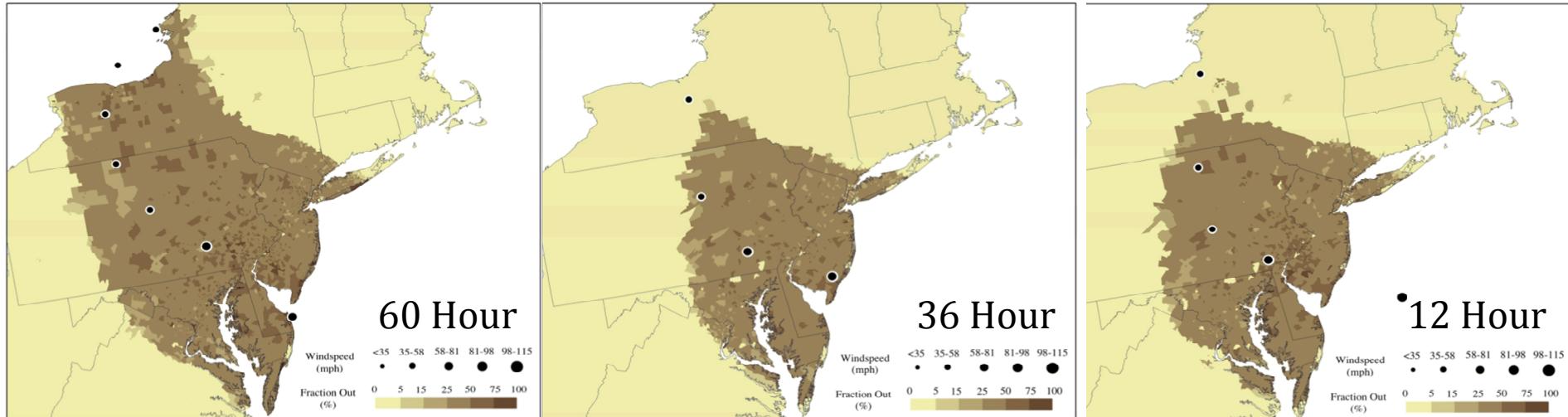
- Started with detailed, utility-specific distribution-level outage data from recent hurricanes hitting the utility service area
- Train and test statistical models for predictive accuracy
 - Random Forest model performed best
- Response variable: Number of customers without power
- Covariates:
 - Wind speeds across region of interest
 - Calculate wind characteristics using a wind field model (Willoughby et al. 2006; Holland 2008)
 - Land Cover, soil moisture, mean precipitation, and drought measures

Utility-specific variables!

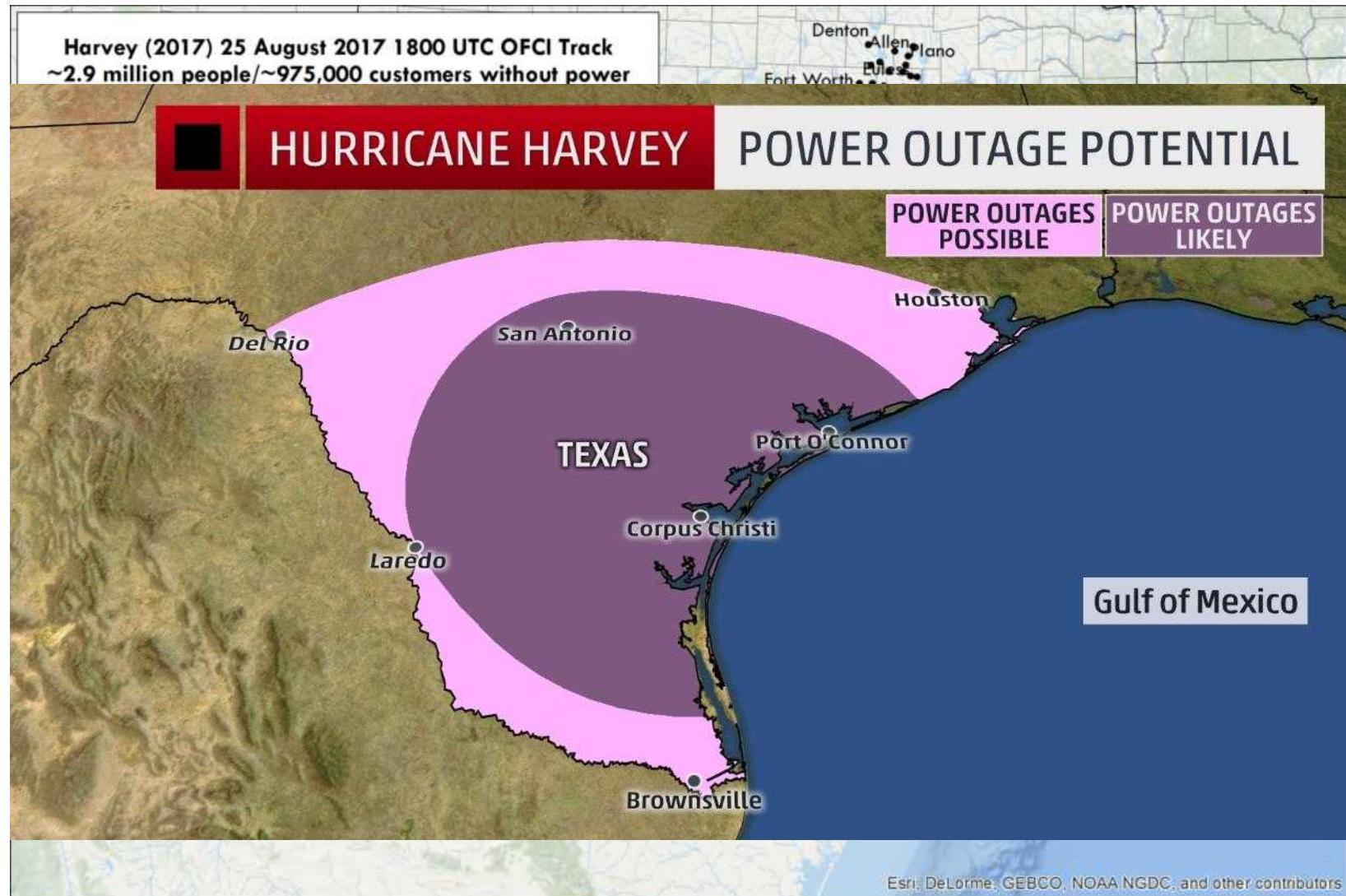
Generalizing the Model

- Evaluate model predictive accuracy *without* utility-specific variables
 - Cross-validation to choose the simplest model while maintaining acceptable prediction errors
 - Validate model across hurricanes; Validate model across states
 - Test and iterate for actual, oncoming storms: Irene and Sandy

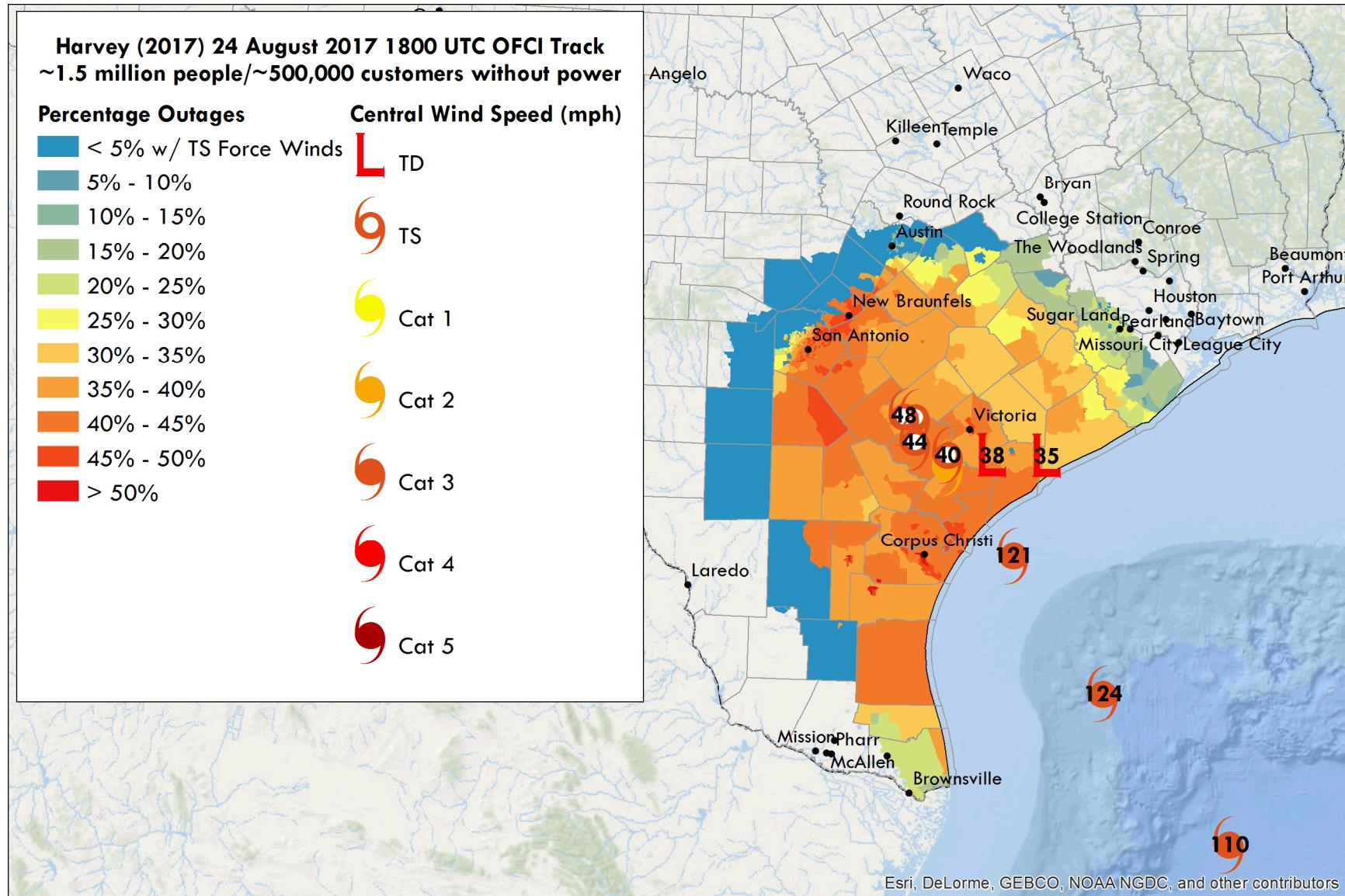
Predictions for Superstorm Sandy, for 60, 36, and 12 hours before landfall



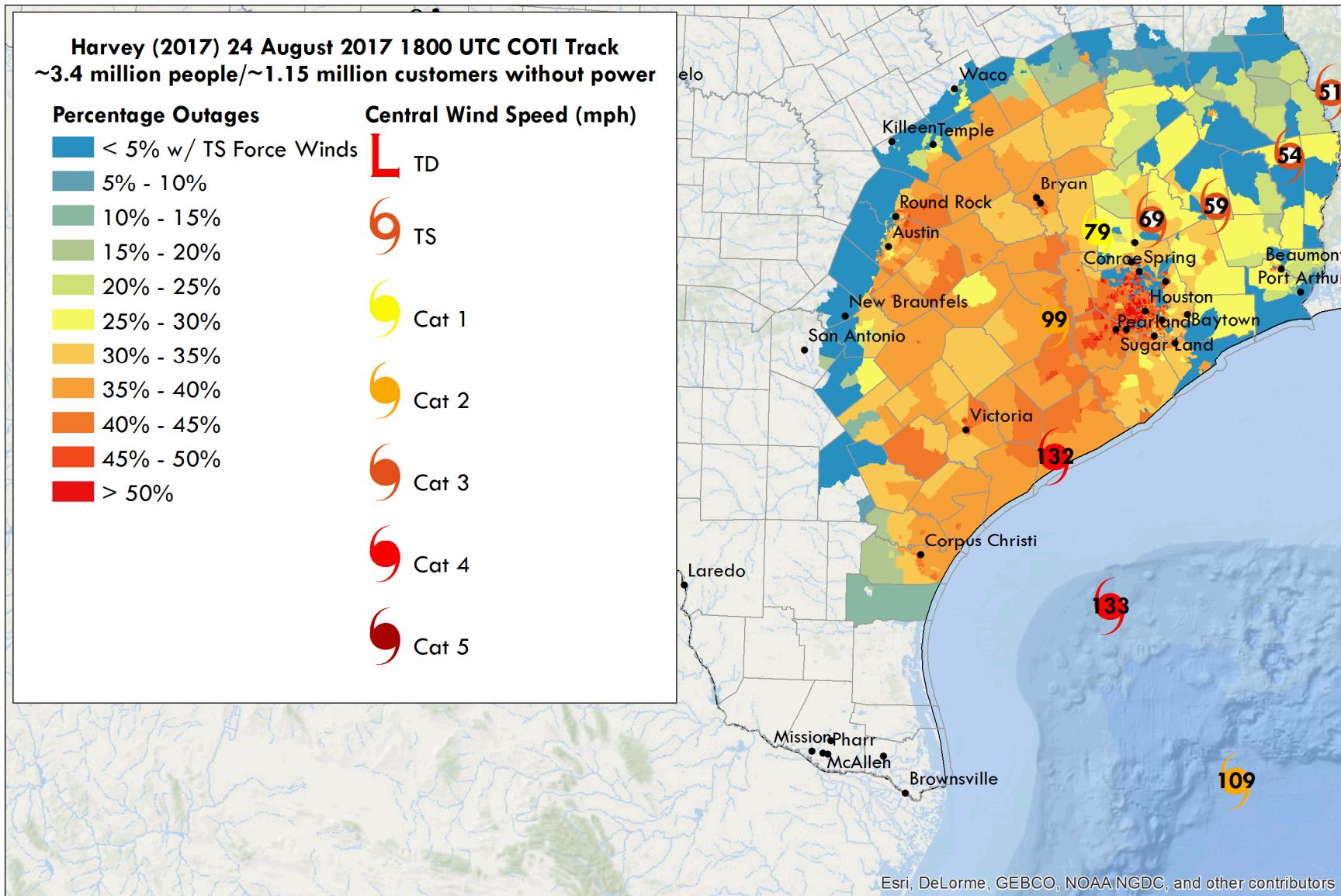
Hurricane Harvey



Official Track Forecast



COTI Track Forecast



Ongoing Development

- Seth Guikema and research group

THE OHIO STATE
UNIVERSITY

- Steven Quiring and research group

TEXAS A&M
UNIVERSITY.

- Brent McRoberts

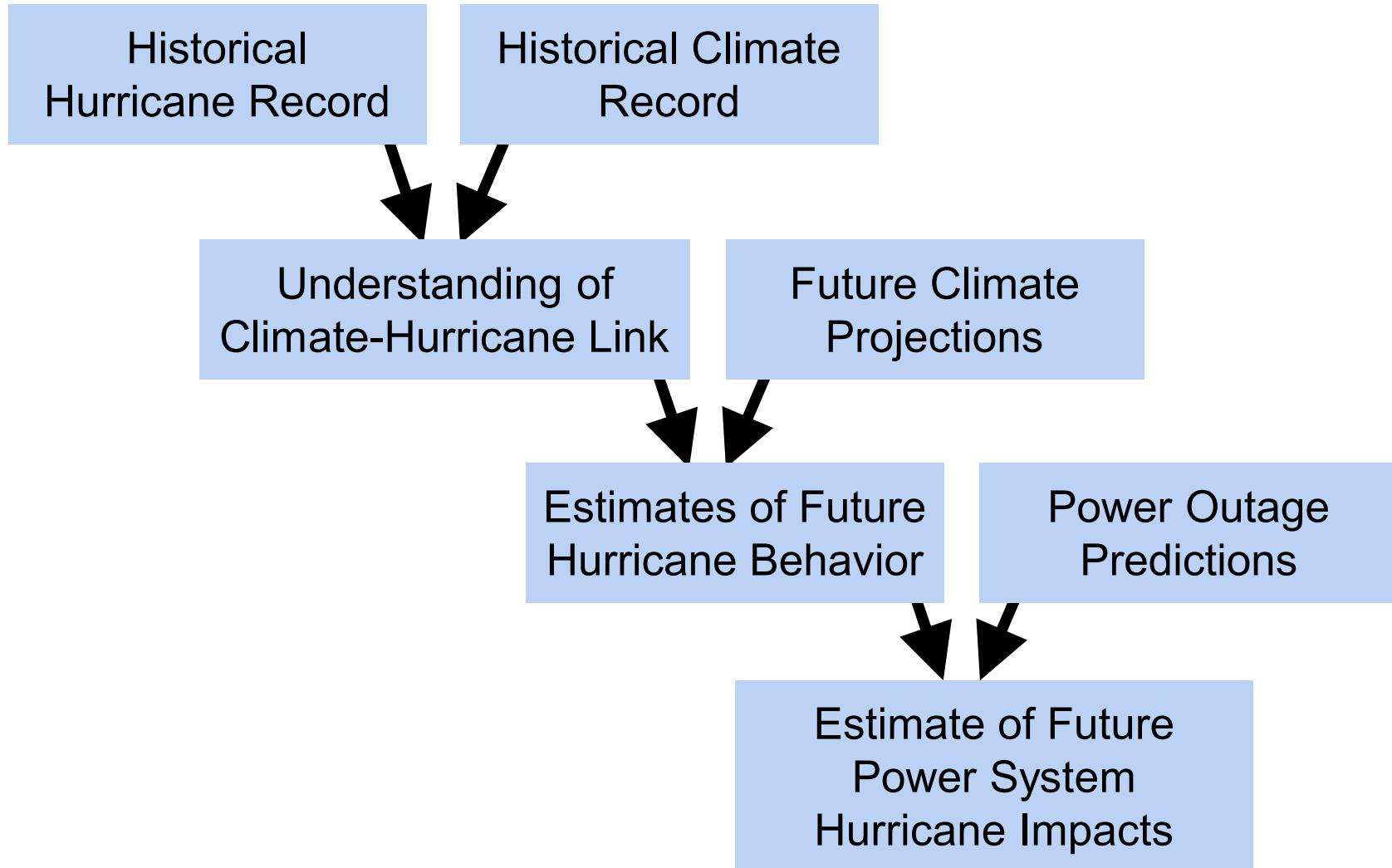
Real-Time Outage Prediction

- Limitations with only publicly-available data
- Currently models only wind-induced outages, does not consider storm surge or flooding
- Heavily dependent on an accurate track/intensity model
- However, provides accurate estimates of the spatial distribution of expected outages for an approaching storm
- Incredibly useful for crew positioning and emergency response preparation efforts

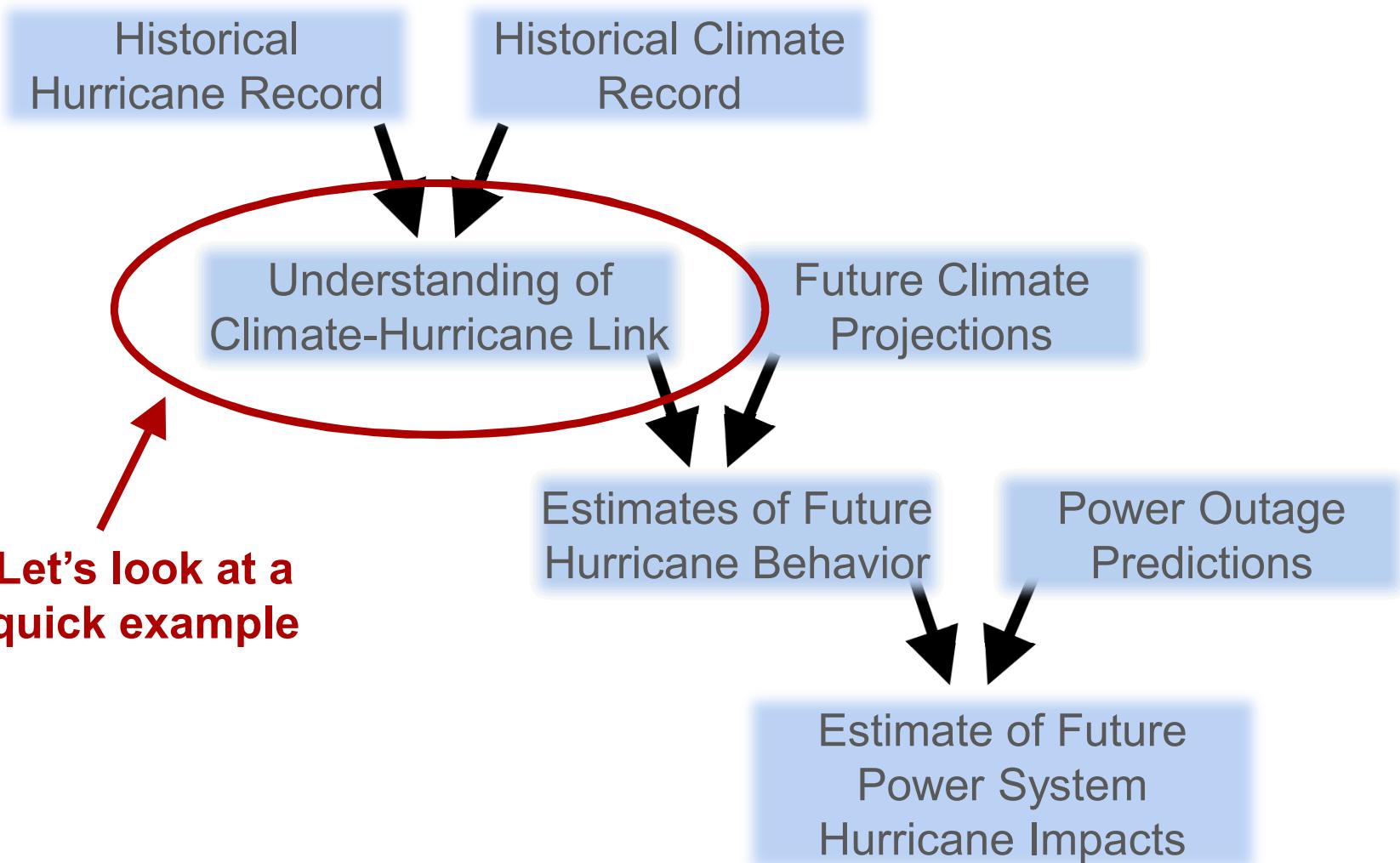
How about long term impacts?

