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What is the planning horizon?
Short Term:

There’s a storm coming, with uncertain track 
and intensity estimates.

Long Term:
Climate is changing, and there is uncertainty 

as to how future hurricanes will behave.

Vecchi, Gabriel A., Kyle L. Swanson, and Brian J. Soden. "Whither 
hurricane activity?." Science (2008): 687-689.
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Mid Term:
Seasonal hurricane forecasts – how active will 

this season be based on early measures of 
climatological data?



Short Term Planning
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What is done now for 
power outage estimates?

Surely we can do better!



Power Outage Prediction

 Anticipating number and location of outages allows utilities 
and emergency responders to plan ahead

 Use best storm track projections and intensity forecasts to 
develop real-time outage predictions
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prioritization plan



Outage Prediction Model

 Started with detailed, utility-specific distribution-level outage 
data from recent hurricanes hitting the utility service area

 Train and test statistical models for predictive accuracy
 Random Forest model performed best

 Response variable: Number of customers without power

 Covariates: 
 Wind speeds across region of interest

 Calculate wind characteristics using a wind field model (Willoughby et al. 
2006; Holland 2008)

 Land Cover, soil moisture, mean precipitation, and drought measures

 Tree trimming, number of poles, miles of overhead/underground 
lines, number of customers served by each feeder
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Utility-specific variables!



Generalizing the Model

 Evaluate model predictive accuracy without utility-specific 
variables
 Cross-validation to choose the simplest model while maintaining 

acceptable prediction errors

 Validate model across hurricanes; Validate model across states

 Test and iterate for actual, oncoming storms: Irene and Sandy
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60	Hour 36	Hour 12	Hour

Predictions for Superstorm Sandy, for 60, 36, and 12 hours before landfall

Guikema, S.D., Nateghi, R., Quiring, S.M., Staid, A., Reilly, A.C. and Gao, M., 2014. Predicting hurricane power 
outages to support storm response planning. IEEE Access, 2, pp.1364-1373.



Hurricane Harvey
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Official Track Forecast
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COTI Track Forecast
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Ongoing Development

 Seth Guikema and research group

 Steven Quiring and research group

 Brent McRoberts
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Real-Time Outage Prediction

 Limitations with only publicly-available data

 Currently models only wind-induced outages, does not 
consider storm surge or flooding

 Heavily dependent on an accurate track/intensity model

 However, provides accurate estimates of the spatial 
distribution of expected outages for an approaching storm

 Incredibly useful for crew positioning and emergency 
response preparation efforts
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How about long term impacts?

 If we can predict outages for an oncoming storm, we can 
estimate the impacts of future storms, on average

 But, we need to know what future storms will look like!

 To do so, we must consider climate change…
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How does this all come together?
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What about Uncertainty?
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Let’s look at a 
quick example



Seasonal Prediction

 Various agencies issue forecasts for how active the upcoming 
hurricane season will be, based on current climatology 

 2017 hurricane season was extremely active:
 17 named tropical storms (average 12)

 10 hurricanes (average 6)

 6 major hurricanes (average 2)

 Pre-season (Dec-Apr), all agencies predicted a near-average 
season:
 11-15 named tropical storms

 4-6 hurricanes

 1-3 major hurricanes

 Mid-season (Jun-Aug) forecasts 

increased very slightly
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Sabbatelli and Mann (2007)



Climate link: How sure are we? 
Short answer: Not very. 
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?

?

+36%
+40%-40%

How will climate change affect North Atlantic tropical cyclone:

Frequency?

Inconclusive

Depends a lot on degree of 
warming, but general consensus 
on increasing trend

Inconclusive; no trend; 
maybe a decrease? 
No consensus in the 
literature

Intensity? Location?

?
• Poleward 

migration in 
certain ocean 
basins

• Little to no 
change

• Dependent on 
atmospheric 
circulation, 
unsure



Scenario-Based Analysis

 Scenarios can be used to represent the range of expected 
change, allowing us to assess sensitivity to potential climate 
change

 Process:

1. Choose a range of hurricane scenarios 
 Vary storm intensity, frequency, and landfall location

2. Generate virtual storms and simulate expected impacts 
under each scenario along U.S. Atlantic and Gulf Coasts

3. Use wind data and power outages as measures of 
theoretical future risk to power system infrastructure

4. Assess range of projected impacts;  identify greatest risks 
and most vulnerable locations
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Simulation Structure
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Repeat	to	reach	convergence	of	the	99th percentile	within	1%



Simulation Structure
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Start	with	Historical	Hurricane	Record
- Annual	frequency	of	storms
- Landfall	Location	
- Maximum	Wind	Speed



Simulation Structure
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Historical	Landfall	Distribution	



Simulation Structure
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Randomly	sample	maximum	
wind	speed	from	past	
hurricanes



