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Anomalous or extreme events

Cyclones in weather Crack propagation in materials

source: K. Satya Prasad

source: NOAA

Auto-ignition in combustion

Ignition kernel

source: Alemi et al. (2015)

source: Krisman (2016)



Computational approach

Combustion phenomena

T(K): 800 1000 1200 1400 1600

Governed by highly non-linear PDEs: multi-scale phenomena

Multi-variate data: ~ 10 — 100 variables

Direct numerical simulations: resolve all the scales in space and time

Massively parallel solvers (e.g. S3D Chen at al. (CSD 2009))
e computationally expensive (tens millions of CPU hours)
e large amount of data (~ 100 TB)

Exascale: need efficient workflows to compute, store and
analyze data



Simulation workflow

Initialization

Mesh (AMR)

M. A. Kopera et al. (2014)

Compute RHS terms

Update solution
Time
loop

HRR (W/m?*)
t* =33

In-situ analysis

S’
Ignition kernel
A. Krisman (2016)

Save data (I/0)

if(end time)

End simulation
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Bivariate dataset

Normal data Data with anomaly
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e Characterize the data distribution

e Principal component analysis: principal values and vectors

e Any change in distribution may result in
e change in the magnitude of principal values
e change in the orientation of principal vectors



Principal component analysis

e Compute the co-variance matrix (second order joint moment)

e Perform Eigen decomposition to obtain the principal values and vectors

Normal data Data with anomaly
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e First principal vector (PV 1) does not align along the anomalous values
e Mainly captures variance

o Need higher order moments to capture extreme events



Fourth order joint moment

Kurtosis: measure of “either existing outliers (for the sample kurtosis) or
propensity to produce outliers (for the kurtosis of a probability distribution)”
(P. H. Westfall, 2014)

o Compute the fourth joint moment (cumulant tensor, 7))

T = Elvevevev]—Ev,v,|Elv,v,]
—IE[V,‘1 V,'3]E[V,'2 V,'4] — E[V,'1 V,'4]E[V,'2 V,'3], 1 S I'1...I'4 § k

e Decompose the fourth order symmetric tensor (N#)
e Canonical polyadic decomposition (T. G. Kolda, arXiv 2015)

e Higher order singular value decomposition (L. De Lathauwer et al.,
SIAMJMAA 2015)

e Matricize the tensor and perform SVD (A. Anandkumar et al., JMLR 2014)

e Obtain principal kurtosis values and vectors



Anomaly detection

Data with anomaly
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e First principal kurtosis vector aligns in the direction of anomalies

e Can be used to characterize extreme events



Auto-ignition test case

Consider a simple problem with a 1D domain
e |nitial condition

1600
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1200

Temperature (K)

1000
0 0.2 0.4 0.6 0.8 1

x — position (cm)
Fuel-air composition: 0.6CO + 0.4H, + 0.5(0; + 3.76/N,)
Solver: scalable reacting flow code S3D (J. H. Chen et al., CSD 2009)
Number of subdomains: Ny = 4
Time-steps: At = 0.001us
Number of checkpoints: N; = 20, interval: 1us



Auto-ignition test case

Time evolution of the temperature profiles

2800
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o Early ignition occurs in Region 1
e Spatial anomaly in Region 1
e Eventually temporal anomaly in Regions 2, 3, and 4
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Principal kurtosis vectors

Time evolution of principal vectors in Region 1
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o As ignition event appears, spread along both temperature and Hs

o Principal kurtosis vectors align with ignition event values
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Feature moment metric

Number of features: Ny = 13 (12 species + temperature), index i

Number of subdomains: Ny = 4, index j

Number of time steps: N; = 20, index n

Project the principal vectors weighted by the principal values onto the
features to obtain FMMs

o & - U, is effectively the i-th entry in the k-th vector ¥y
e Property: Z,N:fl Ff’" =1,VYj,n
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Anomaly metrics

Identify spatial and temporal anomalies
e Statistical signature: distribution of feature moment metrics changes

e Hellinger distance: a symmetric measure of difference between two
discrete distributions P and @

Drq = jﬁ\/z(m— Vi)

e Spatial metric: compare each FMM distribution with the average

e Temporal metric: compare FMM distribution between sucessive time
steps

J 1 &l j,n j,n—1 2
Mz(”)zfz Z Fim = F
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Algorithm

Algorithm 1: Anomaly detection algorithm

1

2

3

10

11

12

13

// initialization

N¢, Ng < decompose data;
Nf « select features;

// time step loop

for n <« 1to N; do

// sub-domain loop
forj < 1to N; do

scale data;

Thn compute joint moment tensor;
matricize tensor 7™ ;
Aj, vj « perform SVD;

F{ '™ « compute feature importance;

ML), Mg(n) < compute anomaly metrics;
end

flag anomalous sub-domains;

end
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Feature moment metrics
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o FMMs distribute across different features when anomaly occurs
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Results

Temporal Metric

Spatial Metric
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e Dash line: threshold for dectecting anomaly (=0.5)

e Anomalies are detected in space and time
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Conclusions

Proposed an unsupervised anomaly detection algorithm

Verified the idea using synthetic and auto-ignition data

Demonstrated the algorithm in a distributed data setting

Future work:

e in-situ implementation of the algorithm into the massively parallel direct
numerical simulation solver (S3D)

e evaluate scalability

e apply the algorithm to detect anomalies in other scientific phenomena
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Abstract

In multi-variate multi-physics scientific simulations, anomalous events occur at locations in
space-time domain that are hard to predict, for example ignition fronts in combustion. It is often
required to identify these events promptly and precisely such that necessary actions may be taken
(e.g., triggering in-situ analysis, data checkpoint, mesh refinement), which is challenging in a
distributed setting since these events are local in space and/or time. We propose the use of
feature anomaly metrics (FAMs) to trigger the detection of such events. Due to tightly coupled
physics, anomalies do not always manifest as outliers in individual variables, but as clusters away
from the axes in the joint variable space. The FAM quantifies the contribution of each variable to
anomalies in the joint variable space based on its alignment with vectors that point towards
anomalous clusters. To construct such vectors, we seek a change of basis in a manner analogous
to PCA. While PCA yields a change of basis guided by the co-variance matrix, a measure of data
spread, we desire a change of basis guided by a measure of data outlierness, co-Kurtosis, which is
a symmetric fourth-order tensor. We employ symmetric CP decomposition of the co-Kurtosis
tensor to perform a change of basis and construct FAMs. We examine the efficacy of FAMs in
identifying anomalous events in synthetic data as well as canonical 1D combustion simulation
data.
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