- If we can predict outages for an oncoming storm, we can estimate the impacts of future storms, *on average*
- But, we need to know what future storms will look like!
- To do so, we must consider climate change...

How does this all come together?

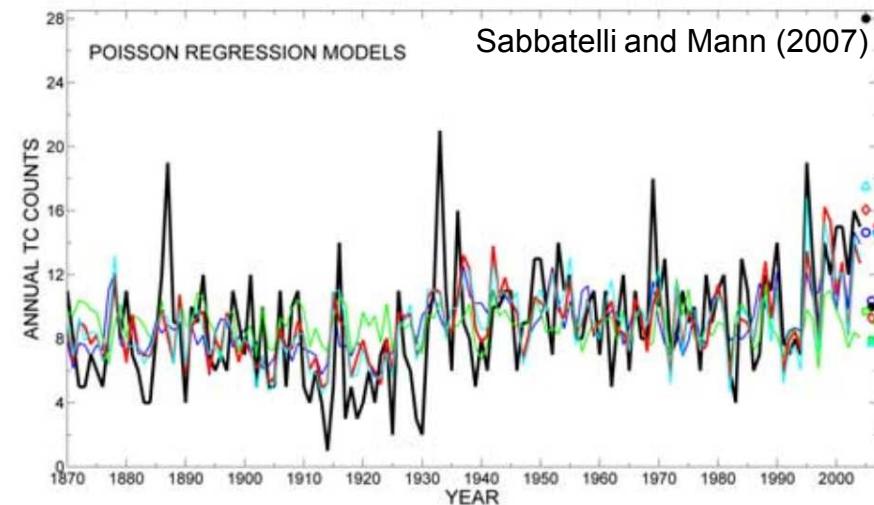


What about Uncertainty?



Seasonal Prediction

- Various agencies issue forecasts for how active the upcoming hurricane season will be, based on current climatology
- 2017 hurricane season was extremely active:
 - 17 named tropical storms (average 12)
 - 10 hurricanes (average 6)
 - 6 major hurricanes (average 2)
- Pre-season (Dec-Apr), all agencies predicted a near-average season:
 - 11-15 named tropical storms
 - 4-6 hurricanes
 - 1-3 major hurricanes
- Mid-season (Jun-Aug) forecasts increased *very* slightly

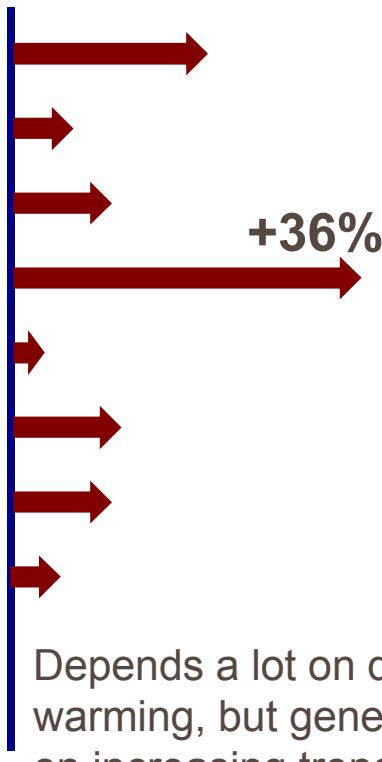


Climate link: How sure are we?

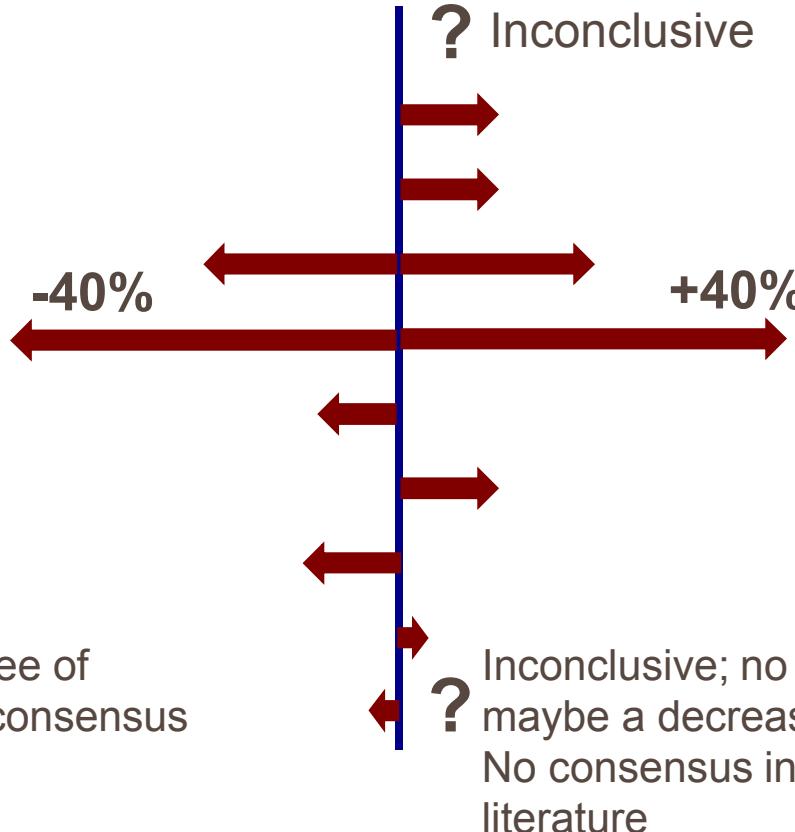
Short answer: Not very.

How will climate change affect North Atlantic tropical cyclone:

Intensity?



Frequency?



Location?

?

- Poleward migration in certain ocean basins
- Little to no change
- Dependent on atmospheric circulation, unsure

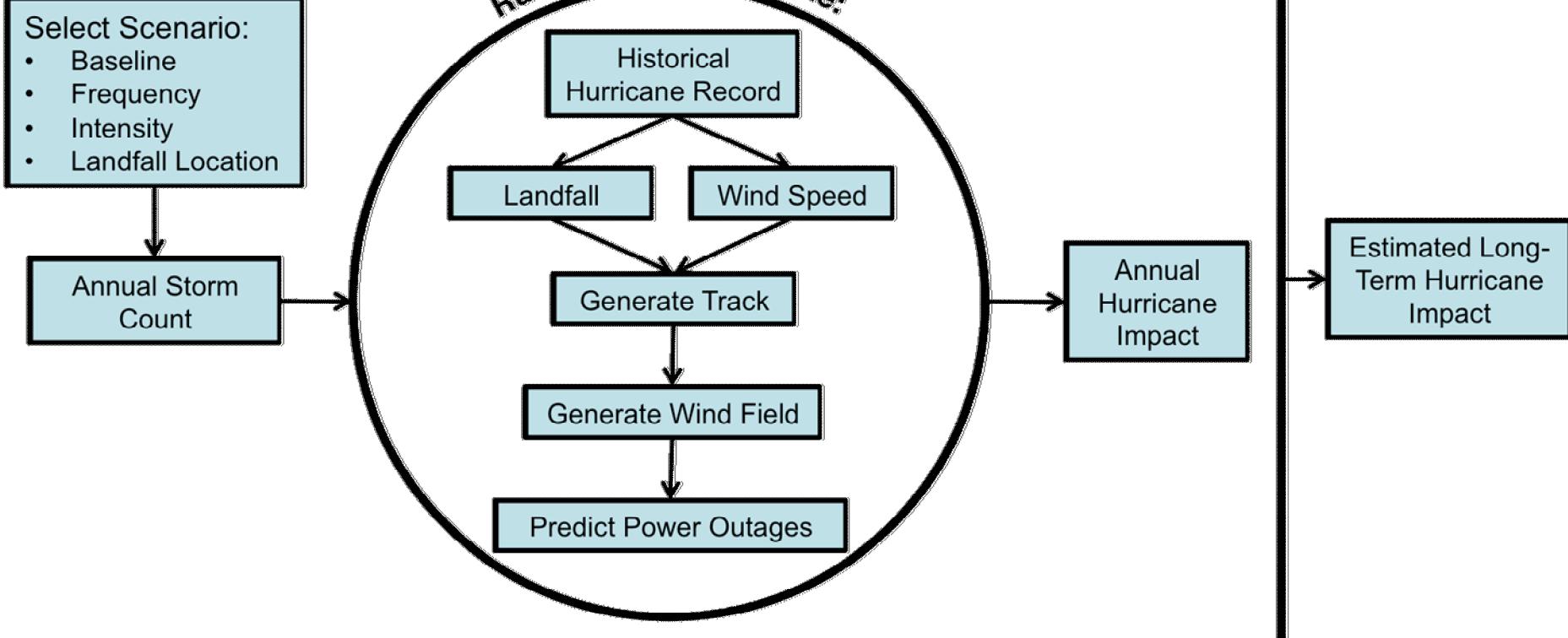
Scenario-Based Analysis

- Scenarios can be used to represent the range of expected change, allowing us to assess sensitivity to potential climate change
- Process:
 1. Choose a range of hurricane scenarios
 - Vary storm intensity, frequency, and landfall location
 2. Generate virtual storms and simulate expected impacts under each scenario along U.S. Atlantic and Gulf Coasts
 3. Use wind data and power outages as measures of theoretical future risk to power system infrastructure
 4. Assess range of projected impacts; identify greatest risks and most vulnerable locations

Simulation Structure

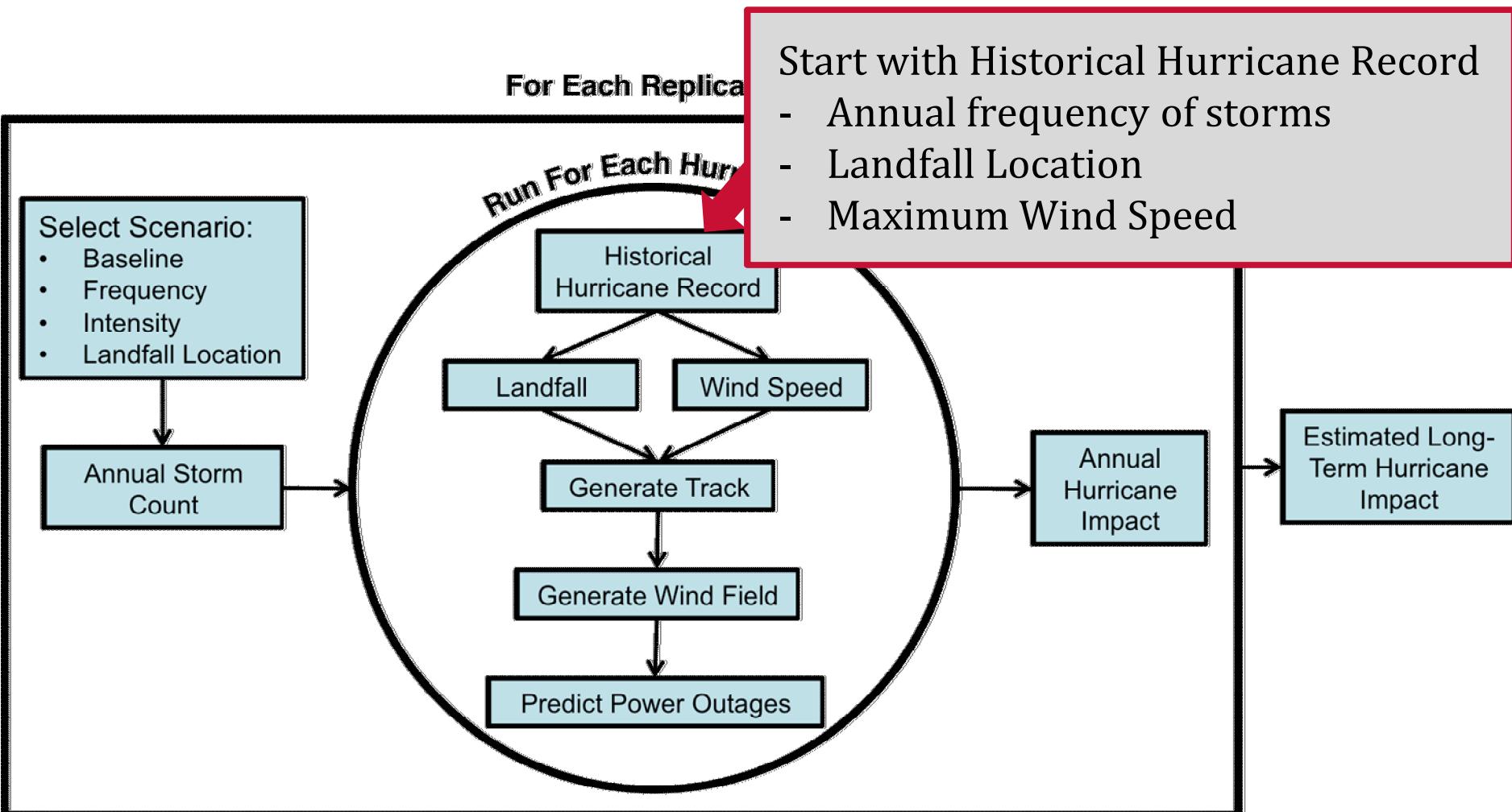
For Each Replication:

Run For Each Hurricane:

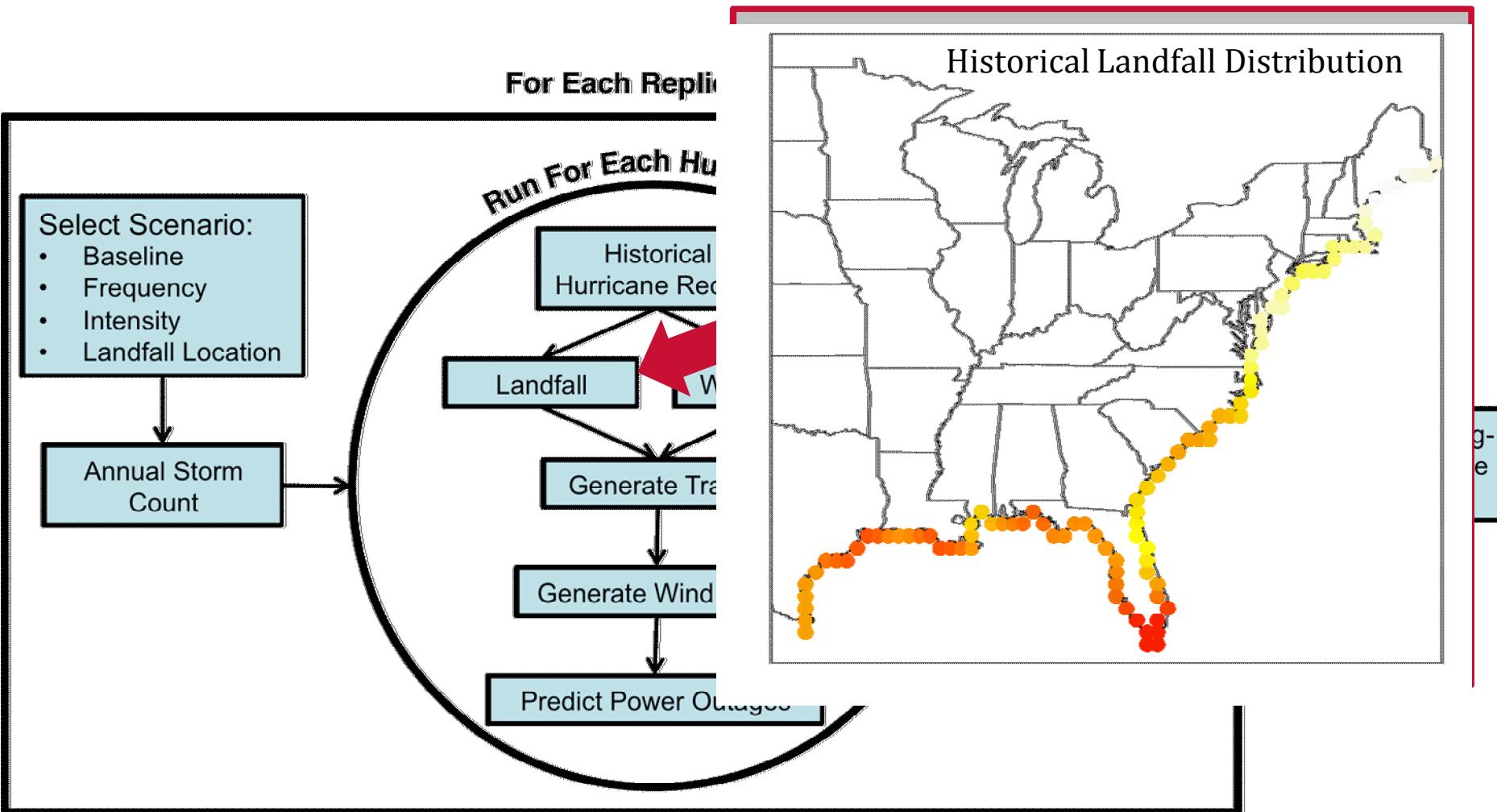


Repeat to reach convergence of the 99th percentile within 1%

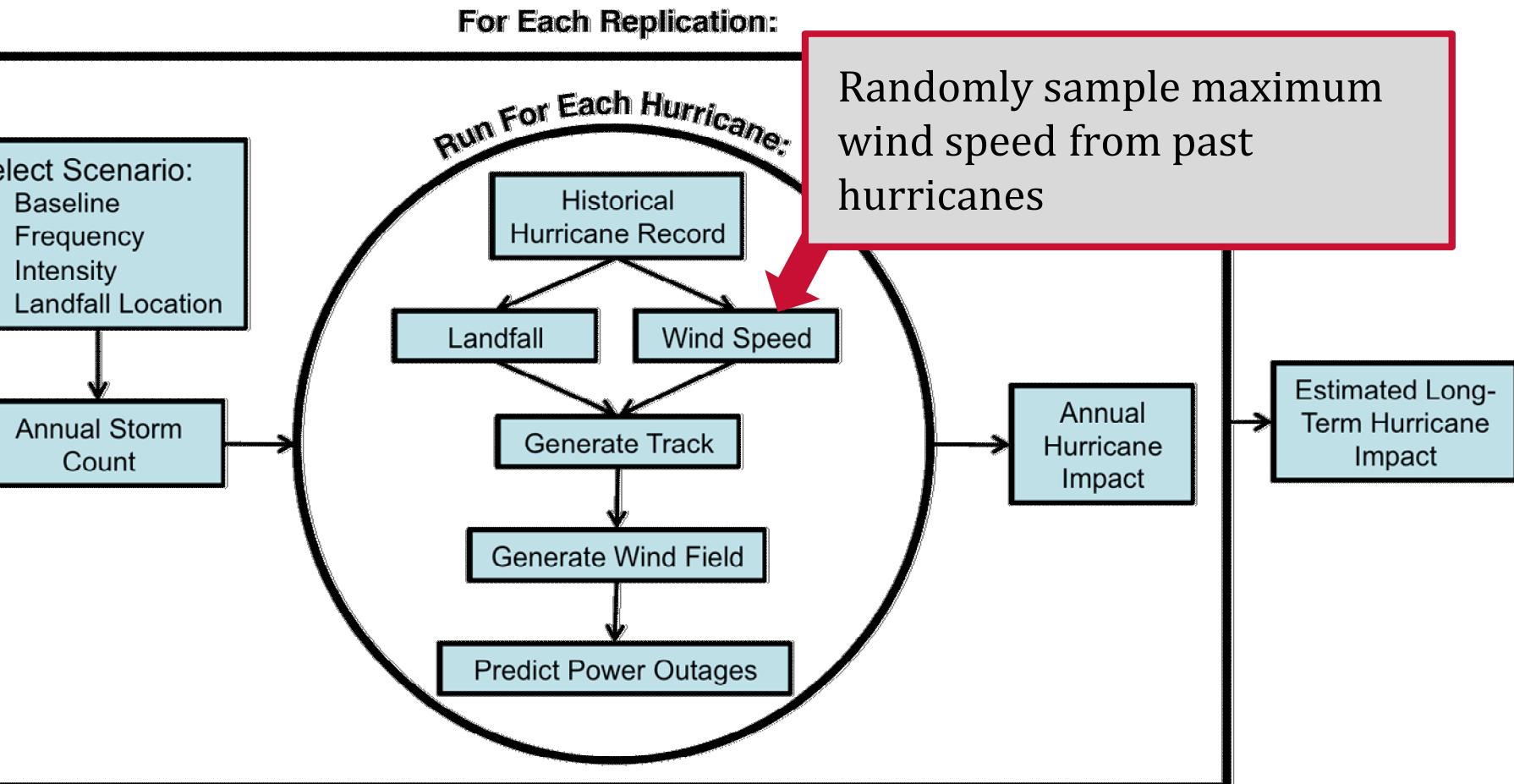
Simulation Structure



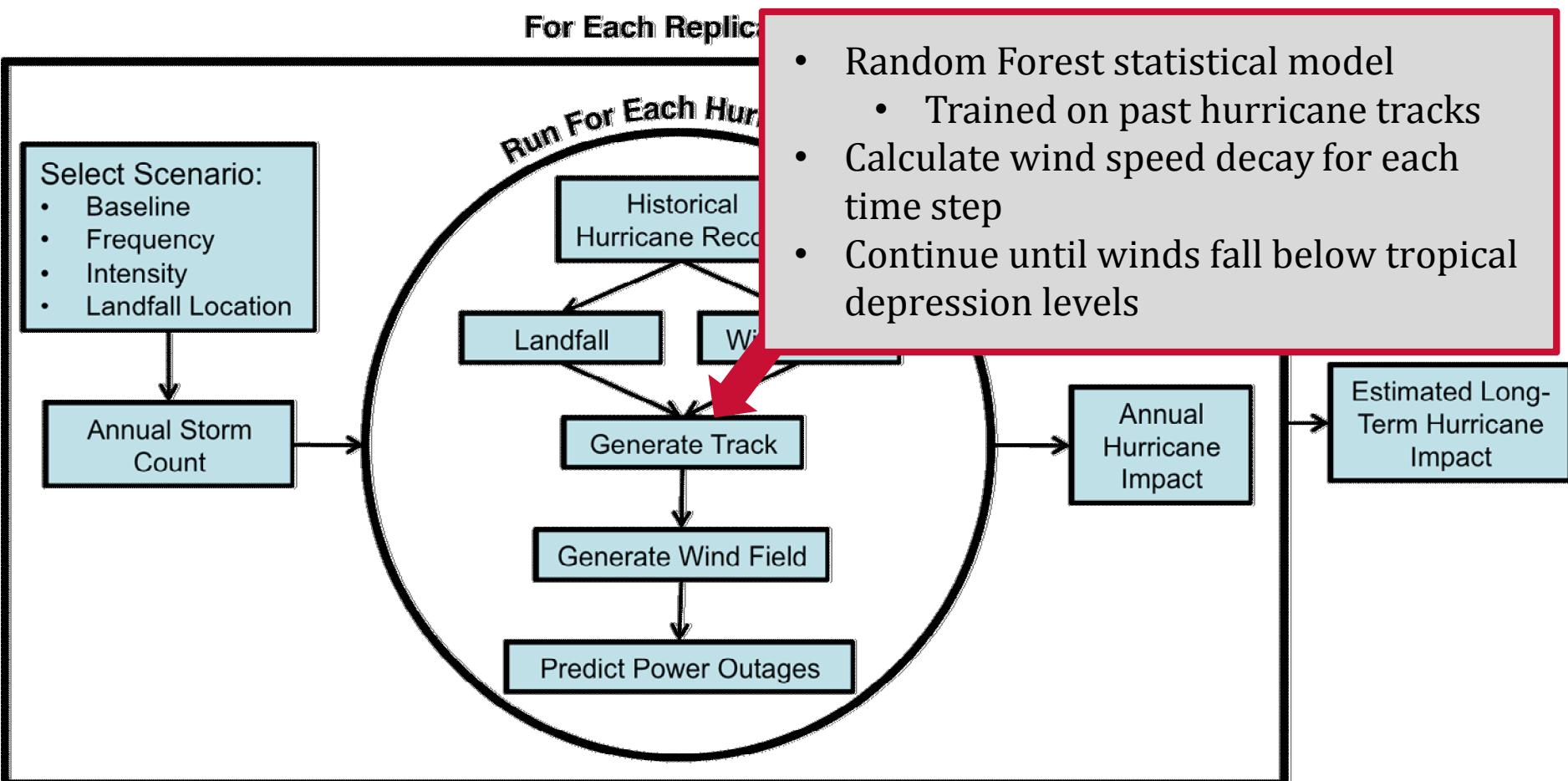
Simulation Structure



Simulation Structure



Simulation Structure



Simulation Structure

For Each Replication:

Select Scenario:

- Baseline
- Frequency
- Intensity
- Landfall Location

Annual Storm Count

Historical Hurricane Record

Landfall

Gener

Generate Wind Field

Predict Power Outages

Impact

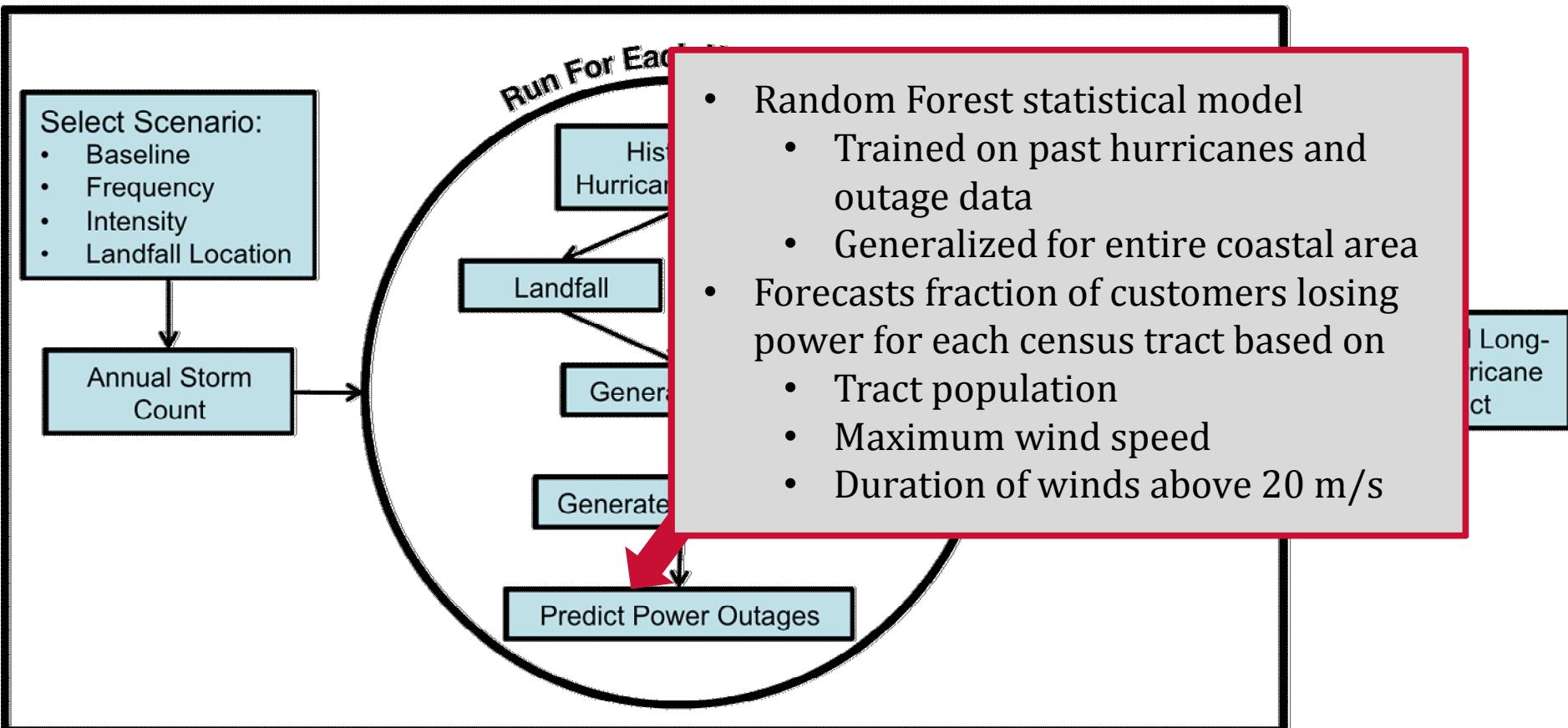
Land Long-Hurricane Impact

Run For Each Hurricane:

- Generate wind profiles at each census tract using storm track & wind speeds

Simulation Structure

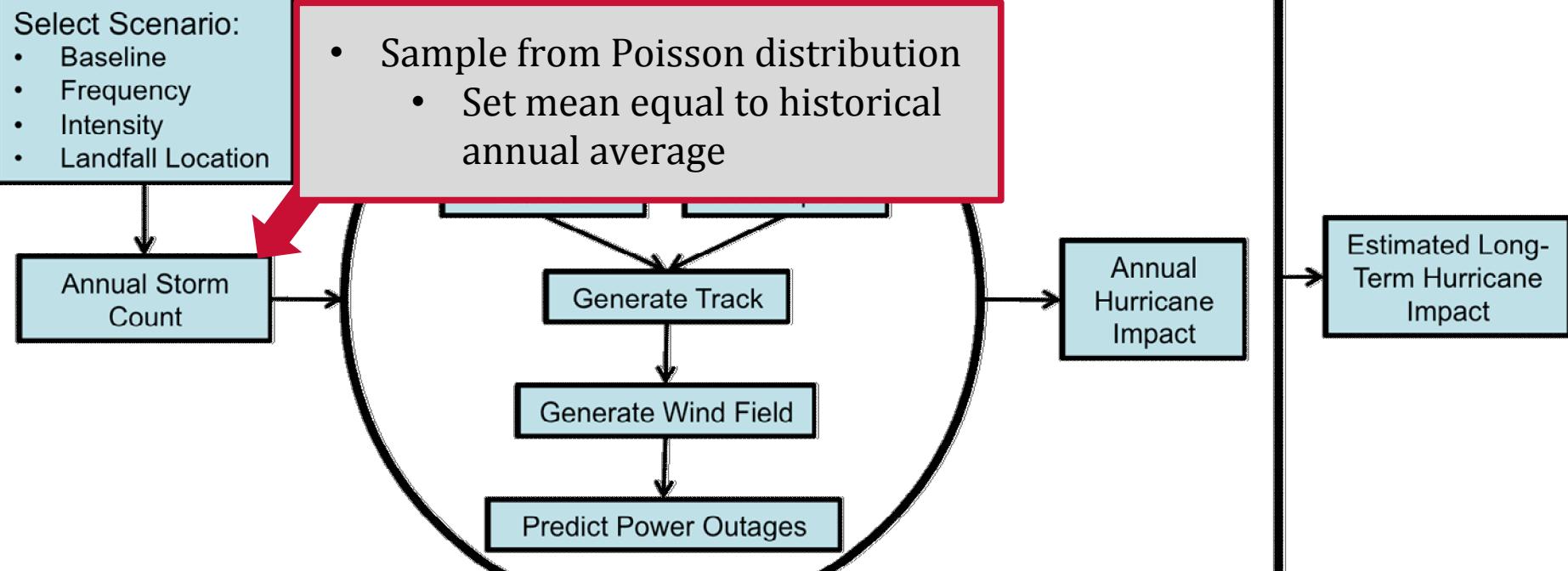
For Each Replication:



Simulation Structure

For Each Replication:

Run For Each Hurricane.



Simulation Structure

For Each Replication:

- Baseline – Use historical data

Select Scenario:

- Baseline
- Frequency
- Intensity
- Landfall Location

Annual Storm Count

Historical Hurricane Record

Landfall

Wind Speed

Generate Track

Generate Wind Field

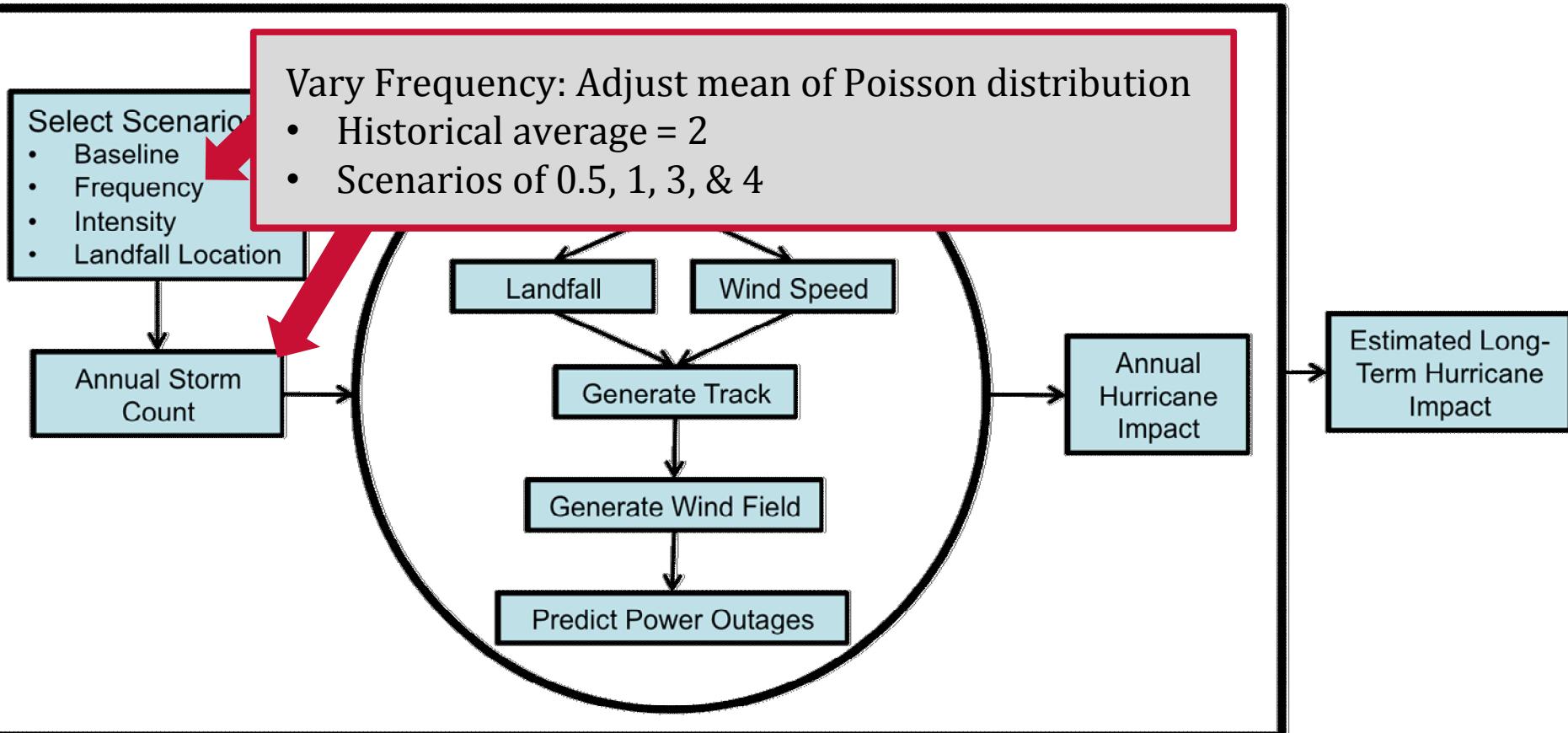
Predict Power Outages

Annual Hurricane Impact

Estimated Long-Term Hurricane Impact

Simulation Structure

For Each Replication:

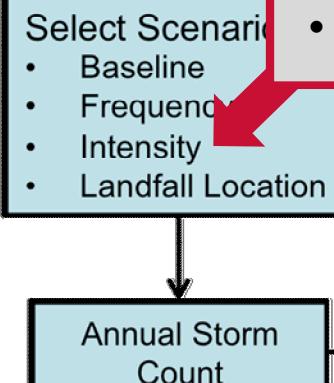
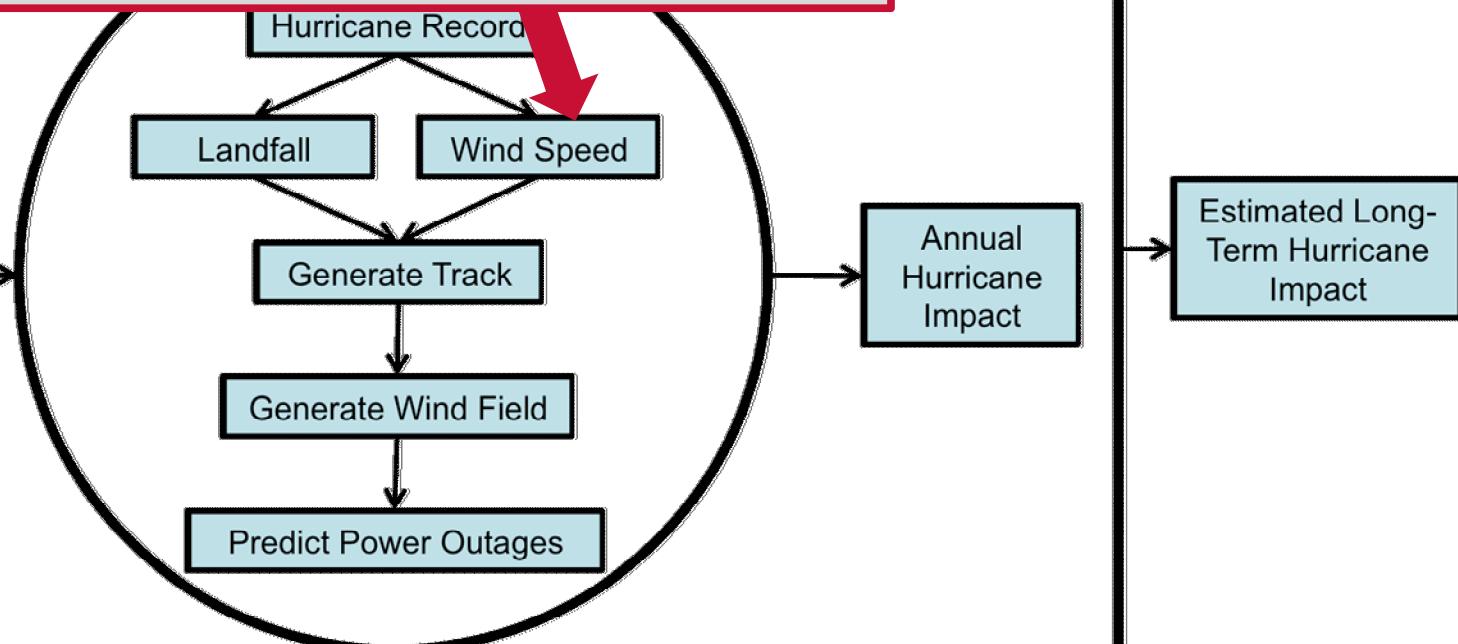


Simulation Structure

For Each Replication:

