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Abstract: We consider the problem of physical parameter estimation by
coupling experimental data with computational simulations. The Bayesian
Model Calibration (BMC) framework accommodates a wide variety of
uncertainties, including model misspecification and is thus a useful tool for
solving these inverse problems. In the presence of a high-dimensional vector
of nuisance parameters, this problem is often poorly identified. We propose
statistical methodologies backed by rigorous mathematical theory for
calibrating physical parameters in precisely this situation. First, we consider
regularization, the specification of hierarchical shrinkage priors on the
nuisance parameters in an effort to preserve measurement uncertainty
structure and to avoid over-fitting. Secondly, we consider modularization, an
alternative to the full Bayesian approach which eliminates contamination of
the physical parameters via the difficult-to-learn nuisance parameters. Finally,
these methods are applied in a dynamic materials setting to produce
inferences on the material properties of tantalum.

Dynamic material property calibration

Objective: By coupling experimental and simulated velocity traces, 
parameters of the tantalum equation of state (EOS) are estimated.  The 
EOS of a material describes the pressure-volume-temperature 
relationship.

Experimental setup (Figure 1): Massive electrical currents associated 
with strong time-dependent magnetic fields are treated as boundary 
conditions resulting in a stress wave propagating through the system as a 
function of time. Velocity of the stress wave is measured at the interface of 
the Ta sample and LiF window and can be compared to simulated 
velocities.

Uncertainties: Time and velocity are measured with error and an 
emulator is used as a proxy to the computer model. Bulk modulus and its 
pressure derivative (B0 and B0

’) are the physical parameters of interest. 
Nuisance parameters include Ta density, magnetic field scaling and 
thickness of the Al and Ta. The parameters describing scaling and thickness 
may vary across experiments, yielding 28 nuisance parameters.

Data (Figure 2): The experimental data consists of 9 velocity traces. For 
each experiment, Latin Hypercube Sampling over the 6 inputs was used to 
simulate 5,000 velocity curves from the computer model. These 45,000 
simulated velocity traces were then used to build an emulator for the 
computer model.

Figure 1: Experimental setup Figure 2: Measured velocity traces

Regularization vs Modularization
BMC model: (Kennedy and O’Hagan) For experiment j, the measured velocity yij

is modeled as a function of time xij and the unknown parameters θj.
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For convenience, we partition the parameters as θj = (α, γj), where α = (α1, α2) are 
the physical parameters of interest, and γj = (γ1, γ2j, γ3j, γ4j) are the experiment-
dependent nuisance parameters.

Regularization: A model with such a large number of nuisance parameters will 
often be non-identifiable. In the presence of model misspecification, standard BMC 
will update the nuisance parameters incorrectly, resulting in biased estimates of the 
physical parameters. In regularization, we use the following hierarchical priors.
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Where J=9 is the number of experiments.

Modularization: In some cases, we may be forced to accept that updating the 
nuisance parameters will lead to overfitting. This can result in biased estimates and 
underestimation of uncertainty for the parameters of interest. One option then is 
to mimic the forward propagation of uncertainty via modularization of the nuisance 
parameters by sampling their priors rather than updating. 

Results

• Note:  These results were obtained 
setting γ3j = γ4j = 0 for all j.

• We found that Regularization
was numerically more stable for 
our application, but was otherwise 
similar to the standard BMC. 
Future work will examine the 
effects of priors which induce 
shrinkage and sparsity on the 
nuisance parameters. 

• Modularization yields more 
uncertainty in the posterior 
distributions for the physical 
parameters. This effect is desirable 
if we believe that the model is mis-
specified and may be overfitting. 
Future work will focus on 
improving the efficiency of the 
implementation.

• Figure 5 demonstrates that 
differences in model discrepancy 
due to different parameter values 
is primarily additive. Future work 
will look at this as a diagnostic 
tool for assessing independence 
between the model discrepancy 
and the parameters.

Figure 5: Estimates of the model discrepancy for experiment 1. 
Uncertainty in the parameters is propagated forward.

Figure 3: Posterior densities of the “scaling” nuisance parameters for 
each of the nine experiments under the hierarchical regularization 
prior.

Figure 4: Posterior contours for the physical parameters of interest 
for each method.
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