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What is the planning horizon? UL

Short Term: Long Term:
There’s a storm coming, with uncertain track Climate is changing, and there is uncertainty
and intensity estimates. as to how future hurricanes will behave.
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Mid Term:
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Hurricane Sandy Current information: ®  Forecast positions: i High-resolution
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Short Term Planning UL

Surely we can do better'
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Power Outage Prediction

th

= Anticipating number and location of outages allows utilities

and emergency responders to plan ahead

= Use best storm track projections and intensity forecasts to

develop real-time outage predictions
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Outage Prediction Model UL

= Started with detailed, utility-specific distribution-level outage
data from recent hurricanes hitting the utility service area

®" Train and test statistical models for predictive accuracy

= Random Forest model performed best
= Response variable: Number of customers without power
= Covariates:

= Wind speeds across region of interest

= Calculate wind characteristics using a wind field model (Willoughby et al.
2006; Holland 2008)

= Land Cover, soil moisture, mean precipitation, and drought measures

Utility-specific variables!




Generalizing the Model ),

= Evaluate model predictive accuracy without utility-specific

variables

= Cross-validation to choose the simplest model while maintaining
acceptable prediction errors

= Validate model across hurricanes; Validate model across states
= Test and iterate for actual, oncoming storms: Irene and Sandy

Predictions for Superstorm Sandy, for 60, 36, and 12 hours before landfall
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Hurricane Harvey

Harvey (2017) 25 August 2017 1800 UTC OFCI Track
- ~2.9 million people/~975,000 customers without power
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Official Track Forecast )
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Harvey (2017) 24 August 2017 1800 UTC OFCI Track
~1.5 million people/~500,000 customers without power
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Ongoing Development UL
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Real-Time Outage Prediction h

= Limitations with only publicly-available data

= Currently models only wind-induced outages, does not
consider storm surge or flooding

= Heavily dependent on an accurate track/intensity model

= However, provides accurate estimates of the spatial
distribution of expected outages for an approaching storm

= |ncredibly useful for crew positioning and emergency
response preparation efforts




How about long term impacts? ) .

= |f we can predict outages for an oncoming storm, we can
estimate the impacts of future storms, on average

= But, we need to know what future storms will look like!

= To do so, we must consider climate change...




How does this all come together? @&

Historical Historical Climate
Hurricane Record Record

14

Understanding of Future Climate
Climate-Hurricane Link Projections

2

Estimates of Future Power Outage
Hurricane Behavior Predictions

\ 1 4

Estimate of Future
Power System
Hurricane Impacts




What about Uncertainty? ) e

Historical Historical Climate
Hurricane Record Record

Understanding of Future Climate

Climate-Hurricane Link Projections
/ Estimates of Future Power Outage
Let’s look at a Hurricane Behavior Predictions

quick example ¥ ‘

Estimate of Future
Power System
Hurricane Impacts




Seasonal Prediction ) 2=,

= Various agencies issue forecasts for how active the upcoming
hurricane season will be, based on current climatology

= 2017 hurricane season was extremely active:
= 17 named tropical storms (average 12)
= 10 hurricanes (average 6)

" 6 major hurricanes (average 2)

= Pre-season (Dec-Apr), all agencies predicted a near-average
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Climate link: How sure are we? .
Short answer: Not very.

How will climate change affect North Atlantic tropical cyclone:

Intensity? Frequency? Location?
N “? Inconclusive
u — ?
[— —
+36% l | « Poleward
-40% +40% migration in
| i certain ocean
SN f— basins
e « Little to no
[ change
= G « Dependent on
Depends a lot on degree of P Inconclusive; no trend; 2;[:20;%2(2“0
warming, but general consensus ﬂ 7 maybe a decrease? u ’
on increasing trend No consensus in the unsure

literature




Scenario-Based Analysis .

= Scenarios can be used to represent the range of expected
change, allowing us to assess sensitivity to potential climate
change

= Process:
1. Choose a range of hurricane scenarios

=  Vary storm intensity, frequency, and landfall location

2. Generate virtual storms and simulate expected impacts
under each scenario along U.S. Atlantic and Gulf Coasts

3. Use wind data and power outages as measures of
theoretical future risk to power system infrastructure

4. Assess range of projected impacts; identify greatest risks
and most vulnerable locations




Simulation Structure (]

For Each Replication:

Each Hkmfi/eahe.

.