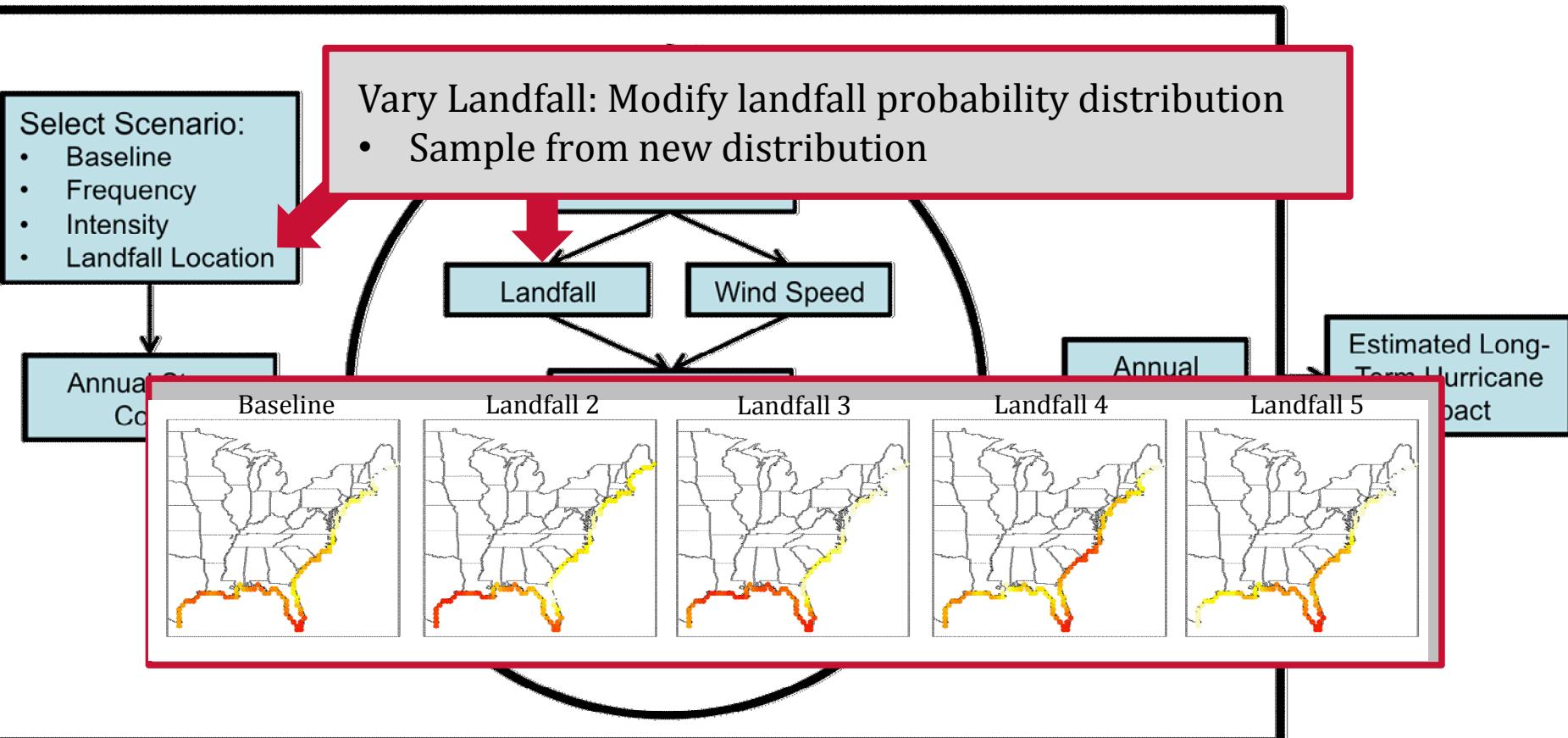
Vary Intensity: Modify maximum wind speed

- Adjust by factors of 0.8, 1.2, & 1.4



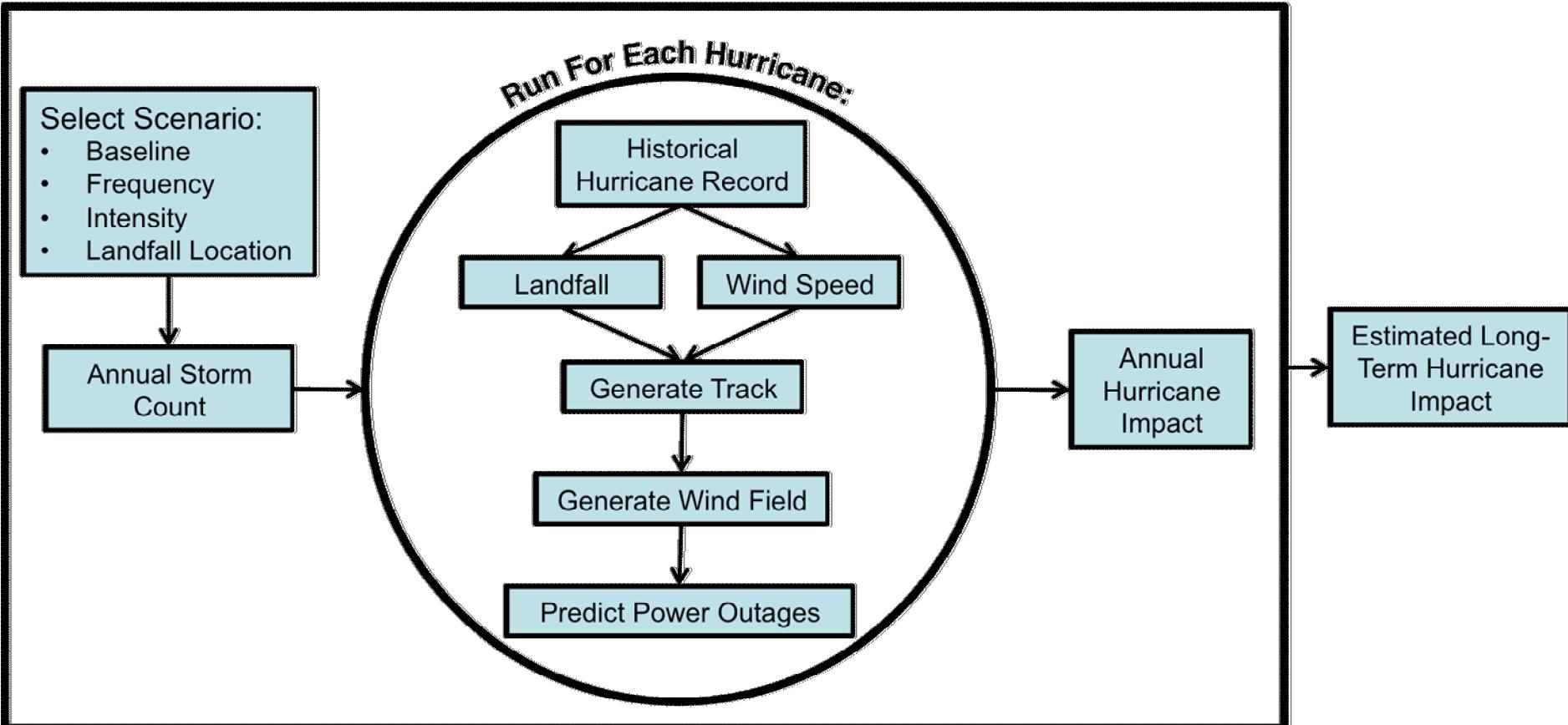
Simulation Structure

For Each Replication:



Simulation Structure

For Each Replication:

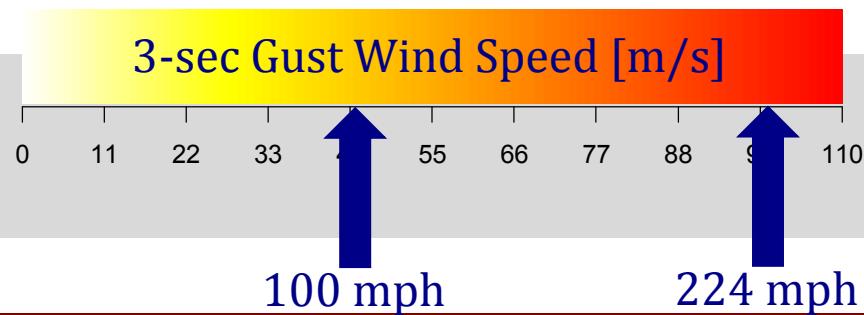


Repeat to reach convergence of the 99th percentile within 1%

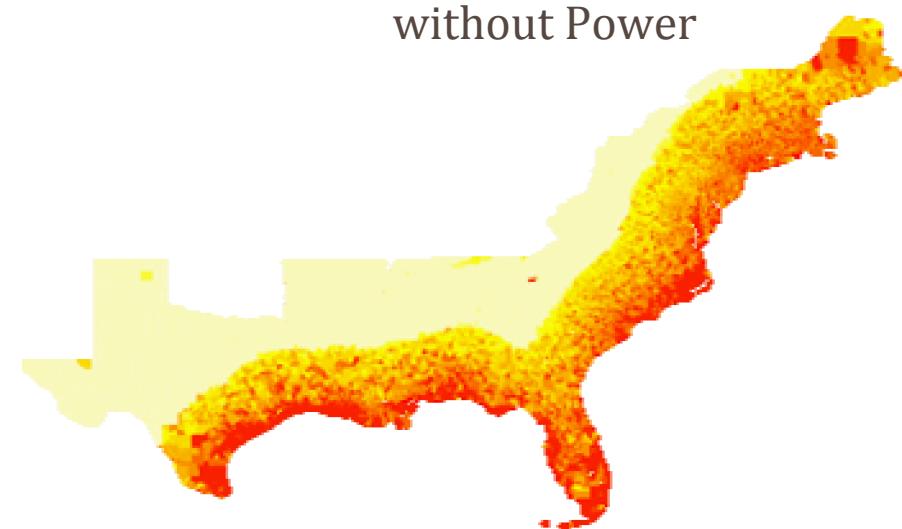
Baseline Results

100-Year Wind Speed [m/s]

3-sec Gust Wind Speed [m/s]



100-Year Fraction of Customers without Power



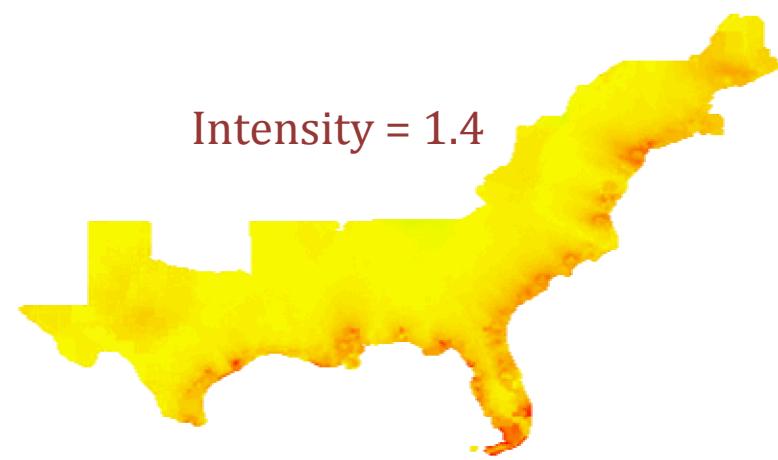
100-Year Wind Speed [m/s]

Plotting **Difference** From Baseline:

Intensity = 0.8

Intensity = 1.2

Intensity = 1.4



Change in Wind Speed [m/s]

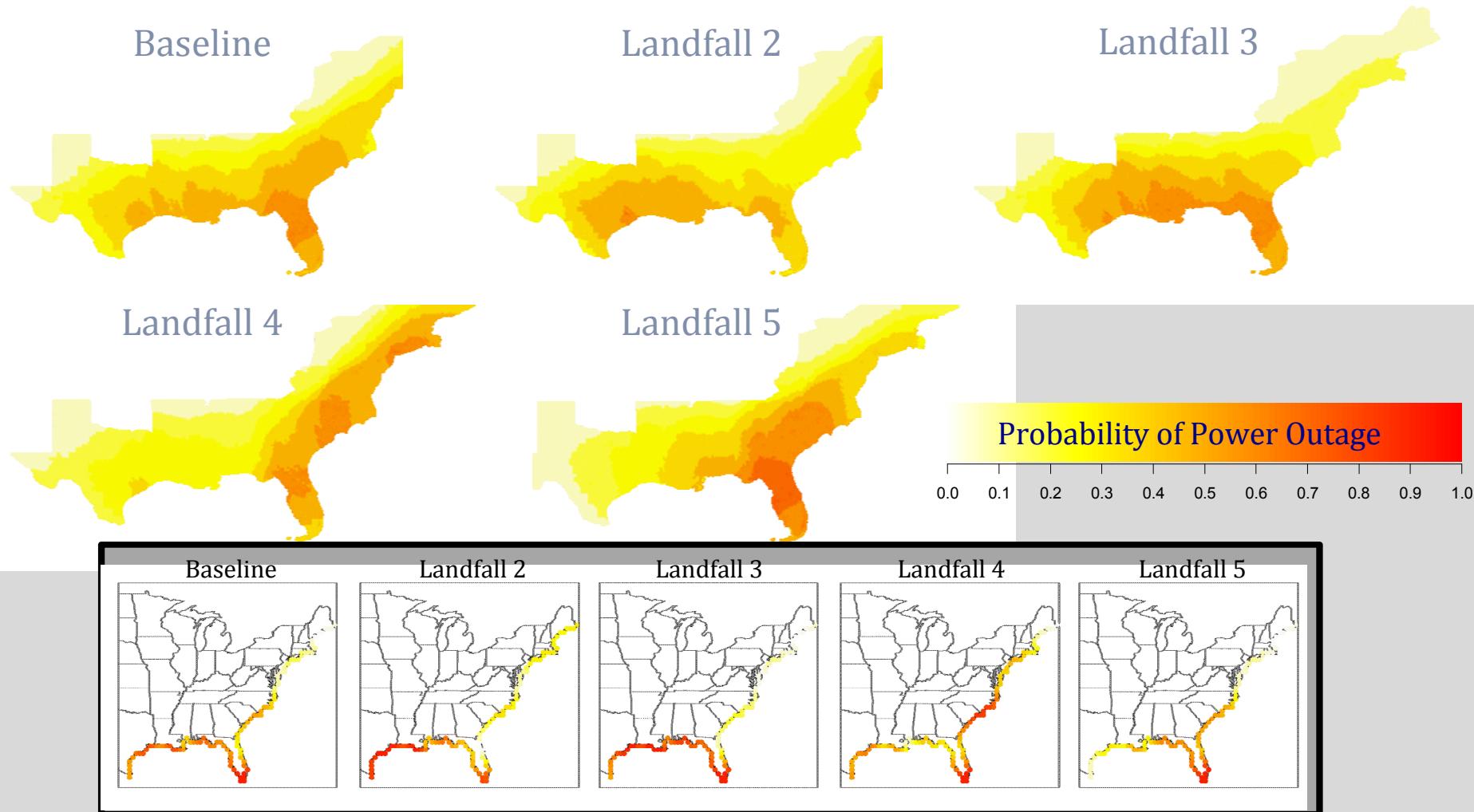
-60 -48 -36 -24 -12 0 12 24 36 48 60

100-Year Fraction without Power

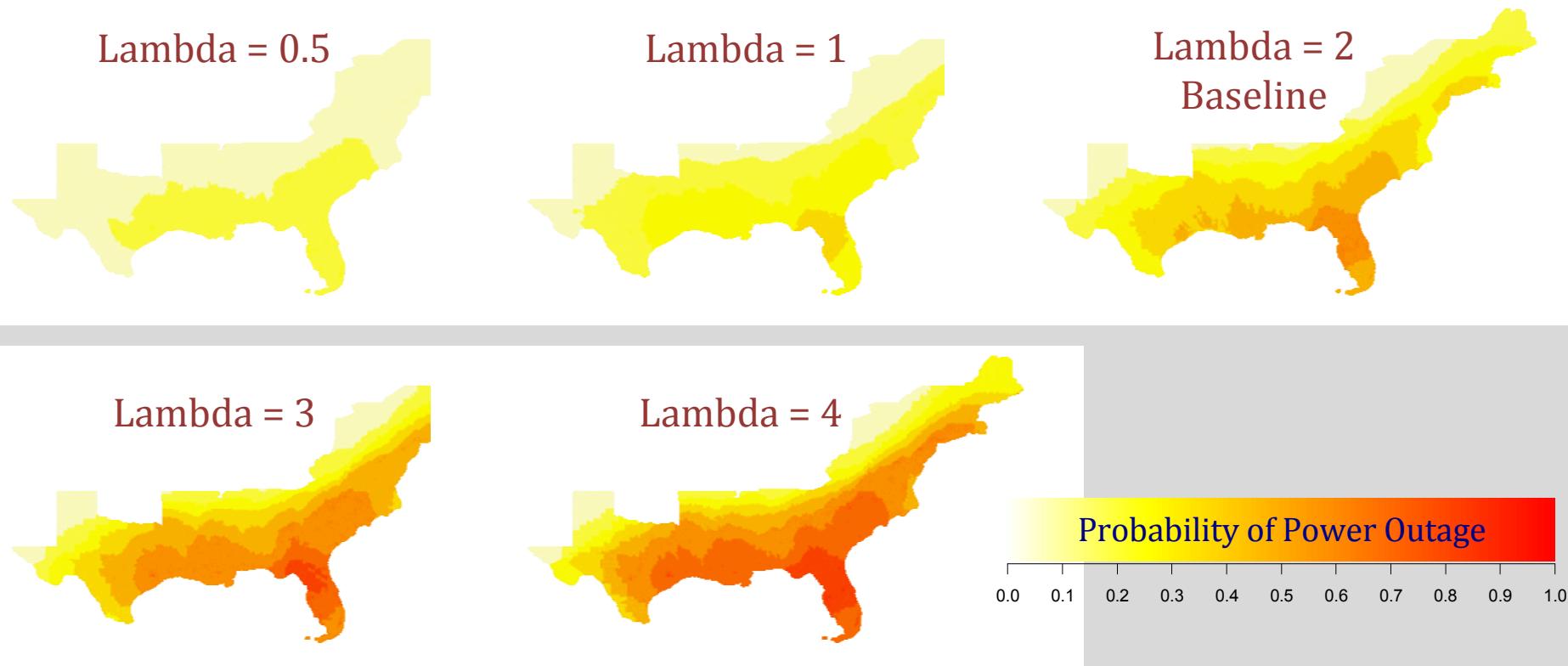
Plotting **Difference** From Baseline:



Annual Probability of Outage

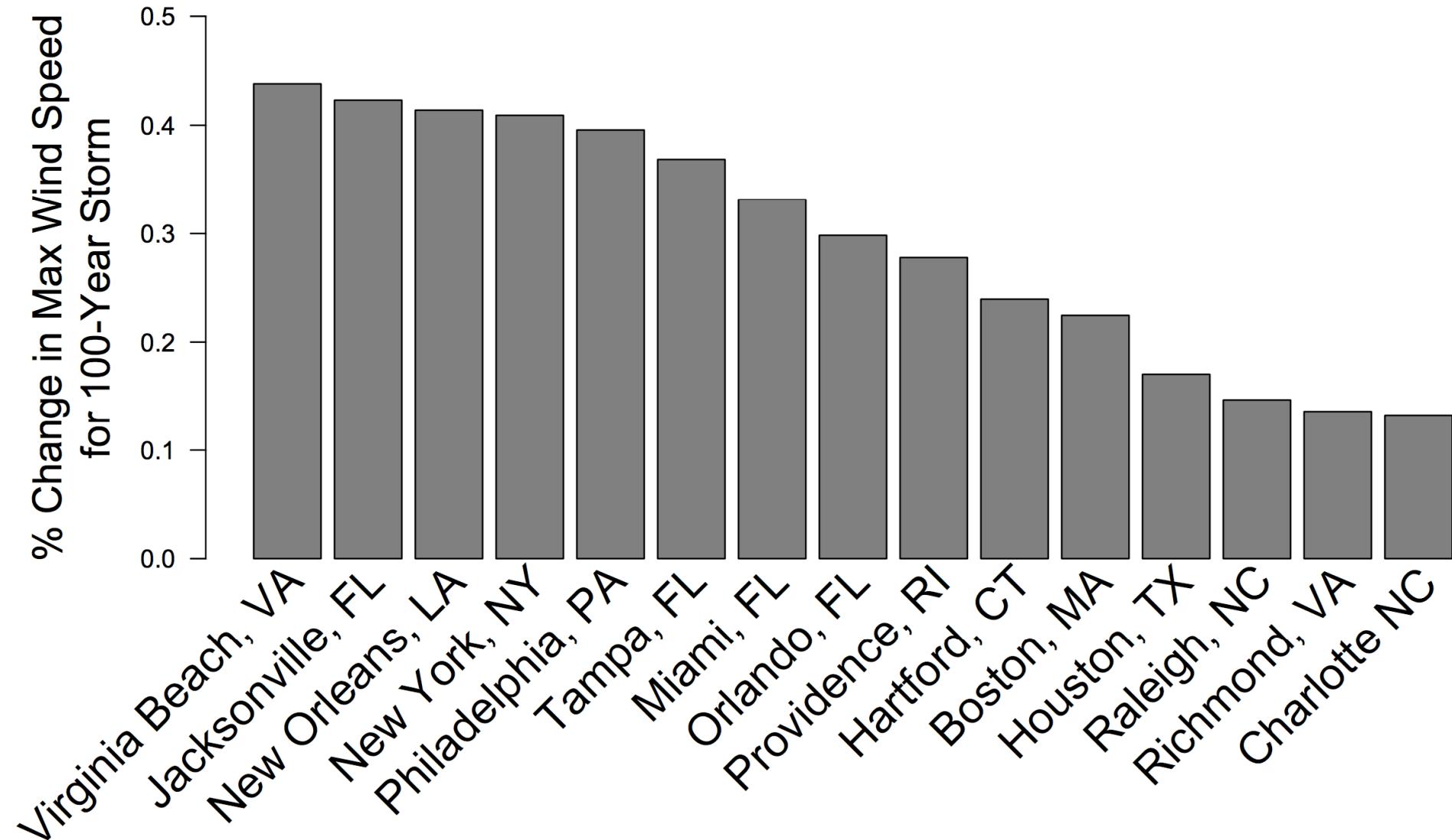


Annual Probability of Outage

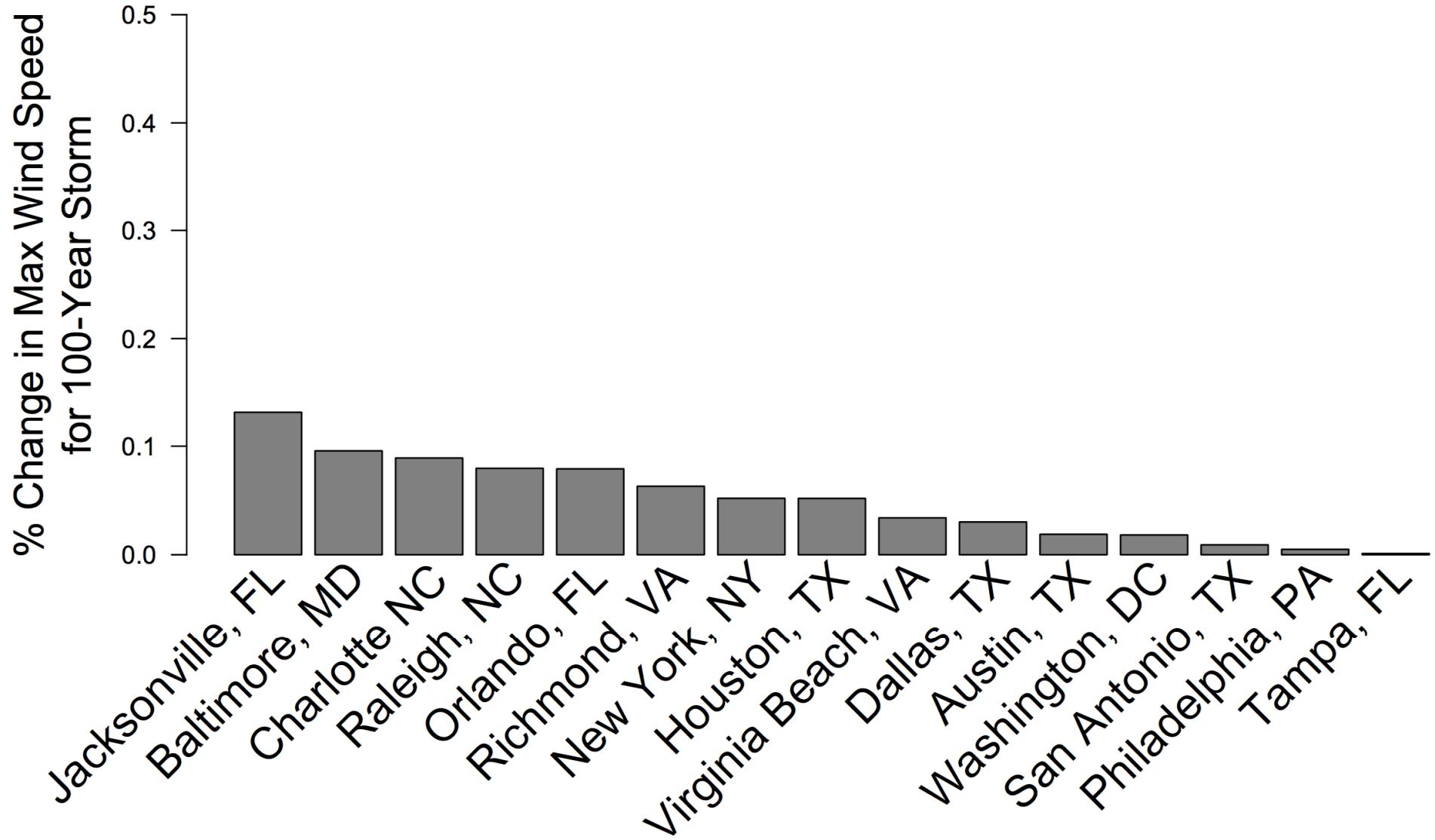


*The lambda value represents the average number of storms making landfall per year