Simulation Structure
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• Random	Forest	statistical	model
• Trained	on	past	hurricane	tracks

• Calculate	wind	speed	decay	for	each	
time	step

• Continue	until	winds	fall	below	tropical	
depression	levels



Simulation Structure
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• Generate	wind	profiles	at	each	census	
tract	using	storm	track	&	wind	speeds



Simulation Structure
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• Random	Forest	statistical	model
• Trained	on	past	hurricanes	and	

outage	data
• Generalized	for	entire	coastal	area

• Forecasts	fraction	of	customers	losing	
power	for	each	census	tract	based	on

• Tract	population
• Maximum	wind	speed
• Duration	of	winds	above	20	m/s



Simulation Structure
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• Sample	from	Poisson	distribution
• Set	mean	equal	to	historical	

annual	average



Simulation Structure
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• Baseline	– Use	historical	data



Simulation Structure
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Vary	Frequency:	Adjust	mean	of	Poisson	distribution
• Historical	average	=	2
• Scenarios	of	0.5,	1,	3,	&	4



Simulation Structure
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Vary	Intensity:	Modify	maximum	wind	speed
• Adjust	by	factors	of	0.8,	1.2,	&	1.4



Simulation Structure
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Baseline Landfall	2 Landfall	3 Landfall	4 Landfall	5

Vary	Landfall:	Modify	landfall	probability	distribution
• Sample	from	new	distribution



Simulation Structure
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Repeat	to	reach	convergence	of	the	99th percentile	within	1%



Baseline Results
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100-Year	Fraction	of	Customers
without	Power

100-Year	Wind	Speed	[m/s]

0 11 22 33 44 55 66 77 88 99 110 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100	mph 224	mph
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100-Year Wind Speed [m/s]
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Plotting	Difference From	Baseline:

Intensity	=	0.8 Intensity	=	1.2 Intensity	=	1.4

-60 -48 -36 -24 -12 0 12 24 36 48 60

Change	in	Wind	Speed	[m/s]



100-Year Fraction without Power
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-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Change	in	Fraction	Out

*Independent	samples	result	in	sample	error	in	very	low	population	density	areas

Plotting	Difference From	Baseline:

Intensity	=	0.8 Intensity	=	1.2 Intensity	=	1.4



Annual Probability of Outage
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Annual Probability of Outage
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Lambda	=	0.5 Lambda	=	1

Lambda	=	4Lambda	=	3

Lambda	=	2
Baseline

*The	lambda	value	represents	the	average	number	of	storms	making	landfall	per	year

Probability	of	Power	Outage



Max Wind – Sensitivity to Intensity
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Max Wind – Sensitivity to Frequency 
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Fraction Out – Sensitivity to Intensity
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Fraction Out – Sensitivity to Frequency
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P(outage) – Sensitivity to Intensity
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P(outage) – Sensitivity to Frequency
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Max Wind – Sensitivity to Location
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Fraction Out – Sensitivity to Location
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P(outage) – Sensitivity to Location
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Fraction Out - Landfall Sensitivity
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Fraction Out - Frequency Sensitivity
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Fraction Out - Intensity Sensitivity
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Wind Speed – Landfall Sensitivity
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Wind Speed – Frequency Sensitivity
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Wind Speed – Intensity Sensitivity
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P(outage) -
Sensitivity 
to 
Frequency
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Wind Speed -
Sensitivity to 
Intensity
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Fraction Out -
Sensitivity to 
Intensity
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Metropolitan Area Impacts
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0 11 22 33 44 55 66 77 88 99 110

Baseline

Intensity	=	1.4

Miami Washington,	D.C.																 New	York

100-Year	Wind	Speed	[m/s]



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Metropolitan Area Impacts
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Intensity	=	1.4

Fraction	of	Customers	Out

Baseline

Miami Washington,	D.C.																 New	York



Sensitivity to Hurricane Intensity
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Plotting the change in expected fraction of customers 
without power for the 100-year storm event
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Intensity

Frequency

Landfall

Staid, A., Guikema, S.D., Nateghi, R., Quiring, S.M. and Gao, M.Z., 2014. Simulation of tropical cyclone impacts 
to the US power system under climate change scenarios. Climatic change, 127(3-4), pp.535-546.



Layers of Climate Uncertainty
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Weather Volume 65, Issue 7, pages 180-185, 29 JUN 2010 DOI: 10.1002/wea.543
http://onlinelibrary.wiley.com/doi/10.1002/wea.543/full#fig1

Non-climate 
uncertainties 

(i.e., population 
growth, land 

use changes)

Engineers, Risk 
Analysts, 

Decision-Makers

Climate Scientists

Policy Makers



Questions?

Contact:

Andrea Staid

astaid@sandia.gov
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