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Introduction to Rydberg-dressed atoms and the
Sandia Rydberg atom experiment

Rydberg dressed physics and entangling gates
Study of a controlled-phase (CPHASE) gate
Extension to trap arrays
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Interaction between neutral atoms =
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Ye Group, JILA

* Interaction between ground state atoms is small ~100 Hz
* Thermal energy scales too large (e.g., QSIM)
* Long gate times (e.g., QIP)

One solution: use Rydberg states

S. Trotzky et al., Science 319, 295-299 (2008)
l. Bloch, J. Dalibard, and S. Nascimbéne, Nat. Phys. 8, 267-276 (2012)




Interaction between neutral atoms ()

Valence electron Valence electron
in Rydberg state in Rydberg state

~ 10 um

orbital radius a n?

» Excite valence electron to Rydberg state—nearly ionized
« Atom becomes highly polarizable—strong interactions




Interaction between neutral atoms =

Parameter scaling

a
v

van der Waals

~1 um
U oc n't

Lifetime

o (0) ox n”
van der Waals interaction
» Even the presence of another atom can cause a masswe response >> 10 MHz
- Induced Electric Dipole-Dipole Interactionoc 1/ #°
Entanglement demonstrations

Madison: Phys. Rev. Lett. 104, 010503 (2010)
Paris: Phys. Rev. Lett. 104, 010502 (2010)




Rydberg blockade—the nitty gritty i

Ground to 64P3/2, x-polarized, B=4.8 G, E = 6.4 V/m
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Direct Rydberg — Rydberg-Dressed @ &

Ground to 64P3/2 X- polarlzed B=4. 8 G,E=6.4V/m
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Rydberg experiment

Rydberg laser Raman laser
(into page) (out of page)



Sandia

Single atom control of 2 atoms =

APD signal (a.u.)

dipole trap

2 laser (938 nm)
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Laser cooling to load traps

AOM deflection controls trap position
Photon counters for detection




Rydberg excitation laser () e

4. Cesium energy levels

350 038 nm
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Direct excitation 318 nm Rydberg Rabi flopping ()

r —"= 100 _ELMOO Direct excitation, measured through loss
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Rydberg blockade . __} () s,
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Creating Rydberg-Dressed states () i,

4 = Rydberg

* 1-Sscale coherence time. Neutral
atoms define the Sl second!

* Form the basis of sensors and

mp=4 clocks that use measurements of

~106 atoms.

Energy

Raman
transition

qubit states




ffffffffffffffff »» 1-atom Rydberg-dressed states (i)

Dressed F=4 state Autler-Townes splitting
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Rydberg-dressed interactions () B

J
U, «<Q_  (atoms far apart) 6(—)6 U >Q  (atoms close)
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Observing blockade on hyperfine qubit () =

Direct measurement of two-qubit interaction strength J as a function of two-atom
separation with different dressing conditions.

J~Q Perturbative
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Spin-flip blockade () e,

Verify the entanglement via parity measurements
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Spin-flip blockade vs. CPHASE

Blockade

J {-17_ TP
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V2Q

100)

« Conditional = phase shift can be used
to generate controlled-Z and CNOT
gates via direct excitation

Controlled Phase (CPHASE)

Use nonlinear Hamiltonian:

~

H,, =J 1111
(+ single-atom light shift terms)

States acquire nonlinear
phase shift:

oy =510+ D)8 (| 03+1)

1 ;
—>5(| 00)+|10)+|01)+€” | 11))

n phase shift as a special case can be
used to generate controlled-Z and CNOT
gates between hyperfine qubits.
Nonlinear Hamiltonians for larger systems




Generating Entanglement =

Phase: Hpp =111 Laser OFF
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Dressed CPHASE gate () i
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= Single-atom effects
removed by echo pulse
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Phase (deg.)

J. J. Bollinger et al., “Optimal frequency measurements with
maximally correlated states.” Phys. Rev. A 54(6) (1996).
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Potential limitations

= Thermal, shot-to-shot, position spread 00y gu f
= Measured position spread, currently limiting
at the 3% level @ ; i G
= “Fine structure” in dressed Rydberg s00| /3= 43\ 4,213 M
potential still a possible limitation 100 e
= Doppler noise Rk
= Motion-dependent single-atom light shift 2 ypr T urr /2

= Mitigated by echo to <0.1% J_L!_I_I!_l_l_
X X X

= State purity

T T T T T T T T
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= |mplemented extra state purification a: %@% ép%
= >97% purity demonstrated % ‘%% é;é’@ : .
= Rydberg laser phase and amplitude 3 %Wyﬁ%&?@o
noise 0~ ; ; : R
= Characterized for current operating Time
parameters: contributes <1% 23




Local oscillator noise

= Sequence to test qubit /2 Uy T Uy T/2 y
rotation operations: | | - | | - | | |:> p:rif,ure
=  Expect sine wave with peak-to- X X @

peak amplitude of 1

=  Measured results consistent
with 0.5 rad RMS phase
fluctuations: 5¢

jﬁz [\/n ? n|1|2_

X X @ 0.0

=  Potential sources: Raman Laser Phase
linewidth and near-resonant amplified
spontaneous emission pedestal




CPHASE limitations

= (Calculated the effect of :
= Atomic position spread mmmm) Theory model with measured noise
parameters matches data.