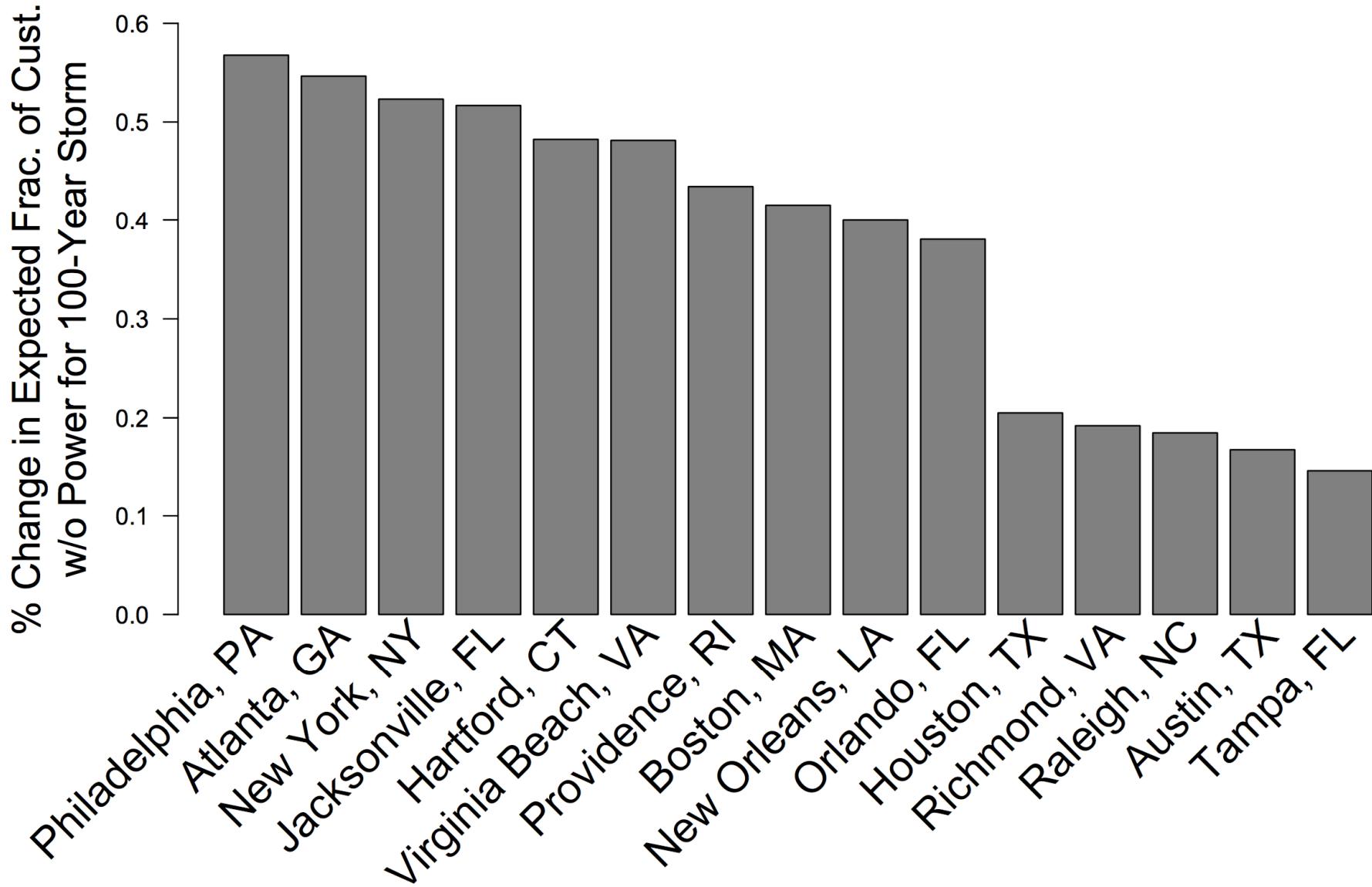
Max Wind – Sensitivity to Intensity



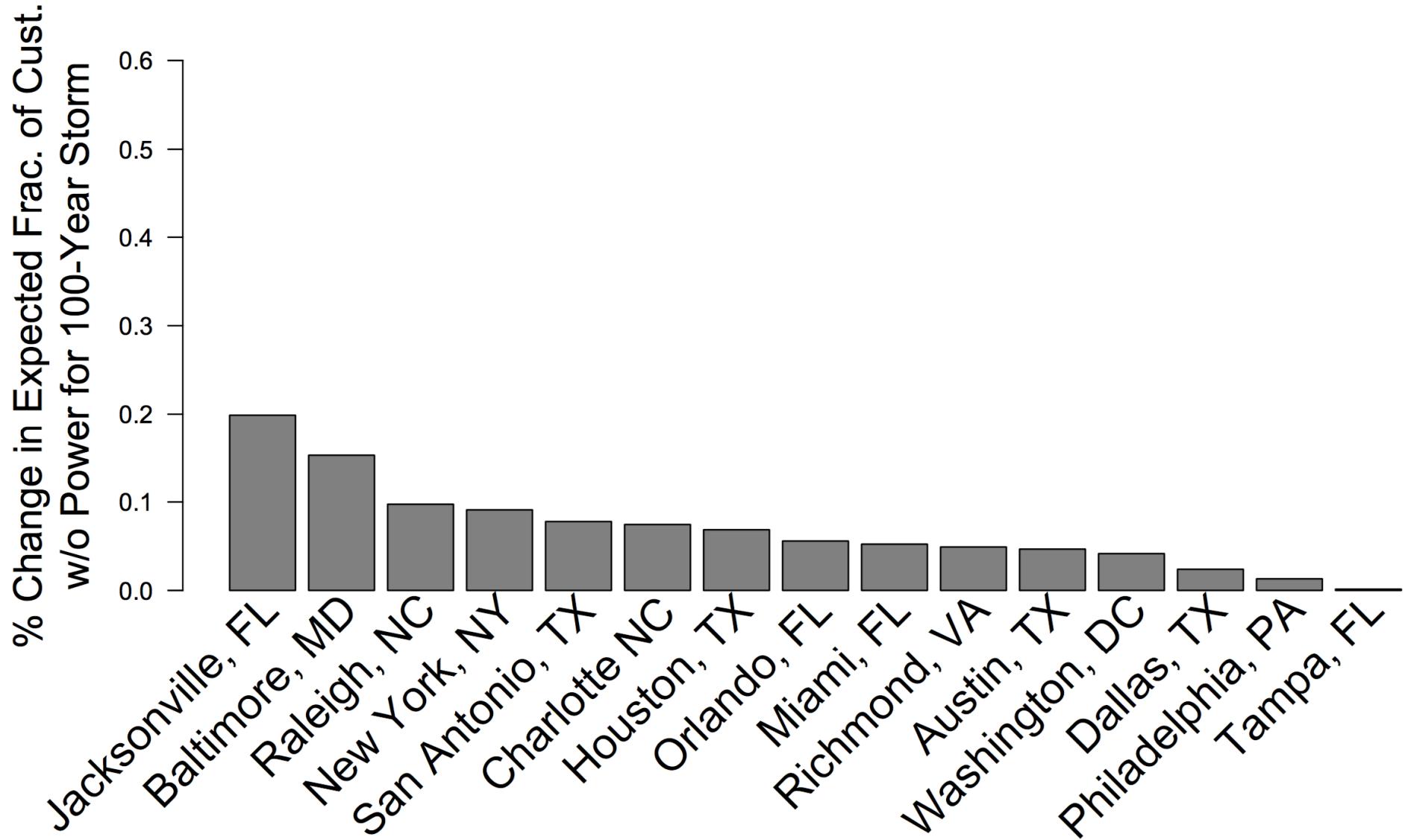
Max Wind – Sensitivity to Frequency



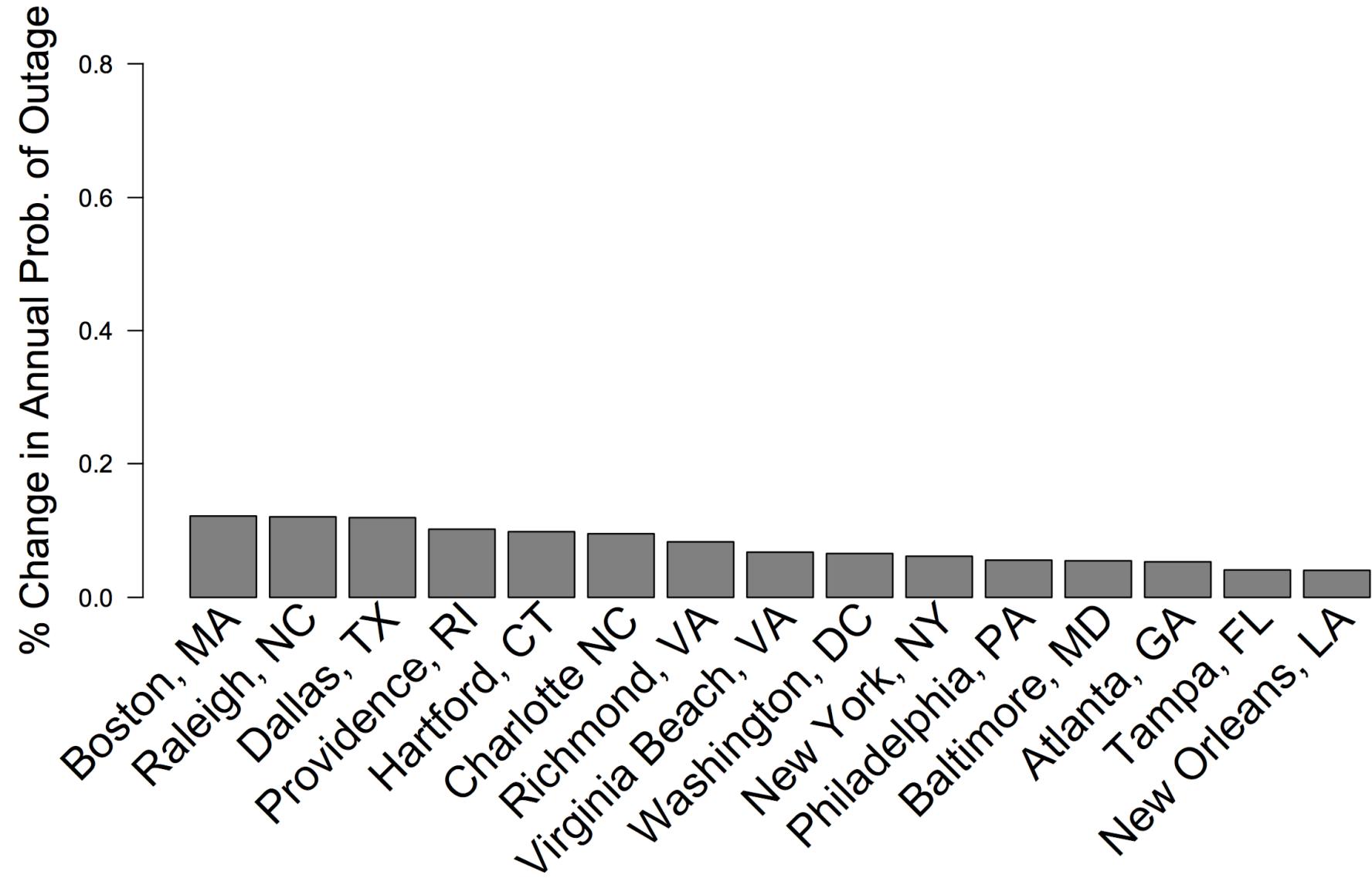
Fraction Out – Sensitivity to Intensity



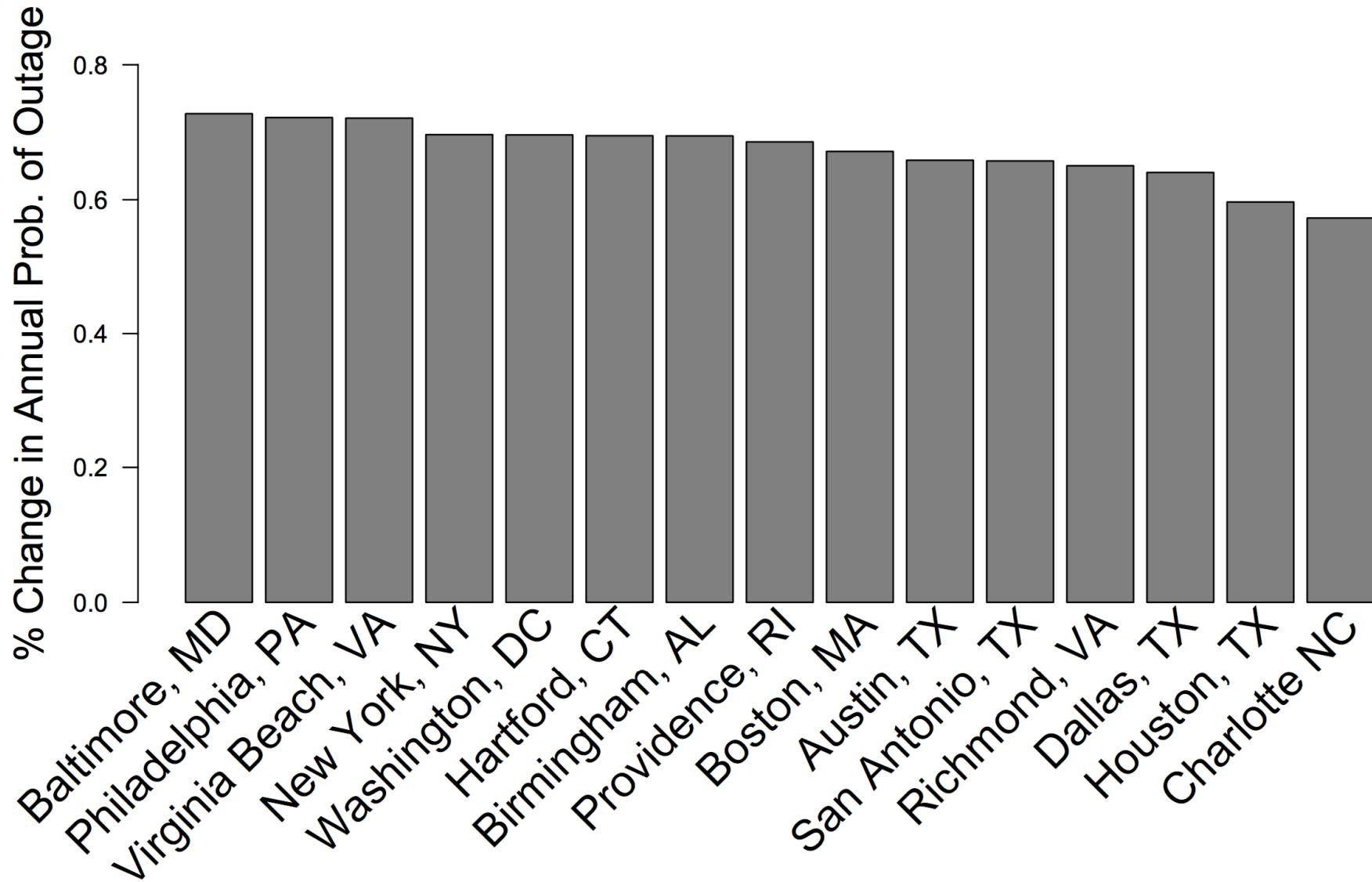
Fraction Out – Sensitivity to Frequency



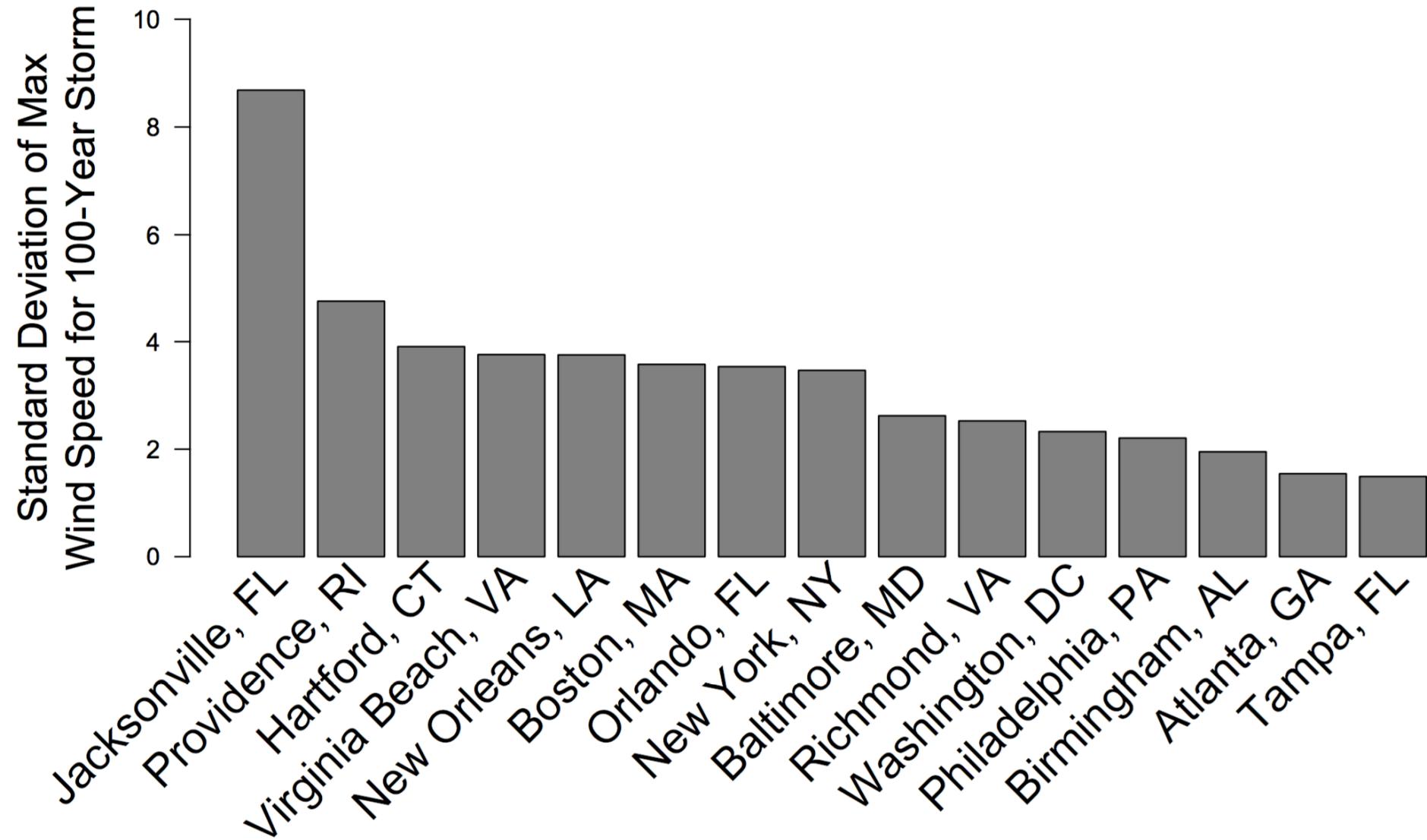
P(outage) – Sensitivity to Intensity



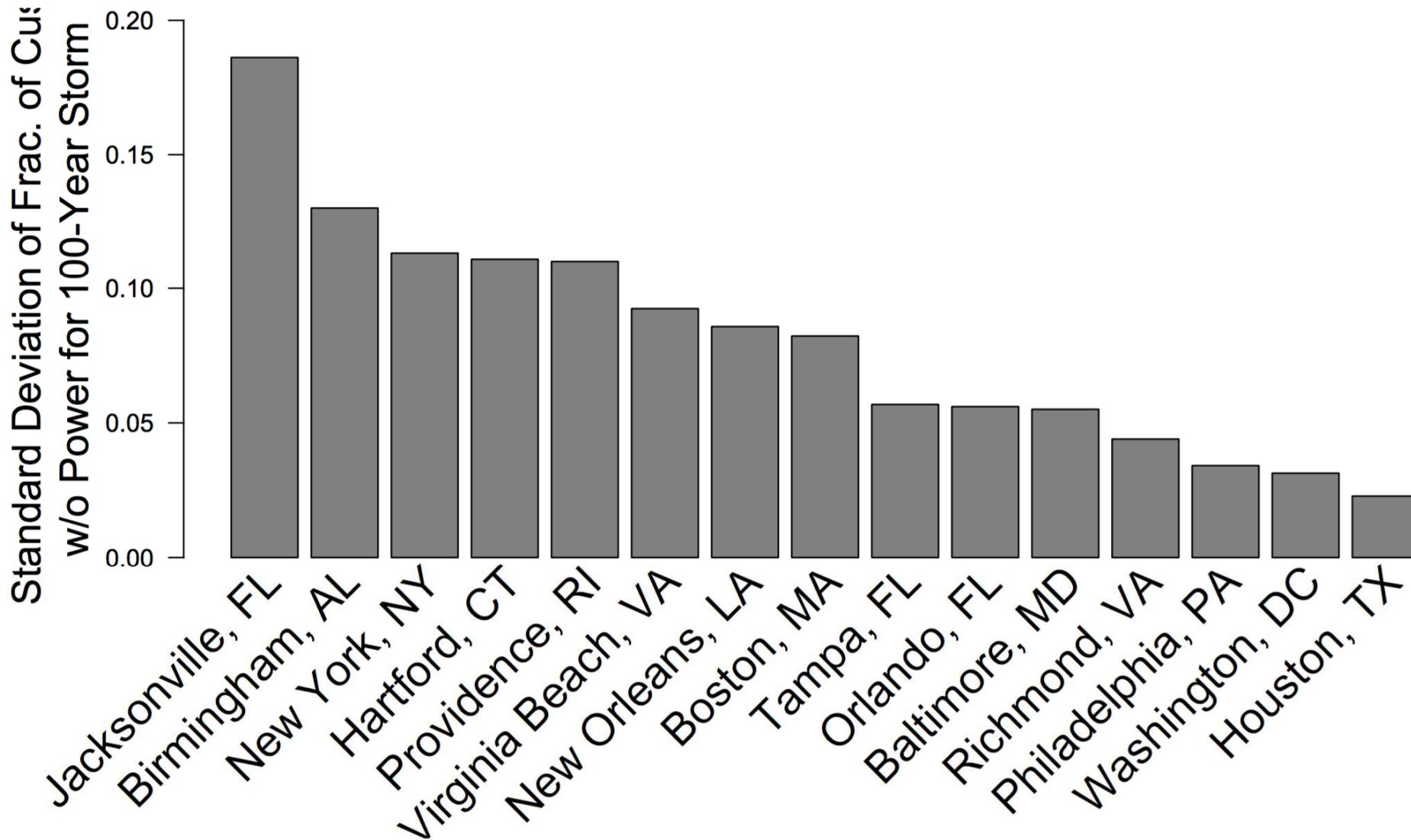
P(outage) – Sensitivity to Frequency



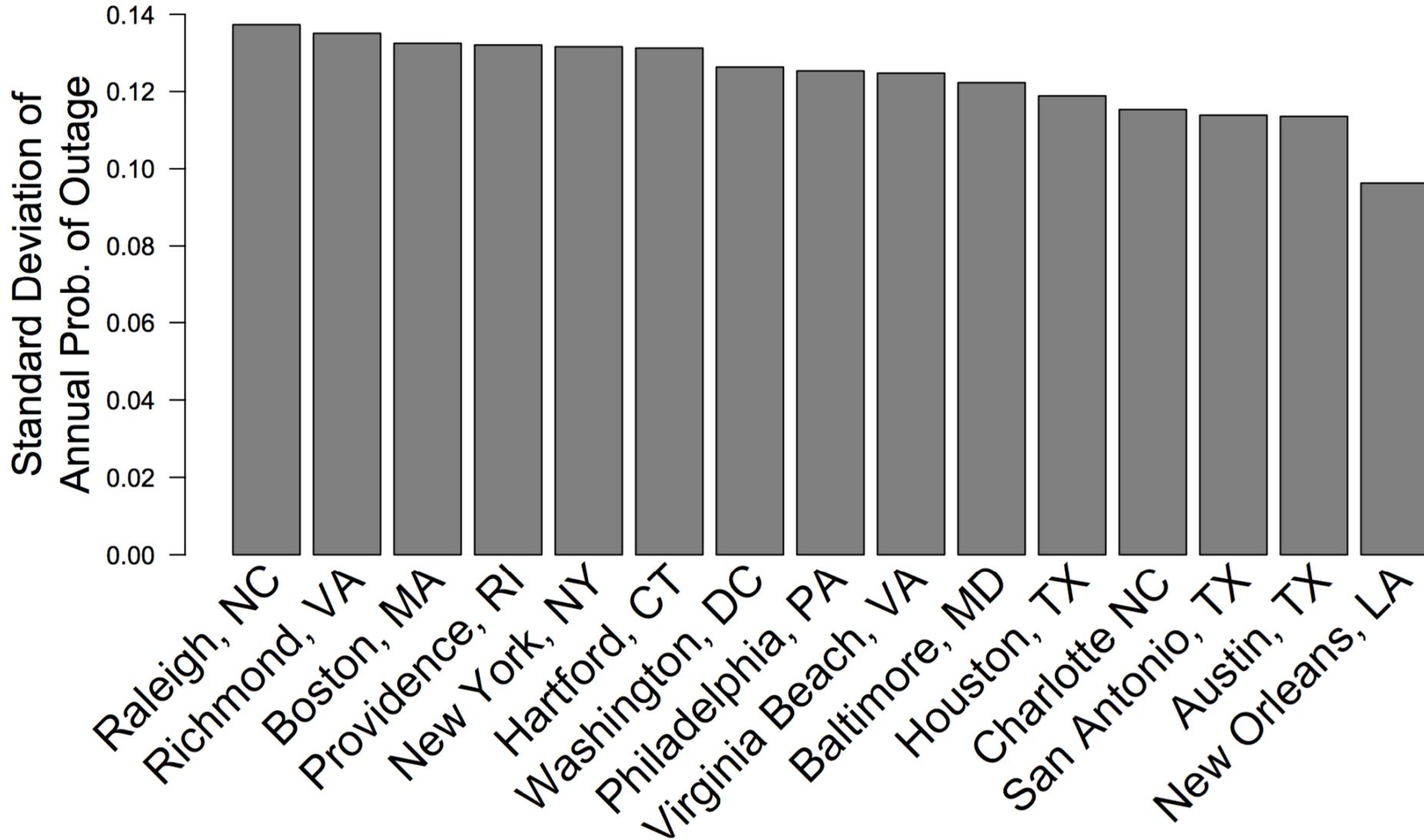
Max Wind – Sensitivity to Location



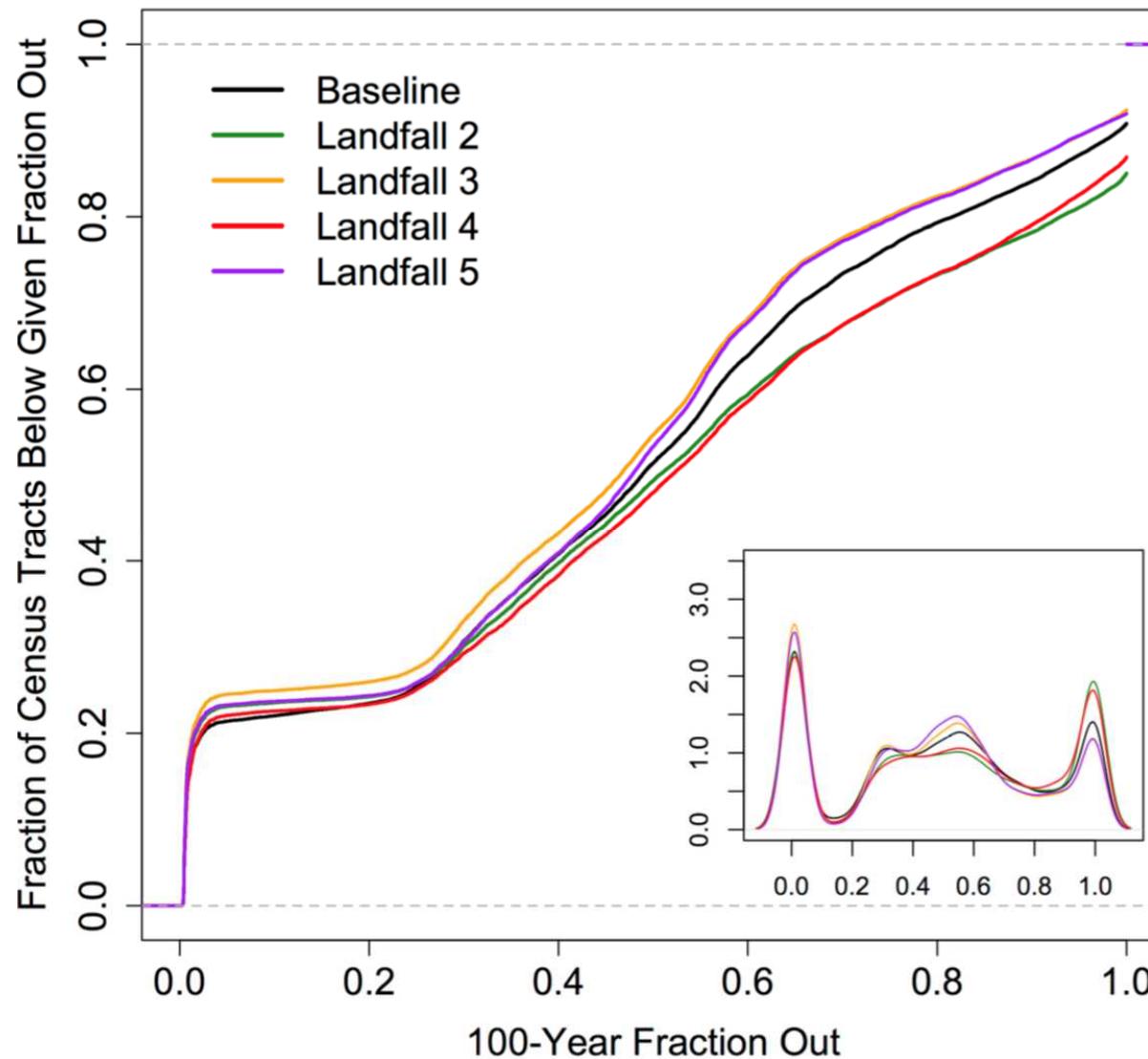
Fraction Out – Sensitivity to Location



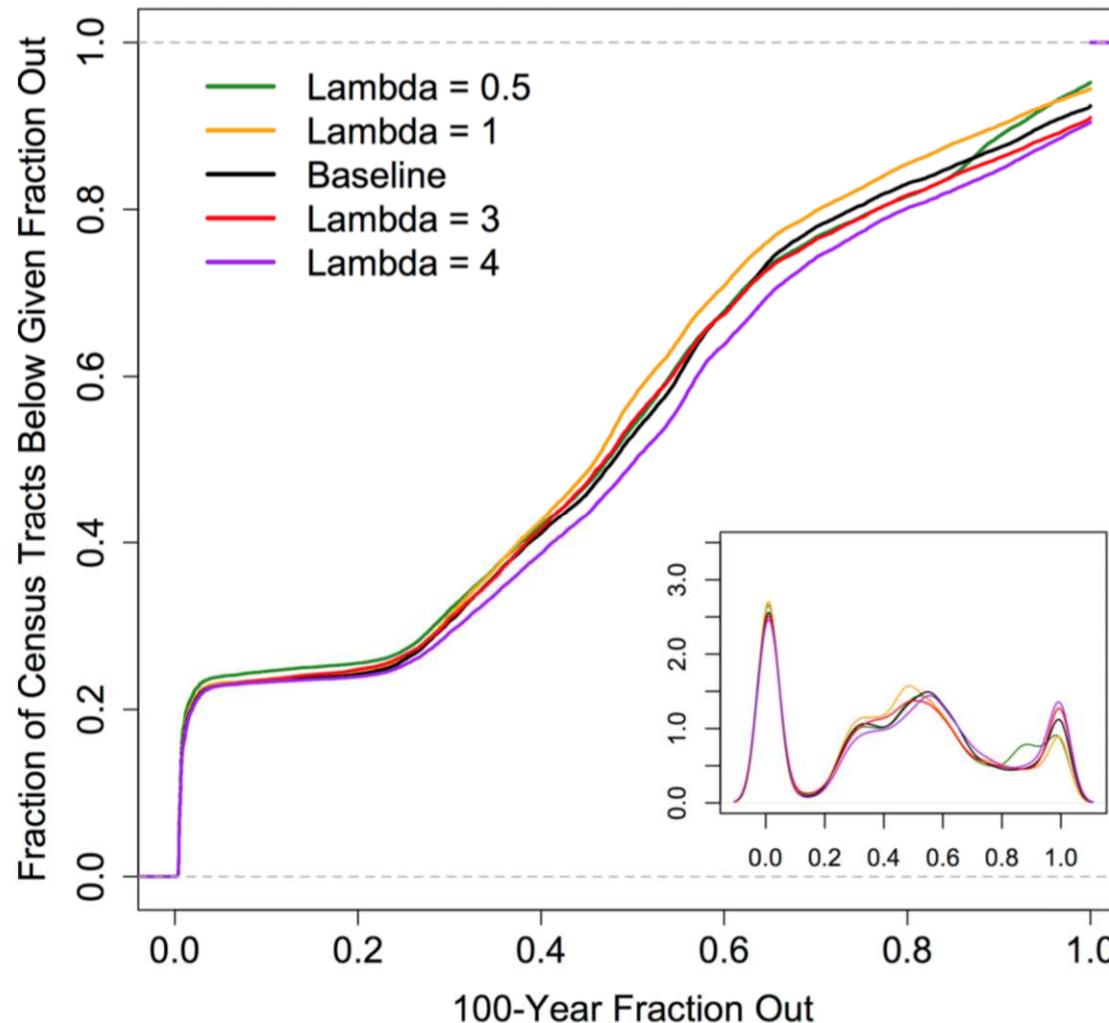
P(outage) – Sensitivity to Location



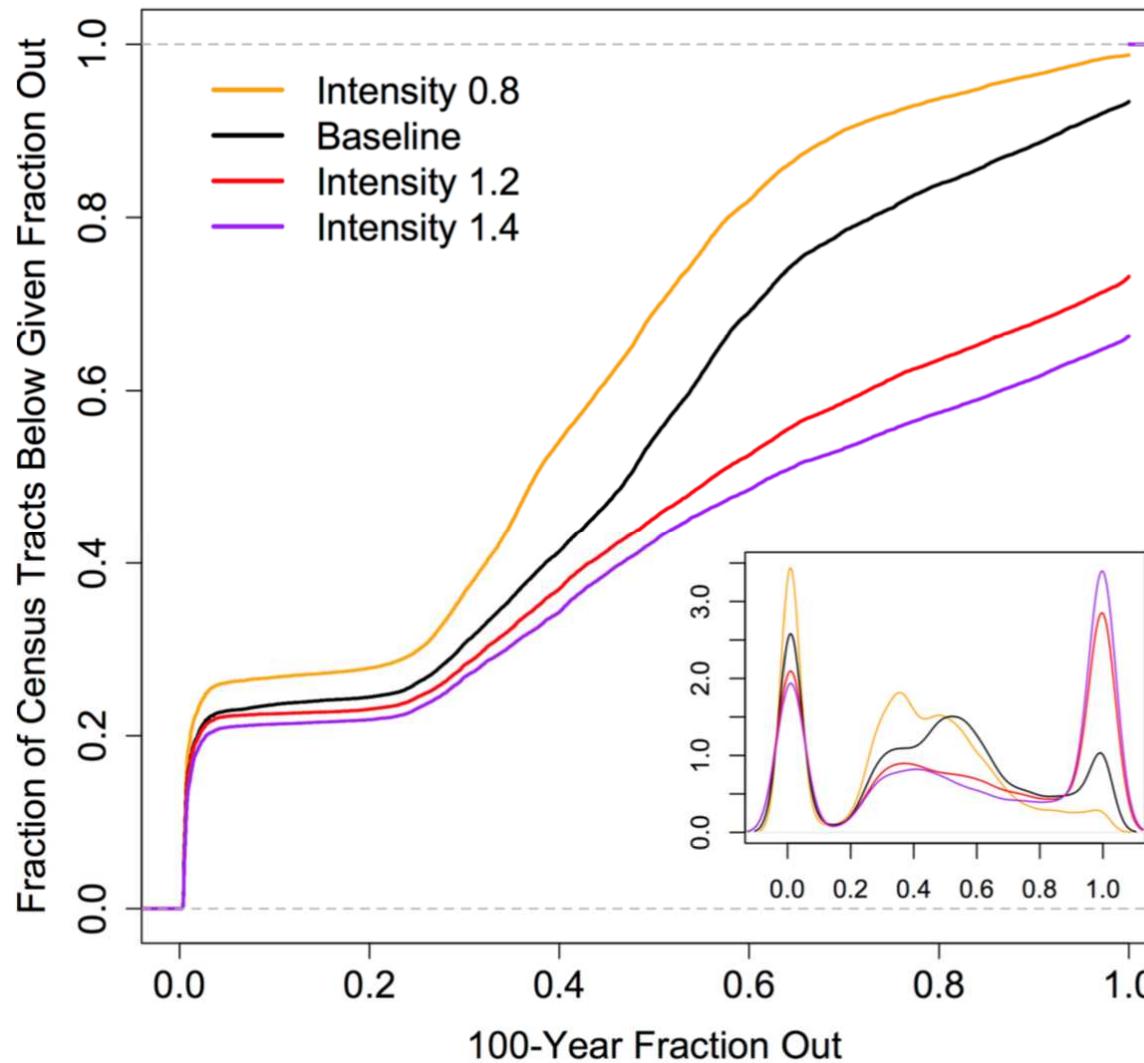
Fraction Out - Landfall Sensitivity



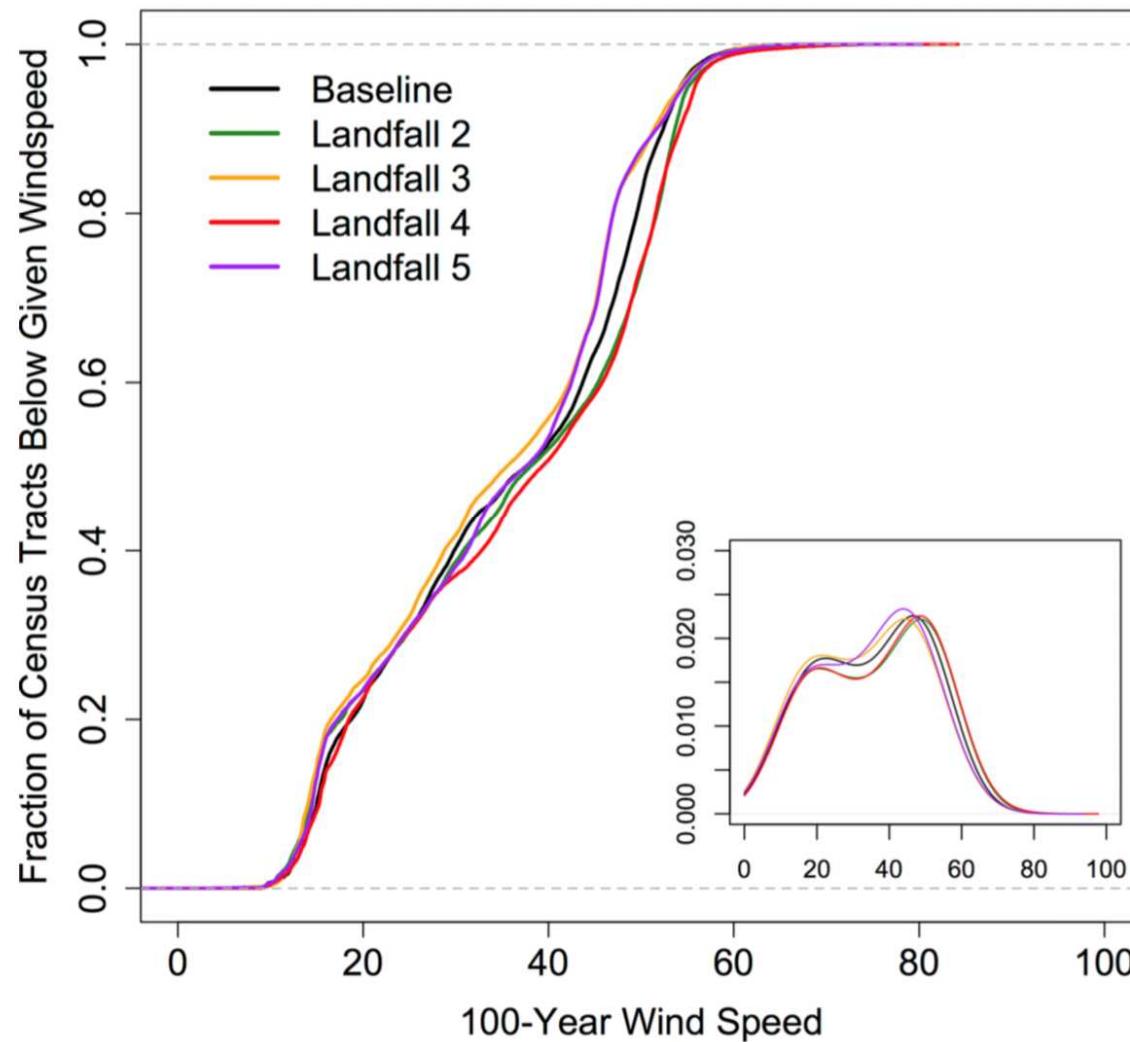
Fraction Out - Frequency Sensitivity



