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Abstract: We consider the problem of physical parameter estimation by
coupling experimental data with computational simulations. The Bayesian
Model Calibration (BMC) framework accommodates a wide variety of| |BMC model: (Kennedy and O’Hagan) For experiment j, the measured velocity y
uncertainties, including model misspecification and is thus a useful tool for| [is modeled as a function of time x; and the unknown parameters 6.

solving these inverse problems. In the presence of a high-dimensional vector — U(Xu» g]) + 5 (Xu) + €

of nuisance parameters, this problem is often poorly identified. We propose GP(O Z) ~ N(O, O.Z(xl]))

statistical methodologies backed by rigorous mathematical theory for
calibrating physical parameters in precisely this situation. First, we consider
regularization, the specification of hierarchical shrinkage priors on the

nuisance parameters in an effort to preserve measurement uncertainty

structure and to avoid over-fitting. Secondly, we consider modularization, an Regularizati.on:A.\.model with such a large number f)f nui§§nc§ parameters will
alternative to the full Bayesian approach which eliminates contamination of often be non-ldengﬁable. In the presence of model m'fsPe.C'f'cfat'on’ Sténda'”d BMC
the physical parameters via the difficult-to-learn nuisance parameters. Finally, will update the nuisance parameters incorrectly, resulting in biased estimates of the
these methods are applied in a dynamic materials setting to produce physical parameters. In regularization, we use the following hierarchical priors.

inferences on the material properties of tantalum. Vijle ~ N, 1), e ~N(O,J7Y), k=234 j=12,..]

Regularization vs Modularization

For convenience, we partition the parameters as 6, = (a, y;), where o = (o, ;) are
the physical parameters of interest,and y; = (y,, y,; V3 Y4;) are the experiment-
dependent nuisance parameters.

Where |=9 is the number of experiments.

Dyn amic mate rial pro pe rty calibration Modularization: In some cases, we may be forced to accept that updating the

nuisance parameters will lead to overfitting. This can result in biased estimates and
underestimation of uncertainty for the parameters of interest. One option then is
to mimic the forward propagation of uncertainty via modularization of the nuisance
parameters by sampling their priors rather than updating.

Objective: By coupling experimental and simulated velocity traces,
parameters of the tantalum equation of state (EOS) are estimated. The
EOS of a material describes the pressure-volume-temperature

relationship.

Experimental setup (Figure 1): Massive electrical currents associated Results

with strong time-dependent magnetic fields are treated as boundary

conditions resulting in a stress wave propagating through the system as a * Note: These results were obtained

function of time.Velocity of the stress wave is measured at the interface of setting y3 =y, =0 for all j.

the Ta sample and LiF window and can be compared to simulated *  We found that Regularization

velocities. was numerically more stable for

Uncertainties: Time and velocity are measured with error and an our application, but was otherwise .
Similar to the Standard BMC. igure 5: O.S erior gnsmeso e SC&I!’]g nU|§ance parame ‘erS or

each of the nine experiments under the hierarchical regularization
prior.

emulator is used as a proxy to the computer model. Bulk modulus and its . .
L : . . Future work will examine the
pressure derivative (B, and B;) are the physical parameters of interest. . oo
. . . - . effects of priors which induce
Nuisance parameters include Ta density, magnetic field scaling and shrinkage and sparsity on the -
. of o . . ® a8 T —
thickness of the Al and Ta. The parameters describing scaling and thickness > /

. e , nuisance parameters.
may vary across experiments, yielding 28 nuisance parameters.

* Modularization yields more
Data (Figure 2): The experimental data consists of 9 velocity traces. For uncertainty in the posterior
each experiment, Latin Hypercube Sampling over the 6 inputs was used to distributions for the physical
simulate 5,000 velocity curves from the computer model. These 45,000 parameters. This effect is desirable =
simulated velocity traces were then used to build an emulator for the if we believe that the model is mis-
computer model. specified and may be overfitting.  “.

Future work will focus on
improving the efficiency of the
implementation.
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* Figure 5 demonstrates that
differences in model discrepancy
due to different parameter values . -
is primarily additive. Future work
will look at this as a diaghostic
tool for assessing independence : s w0

Figure 4: Posterior contours for the physical parameters of interest
for each method.

Figure 1: Experimental setup Figure 2: Measured velocity traces
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