Select Scenario: ”
« Baseline Historical
» Frequency Hurricane Record
* Intensity i

» Landfall Location

l’ ' : Wind — I‘

Estimated Long-

| Annual » Term Hurricane
I Generate Track I‘ —>| Hurricane Impact

& Impact

I Generate Wind Field I‘

Annual Storm
Count

Predict Power Outages

Repeat to reach convergence of the 99 percentile within 1%




Simulation Structure ) .,

Start with Historical Hurricane Record
Annual frequency of storms
Landfall Location

For Each Replic

o For EaCh Hur
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Simulation Structure

th

For Each Repli
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Simulation Structure (]

For Each Replication:
cor Each Hurp;e Randomly sample maximum
o~ a%r wind speed from past

Select Scenario:
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Simulation Structure ) =

For Each Replic
e Random Forest statistical model

gor Each Hur, * Trained on past hurricane tracks
o~ .
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Simulation Structure (]

For Each Replication:
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« Frequency Hurricane Record ‘ *’»»\
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Simulation Structure )=,

For Each Replication:

—  Random Forest statistical model
Select Scenario:

« Baseline * Trained on past hurricanes and

s Frequgncy | Hurrica outage data

* Intensity ~ i )

«  Landfall Location o * Generalized for entire coastal area

l Landfall |‘ * Forecasts fraction of customers losing
' power for each census tract based on Long-
. ricane
e Tract population ot
* Maximum wind speed
e Duration of winds above 20 m/s

!

Annual Storm
Count

Predict Power Outages




Simulation Structure )=,

For Each Replication:

or Each Hﬁm;ibah

Select Scenario: _ . _
- Baseline « Sample from Poisson distribution

» Frequency « Set mean equal to historical
* Intensity

Landfall Location annual average

I < _— —
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Annual Storm N : » Term Hurricane
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|
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Simulation Structure )=,

For Each Replication:

 Baseline - Use historical data

Select Scerfji#o: / ’
+ Baseline Historical N
» Frequency Hurricane Record \\
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Simulation Structure

For Each Replication:

Select Scenari A
* Baseline
+ Frequency
* Intensity
« Landfall Location ]'

!

Annual Storm
Count

Historical average = 2

Vary Frequency: Adjust mean of Poisson distribution

Scenarios 0f 0.5, 1, 3, & 4

| Landf.;ll | [_Wind speed |
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.
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Simulation Structure

For Each Replication:

| Vary Intensity: Modify maximum wind speed
Select Scenari{ * Adjust by factors 0of 0.8, 1.2, & 1.4

+ Baseline

: Intensity
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Simulation Structure )=,

For Each Replication:
|
Vary Landfall: Modify landfall probability distribution
* Sample from new distribution

Select Scenario:
Baseline
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Simulation Structure ) 2=

For Each Replication:

Select Scenario:
« Baseline Historical
» Frequency Hurricane Record
* Intensity -~

» Landfall Location

l | Wind Speed |

Estimated Long-

Annual > Term Hurricane
I Generate Track I‘ —>| Hurricane Impact

& Impact

I Generate Wind Field I‘

Annual Storm
Count

Predict Power Outages

Repeat to reach convergence of the 99 percentile within 1%




Baseline Results ) B

100-Year Wind Speed [m/s] 100-Year Fraction of Customers
without Power :

3-sec Gust Wi
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100-Year Wind Speed [m/s] .

Plotting Difference From Baseline:
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100-Year Fraction without Power — @&

Plotting Difference From Baseline:
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Annual Probability of Outage .
Baseline Landfall 2 Landfall 3
.m-{ P ﬂ-\
Landfall 4 ' Landfall 5
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Annual Probability of Outage ) S,

Lambda = 0.5 Lambda =1 Lambda = 2
Baseline

» *{

I I I I I T 1 T 1T 1
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Lambda = 3

Lambda = 4

*The lambda value represents the average number of storms making landfall per year




Max Wind — Sensitivity to Intensity ®&=.
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Fraction Out — Sensitivity to Intensityt .
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P(outage) — Sensitivity to Intensity @
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P(outage) — Sensitivity to Frequency @
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Max Wind — Sensitivity to Location @
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Fraction Out — Sensitivity to Locatior® .
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P(outage) — Sensitivity to Location (W=
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Fraction Out - Landfall Sensitivity — @&
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Fraction Out - Frequency Sensitivity @&.
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Fraction Out - Intensity Sensitivity @
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Wind Speed — Landfall Sensitivity @&
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Wind Speed — Frequency Sensitivity @/.
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Wind Speed — Intensity Sensitivity @&
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Figure 5.6: Mean return periods for the fraction of customers without power as II" Sandia

intensity varies, plotting the average for five metropolitan areas and for all census mm
tracts (bottom right) evaluated.
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Change in Expected Fraction of Customers without

Power for the 100-Year Storm

Sensitivity to Hurricane Intensity — @&
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Layers of Climate Uncertainty ) .

- Non-climate
uncertainties Policy Makers

*E“‘?-H 5 (i.e., population
growth, land
Climsts use changes)
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Climate Scientists

Engineers, Risk
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Decision-Makers

The cascade of uncertainty
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Questions? (]

Contact:
Andrea Staid
astaid@sandia.gov
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