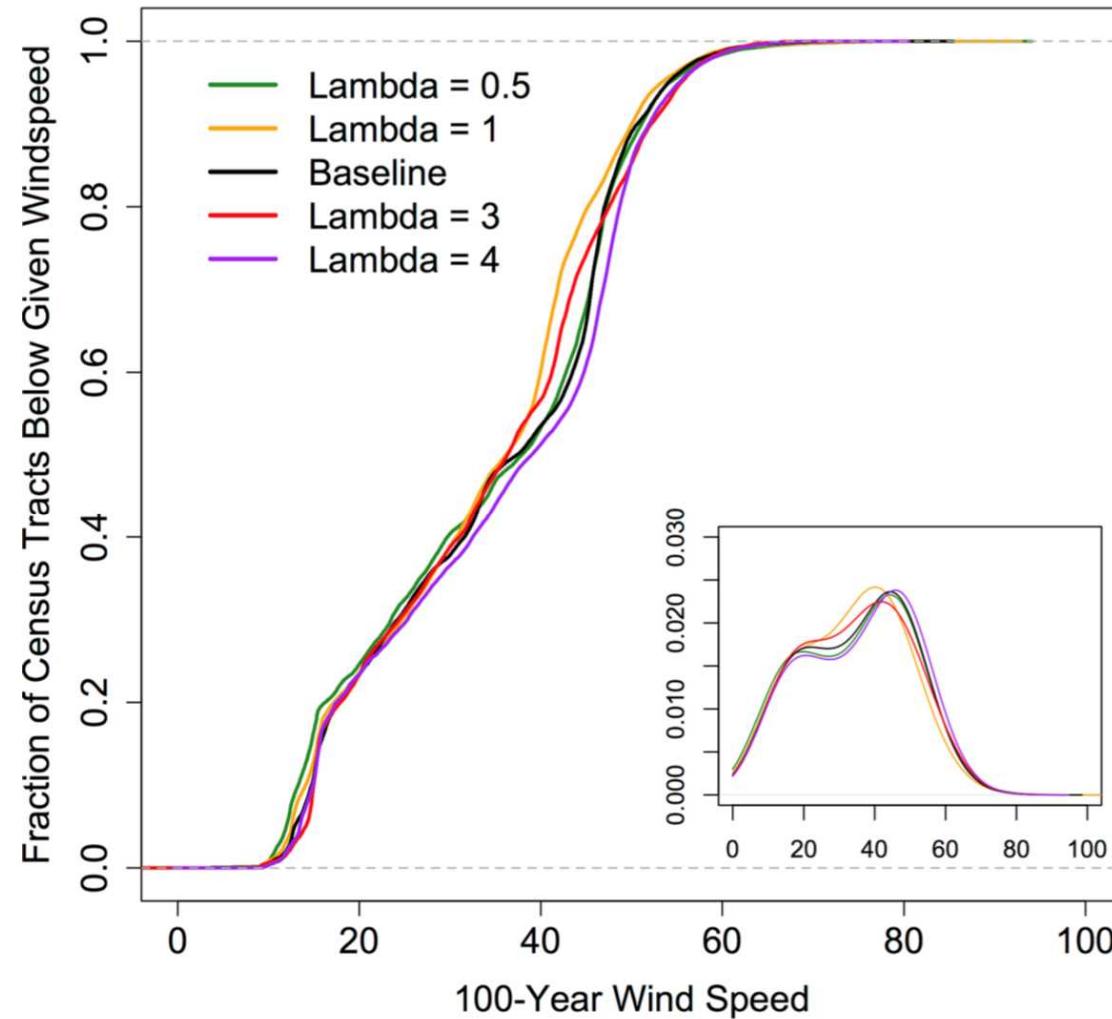
Fraction Out - Intensity Sensitivity



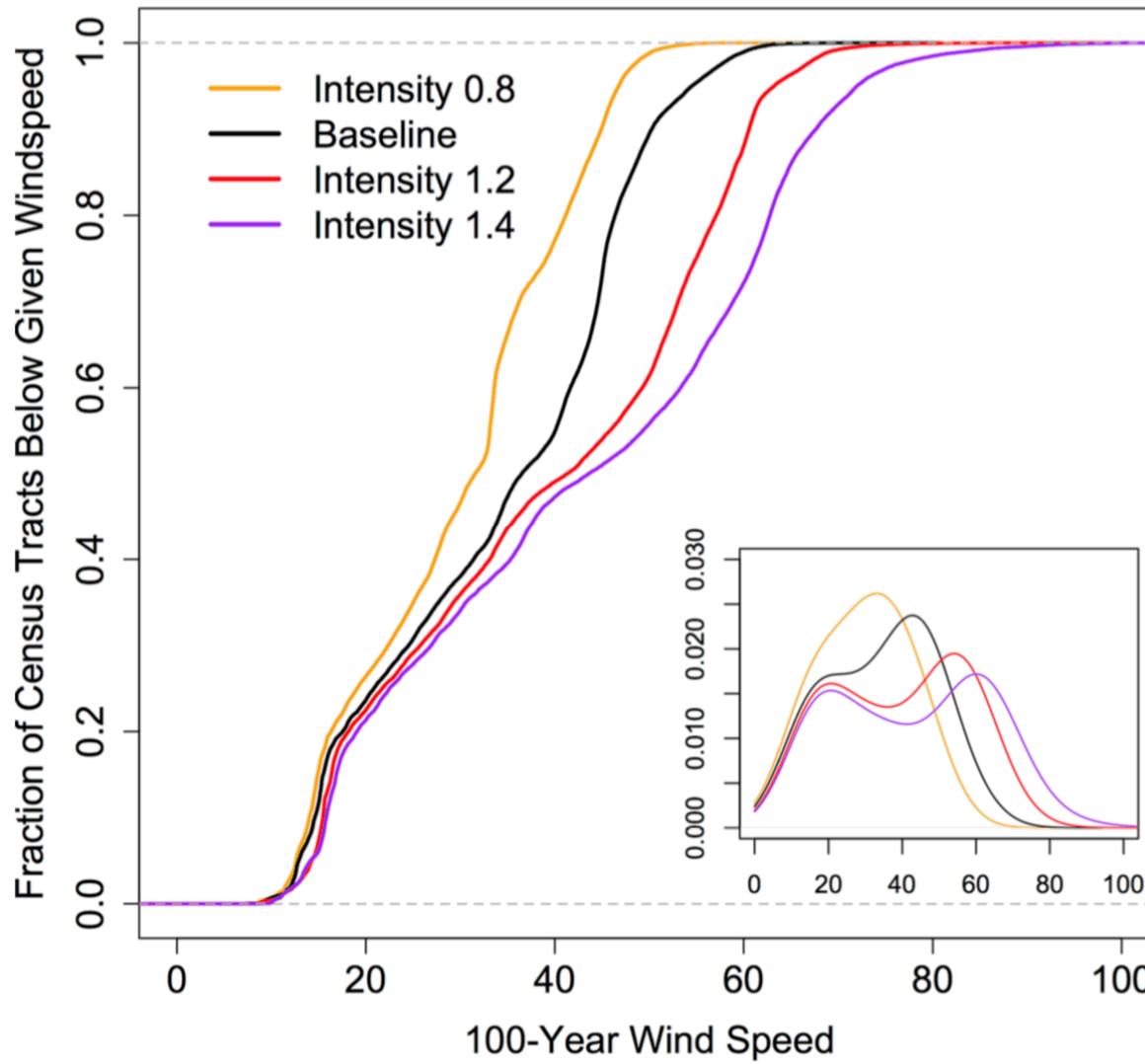
Wind Speed – Landfall Sensitivity

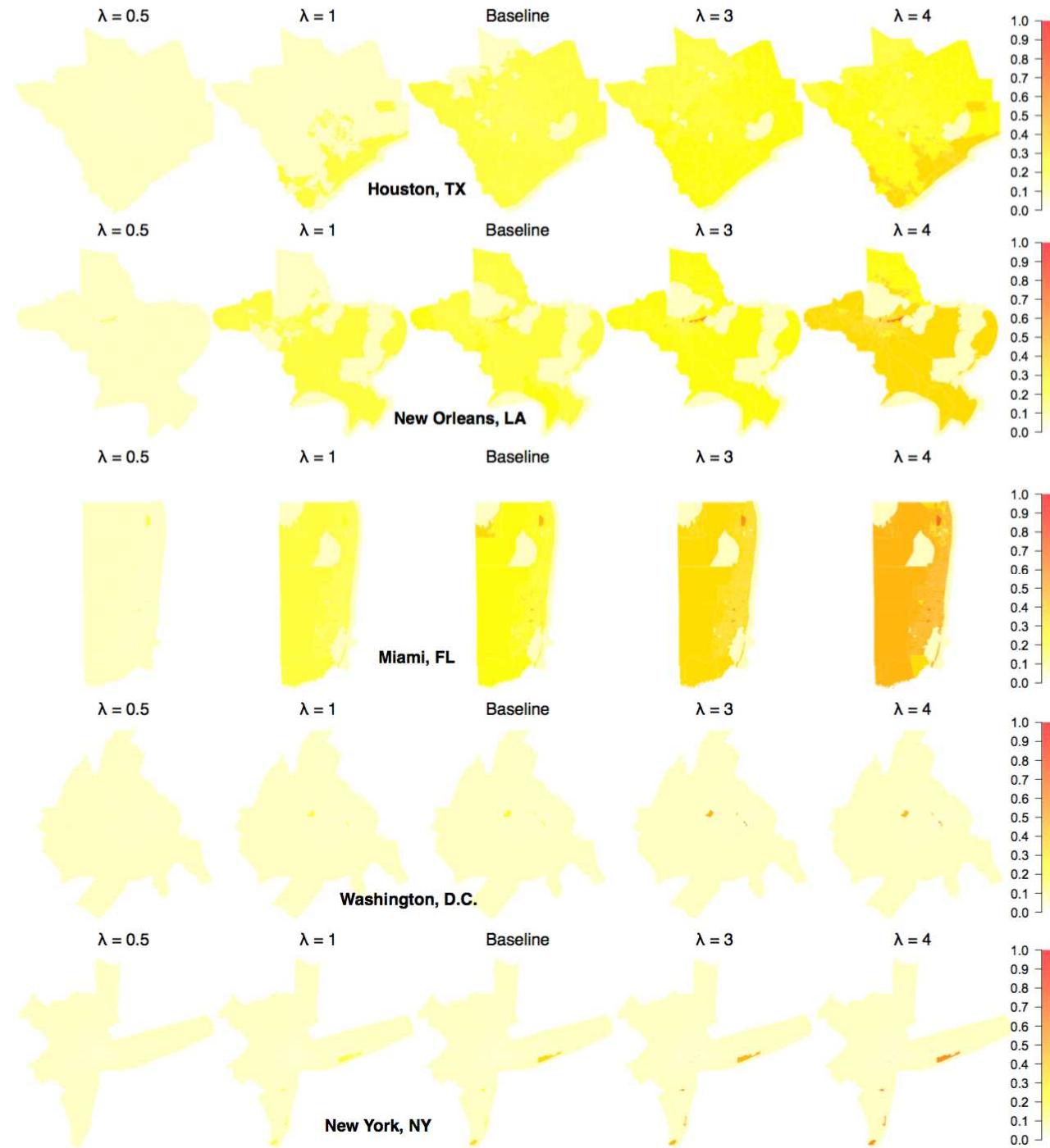


Wind Speed – Frequency Sensitivity

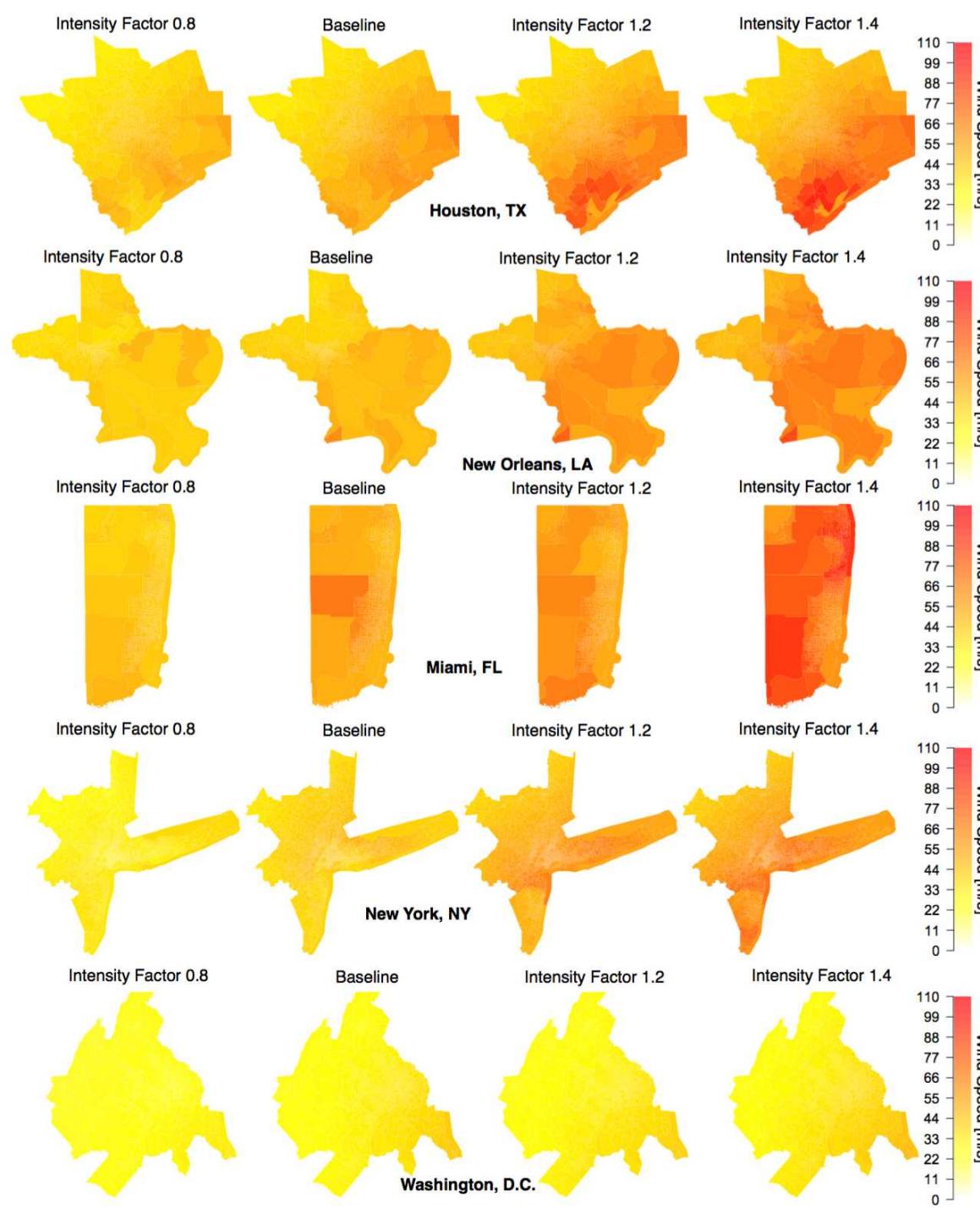


Wind Speed – Intensity Sensitivity





P(outage) -
Sensitivity
to
Frequency



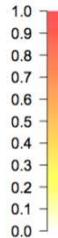
Wind Speed - Sensitivity to Intensity

Intensity Factor 0.8

Baseline

Intensity Factor 1.2

Intensity Factor 1.4



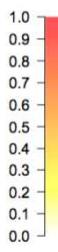
Houston, TX

Intensity Factor 0.8

Baseline

Intensity Factor 1.2

Intensity Factor 1.4



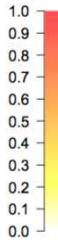
New Orleans, LA

Intensity Factor 0.8

Baseline

Intensity Factor 1.2

Intensity Factor 1.4



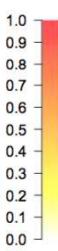
Miami, FL

Intensity Factor 0.8

Baseline

Intensity Factor 1.2

Intensity Factor 1.4



Washington, D.C.

