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Anomalous or extreme events
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Computational approach
Combustion phenomena

• Governed by highly non-linear PDEs: multi-scale phenomena

• Multi-variate data: ∼ 10− 100 variables

• Direct numerical simulations: resolve all the scales in space and time

• Massively parallel solvers (e.g. S3D Chen at al. (CSD 2009))
• computationally expensive (tens millions of CPU hours)
• large amount of data (∼ 100 TB)

• Exascale: need efficient workflows to compute, store and
analyze data 3



Simulation workflow
Initialization

Compute RHS terms

Update solution

Save data (I/O)

In-situ analysis

Mesh (AMR)

End simulation

if(end time)

M. A. Kopera et al. (2014)

A. Krisman (2016)

Time  
loop
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Idea
Bivariate dataset
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• Characterize the data distribution

• Principal component analysis: principal values and vectors
• Any change in distribution may result in

• change in the magnitude of principal values
• change in the orientation of principal vectors 5



Principal component analysis
• Compute the co-variance matrix (second order joint moment)
• Perform Eigen decomposition to obtain the principal values and vectors
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• First principal vector (PV 1) does not align along the anomalous values
• Mainly captures variance
• Need higher order moments to capture extreme events 6



Fourth order joint moment
Kurtosis: measure of “either existing outliers (for the sample kurtosis) or
propensity to produce outliers (for the kurtosis of a probability distribution)”
(P. H. Westfall, 2014)

• Compute the fourth joint moment (cumulant tensor, T )

T = E[v ⊗ v ⊗ v ⊗ v ]− E[vi1vi2 ]E[vi3vi4 ]

−E[vi1vi3 ]E[vi2vi4 ]− E[vi1vi4 ]E[vi2vi3 ], 1 ≤ i1...i4 ≤ k

• Decompose the fourth order symmetric tensor (N4
f )

• Canonical polyadic decomposition (T. G. Kolda, arXiv 2015)

• Higher order singular value decomposition (L. De Lathauwer et al.,
SIAMJMAA 2015)

• Matricize the tensor and perform SVD (A. Anandkumar et al., JMLR 2014)

• Obtain principal kurtosis values and vectors
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Anomaly detection
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• First principal kurtosis vector aligns in the direction of anomalies

• Can be used to characterize extreme events
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Auto-ignition test case
Consider a simple problem with a 1D domain
• Initial condition
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• Fuel-air composition: 0.6CO + 0.4H2 + 0.5(O2 + 3.76N2)

• Solver: scalable reacting flow code S3D (J. H. Chen et al., CSD 2009)
• Number of subdomains: Nd = 4
• Time-steps: ∆t = 0.001µs
• Number of checkpoints: Nt = 20, interval: 1µs
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Auto-ignition test case
Time evolution of the temperature profiles
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• Early ignition occurs in Region 1
• Spatial anomaly in Region 1
• Eventually temporal anomaly in Regions 2, 3, and 4 10



Principal kurtosis vectors
Time evolution of principal vectors in Region 1
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• Initial spread only along temperature
• As ignition event appears, spread along both temperature and H2

• Principal kurtosis vectors align with ignition event values
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Feature moment metric
• Number of features: Nf = 13 (12 species + temperature), index i

• Number of subdomains: Nd = 4, index j

• Number of time steps: Nt = 20, index n

• Project the principal vectors weighted by the principal values onto the
features to obtain FMMs

F j ,n
i =

Nf∑
k=1

λk (êi · v̂k)2

Nf∑
k=1

λk

• êi · v̂k is effectively the i-th entry in the k-th vector v̂k
• Property:

∑Nf
i=1 F

j ,n
i = 1, ∀ j , n
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Anomaly metrics
Identify spatial and temporal anomalies
• Statistical signature: distribution of feature moment metrics changes

• Hellinger distance: a symmetric measure of difference between two
discrete distributions P and Q

DPQ =
1√
2

√∑
i

(
√
pi −

√
qi )2

• Spatial metric: compare each FMM distribution with the average

Mn
1 (j) =

1√
2

√√√√ Nf∑
i=1

(√
F j ,n
i −

√
F
n
i

)2

• Temporal metric: compare FMM distribution between sucessive time
steps

M j
2(n) =

1√
2

√√√√ Nf∑
i=1

(√
F j ,n
i −

√
F j ,n−1
i

)2
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Algorithm

14



Feature moment metrics
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• FMMs distribute across different features when anomaly occurs
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Results
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• Dash line: threshold for dectecting anomaly (=0.5)
• Anomalies are detected in space and time
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Conclusions

• Proposed an unsupervised anomaly detection algorithm

• Verified the idea using synthetic and auto-ignition data

• Demonstrated the algorithm in a distributed data setting

• Future work:
• in-situ implementation of the algorithm into the massively parallel direct

numerical simulation solver (S3D)

• evaluate scalability

• apply the algorithm to detect anomalies in other scientific phenomena

17



Abstract
In multi-variate multi-physics scientific simulations, anomalous events occur at locations in

space-time domain that are hard to predict, for example ignition fronts in combustion. It is often

required to identify these events promptly and precisely such that necessary actions may be taken

(e.g., triggering in-situ analysis, data checkpoint, mesh refinement), which is challenging in a

distributed setting since these events are local in space and/or time. We propose the use of

feature anomaly metrics (FAMs) to trigger the detection of such events. Due to tightly coupled

physics, anomalies do not always manifest as outliers in individual variables, but as clusters away

from the axes in the joint variable space. The FAM quantifies the contribution of each variable to

anomalies in the joint variable space based on its alignment with vectors that point towards

anomalous clusters. To construct such vectors, we seek a change of basis in a manner analogous

to PCA. While PCA yields a change of basis guided by the co-variance matrix, a measure of data

spread, we desire a change of basis guided by a measure of data outlierness, co-Kurtosis, which is

a symmetric fourth-order tensor. We employ symmetric CP decomposition of the co-Kurtosis

tensor to perform a change of basis and construct FAMs. We examine the efficacy of FAMs in

identifying anomalous events in synthetic data as well as canonical 1D combustion simulation

data.

18