= Atomic velocity distribution

= Effective local oscillator phase noise
Theory including known

Theory including
all noise. effects no LO noise
Overlapped theory and experlment
1.0F Theory model (phase is only free parameter) : 1.0~
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Error budget for CPHASE gate ) 2.

Error budget: informing an experimental strategy Raman laser noise,
NOiSG' 318 nm Laser noise,

= Trace over external parameters to calculate effect on Atomic motion, etc.

state fidelity, using measured parameters. /2 J<&m ) /2
Fldellty = (lptarlpoutll/)tar) |OO> _’—ﬂ |_I rl— {llpOut)}
T T
Effect Fidelity Mitigation
reduction
LO noise 10% £0.1%(stat.) Clean Raman laser/uWave cavity
+2%(sys.)
State purity <3% Clean Raman laser/uWave cavity
Atomic position spread 3%%0.5% Increase blockade radius, increase confinement
Wave-packet overlap <0.1% Sideband cooling to ground state
Atomic velocity spread <0.1% Sideband cooling to ground state
318 nm Laser frequency noise 0.2%%0.1% Pre-stabilized seed lasers, different detuning,

dynamical decoupling

Spontaneous emission 0.4%%0.2% Higher principal quantum #

318 nm laser amplitude noise <0.1% Install “noise eater” on laser




Scaling to N atoms

- S, is the collective S, spin operator for

—~ A N2
Hege = Urr X (SZ) the pseudospin N/2 system.
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[ ! - For N atoms all within a
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National

Defect-free neutral atom arrays =

Lukin group, Harvard'
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Browaeys group, Institut d’Optique (France)?

» There has been a revolution in
creating defect free, controllable
arrays of neutral atoms.

« 1D and 2D arrays demonstrated.
3D arrays are imminent.

’ W ° [Ihis capability makes scaling to a
many qubit simulator a possibility.

""""" _m 1. M. Endres et al., Science 354, 1024 (2016)

2. D. Barredo et al., Science 354, 1021 (2016)
3. W. Lee et al.,, Phys. Rev. A 95, 053424 (2017)




Sandia

Generation and control of >500 of individual traps e
Gerchberg-Saxton algorithm Intensity profile (measured)
With GPU compute acceleration —

(~50 Hz hologram calculation)
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Dynamic control of hologram-generated () e,
traps

30 fps, real time Phase hologram




Dynamic control of hologram-generated

500 fps

traps

-Optimize techniques for
calculating hologram with as
little phase discontinuity
between frames as possible.



Trapping Rydberg-Dressed atoms .

Ground state atoms in optical tweezers: Attractive potential

97 \
ressed
— state
position t?

energy
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Rydberg state atoms in optical tweezers: Repulsive potential




Preparing a trapped, dressed-state

Sweep Rydberg laser frequency and amplitude to
prepare dressed, trapped final state.
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Test lifetime of dressed state in trap




Long-lived & trapped, Rydberg-dressed states () =

* loss rate depends linearly on Rydberg admixture
+ consistent with theoretical Rydberg state lifetime of 121 us

- n=54P,,

Fit yields tp = 129+ 7 ps

0.4 0.6 0.8 1.
Rydberg Fraction [o]

Trap distortion allows atoms to stay
trapped by shifting distribution away
from dressing beam, leading to lower
actual Rydberg fraction than depicted in
this region.

Combined potential
-1




Equipotential surfaces for the blue sideband for different dressing conditions. @m
Laboratories

e i | =

Rt Rydberg Rabi freq. Oy = 2.2 MHz

- E Bare trap depth U, = 5 MHz

S AR =0
50% Rydberg admixture at trap center
Center is stable minimum.

wo=x  Rydberg Rabi freq. Qg = 2.2 MHz

I -0.15837
K -011688

_==ce Bare trap depth Uy, = 5 MHz
HE A/ =175
| 93% Rydberg admixture at trap center
Center is not stable minimum.

Trap closed.

ooz Rydberg Rabi freq. Qp = 2.2 MHz

] 0.01410

wosss  Bare trap depth U, = 5 MHz

I 0.06702
o A/Qp=-25
somme  96% Rydberg admixture at trap center
Center is not stable minimum.

Trap open.






Recap

« Demonstrated both spin-flip and CPHASE gates
between two Rydberg-dressed hyperfine qubits.

« CPHASE functionality will permit useful
quantum operations between atoms.

» Tracking down systematic effects!

« Single-photon Rydberg dressing opens up
possibilities for large-scale entanglement and

quantum simulation.
* Work towards larger systems is ongoing.
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Sandia mountains viewed from the Rio
Grande near Albuquerque, New Mexico
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