Intensity Factor 0.8

Baseline

Intensity Factor 1.2

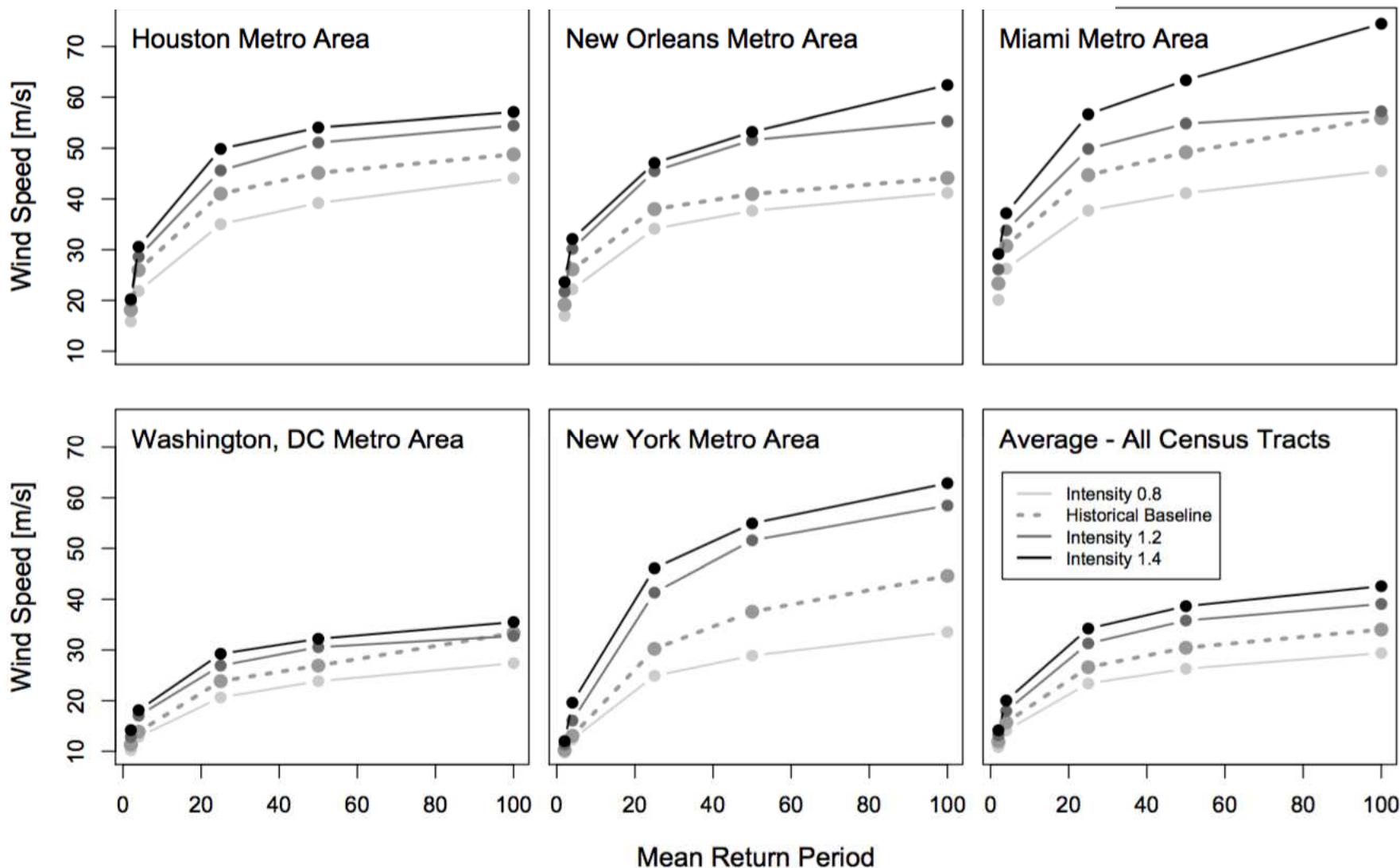
Intensity Factor 1.4



New York, NY

Fraction Out - Sensitivity to Intensity

Figure 5.6: Mean return periods for the fraction of customers without power as intensity varies, plotting the average for five metropolitan areas and for all census tracts (bottom right) evaluated.



Metropolitan Area Impacts

Baseline

Miami

Washington, D.C.

New York

Intensity = 1.4

100-Year Wind Speed [m/s]

0 11 22 33 44 55 66 77 88 99 110

Metropolitan Area Impacts

Baseline

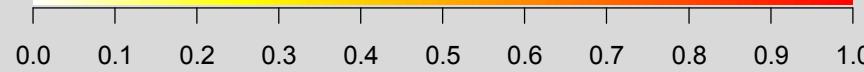
Miami

Washington, D.C.

New York

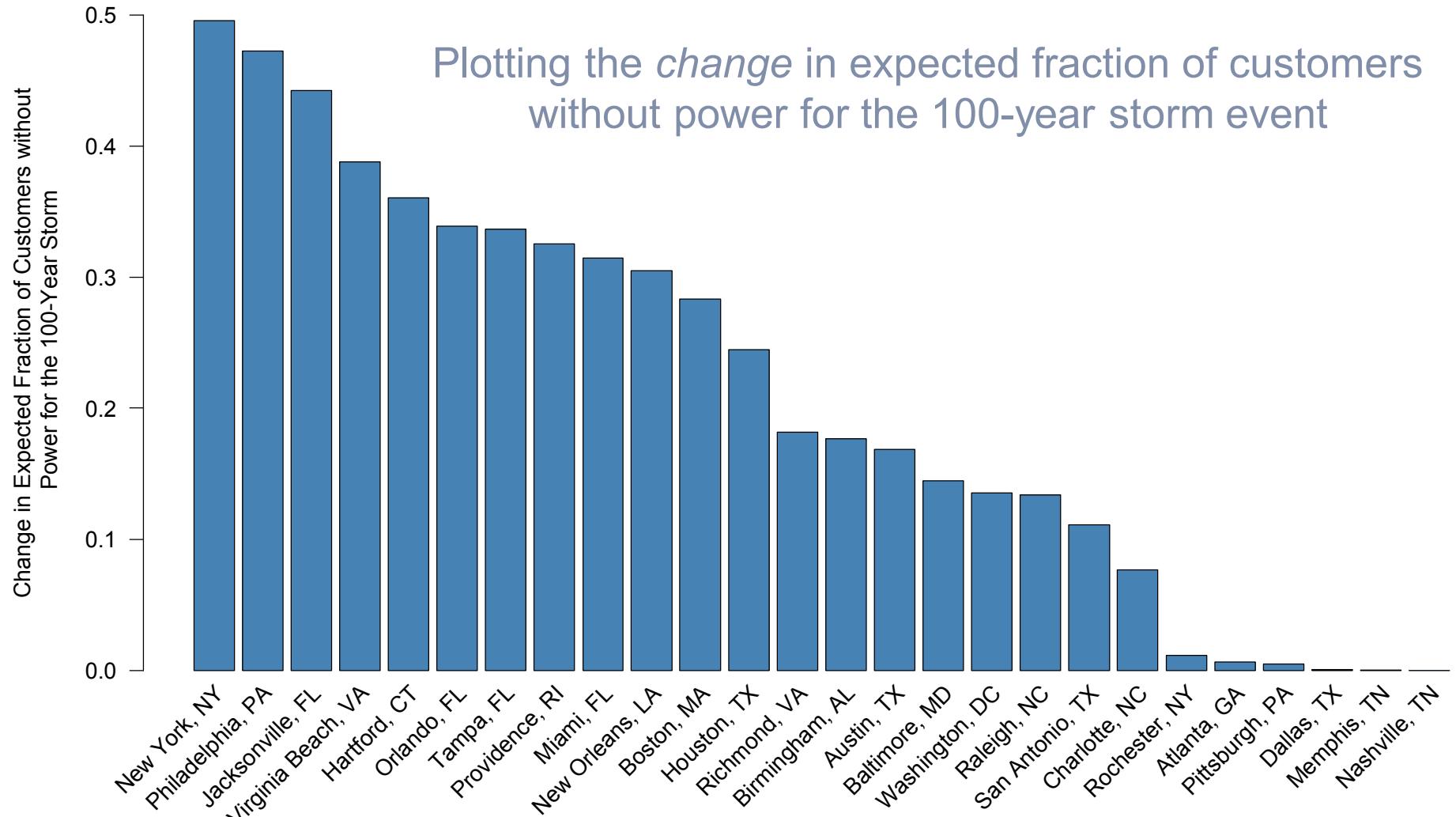
Intensity = 1.4

Fraction of Customers Out

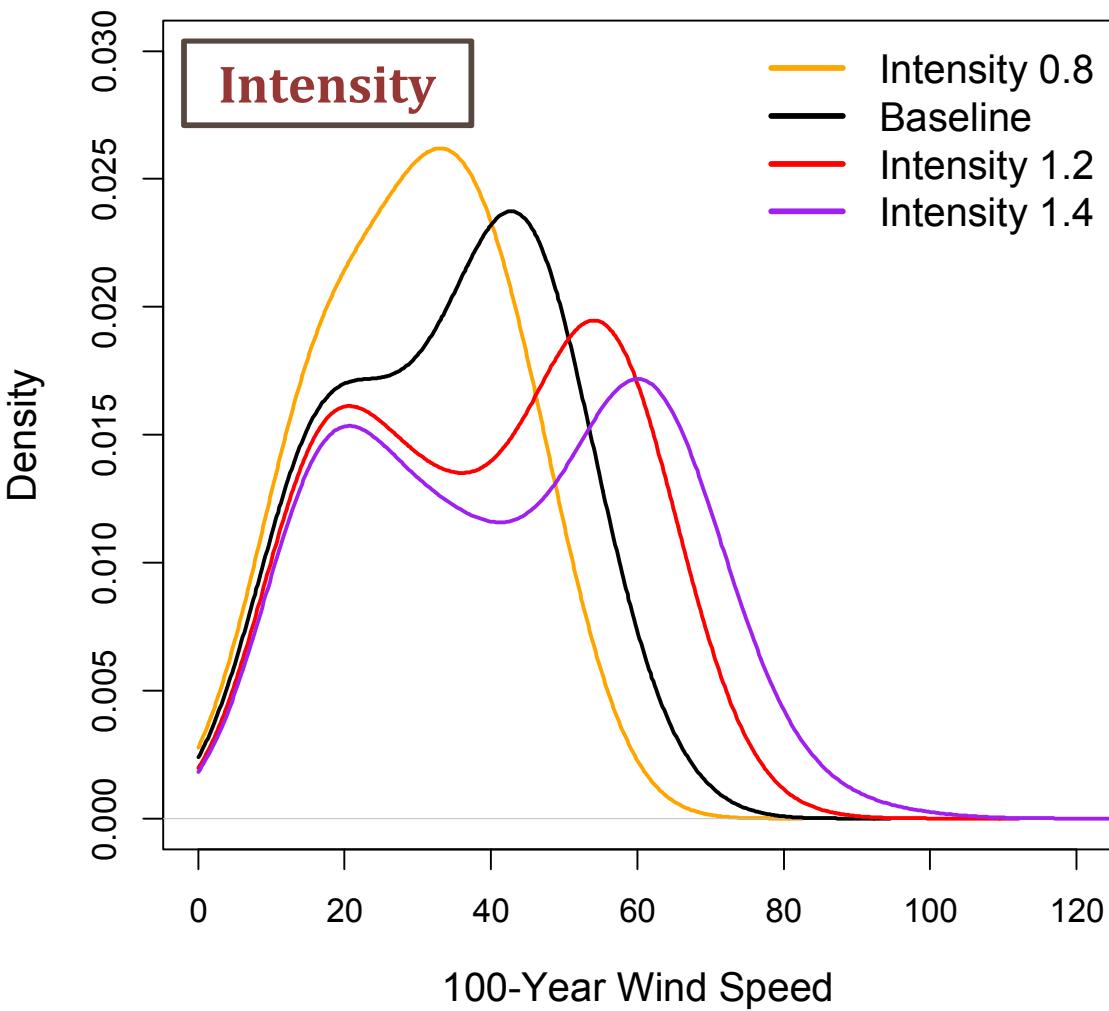
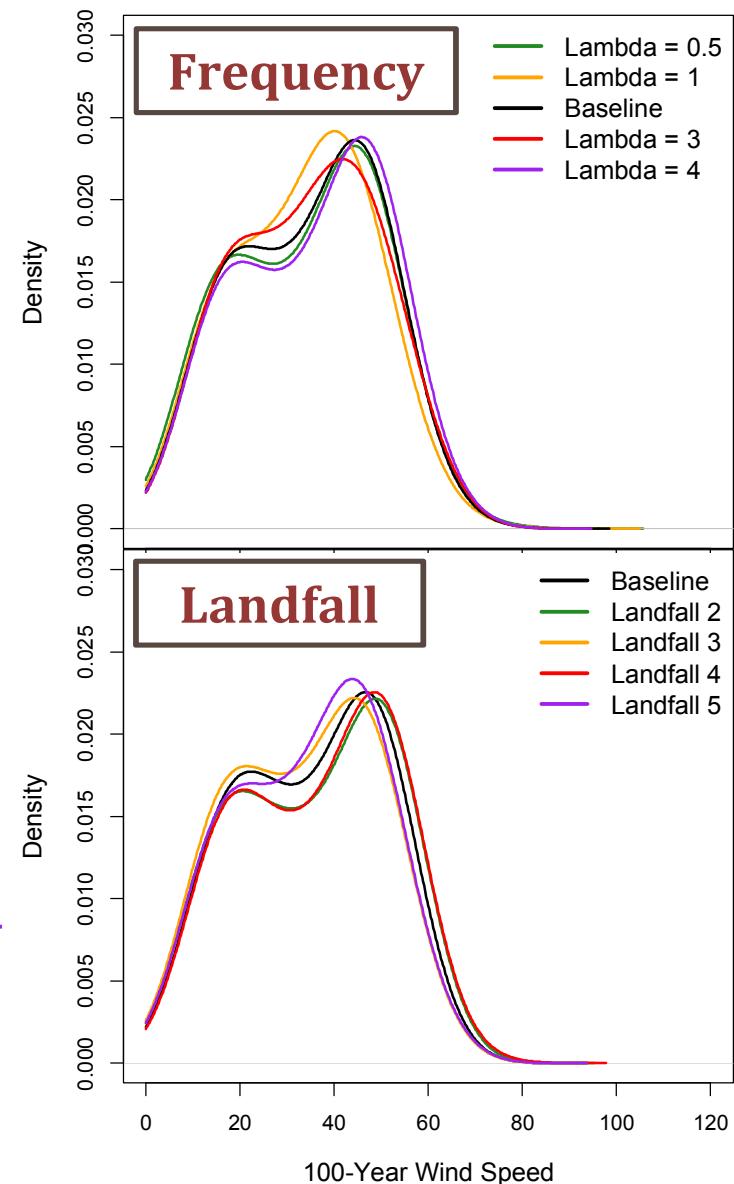


Sensitivity to Hurricane Intensity

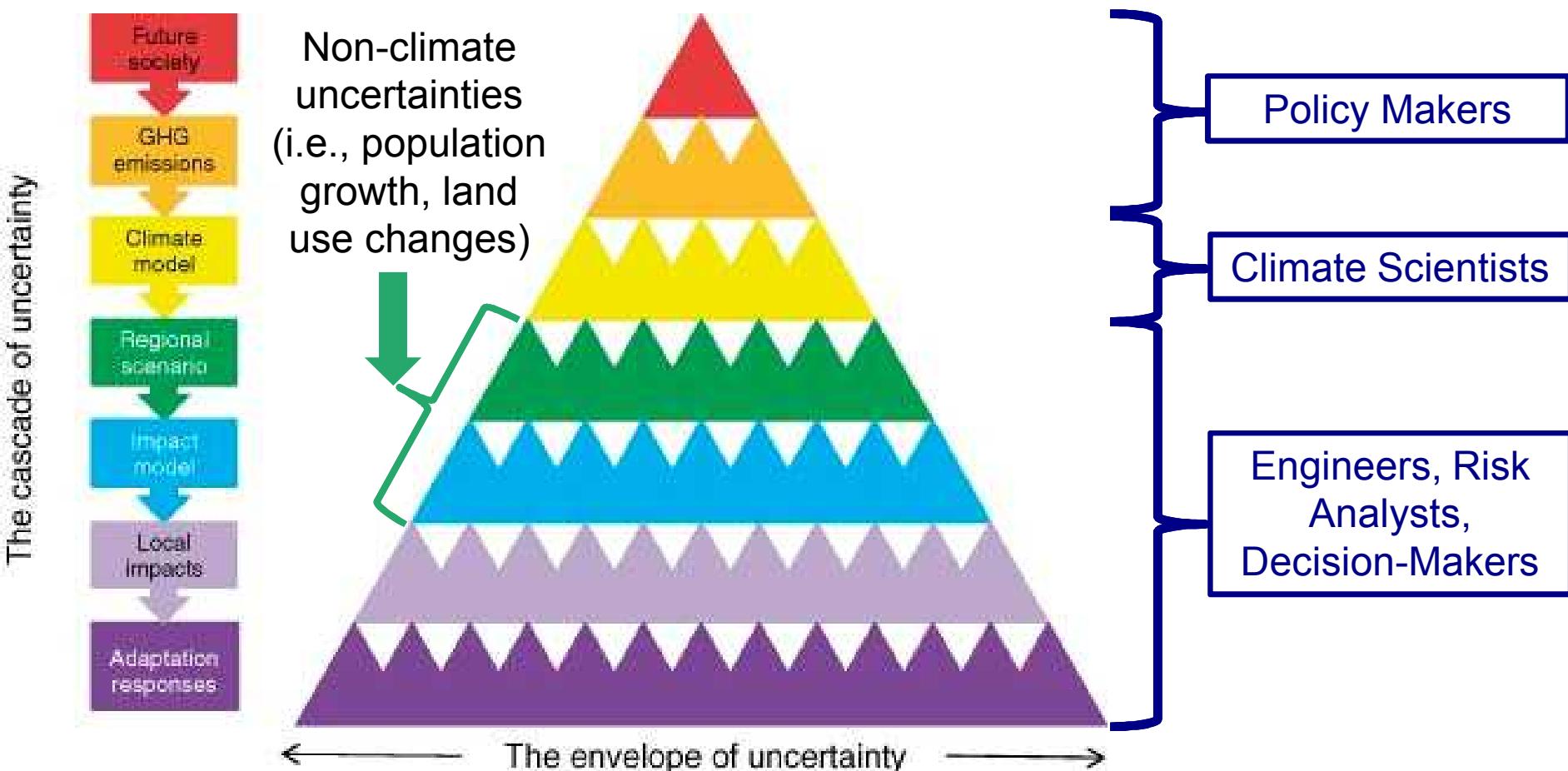
Plotting the *change* in expected fraction of customers without power for the 100-year storm event



Scenario Risk Sensitivity



Layers of Climate Uncertainty



Questions?

Contact:

Andrea Staid

astaid@sandia.gov

Acknowledgements:

Seth Guikema, Steven Quiring, Roshi Nateghi, and many others who continue to improve the outage models

NSF Grants CMMI 0968711 & CMMI

1149460, NSF Grants CBET SEES 121582 &
SEES 1331399, NSF Grant OISE 1243482