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We study the problem of estimating a function of many parameters acquired by sensors that are
distributed in space, e.g., the spatial gradient of a field. We restrict ourselves to a setting where
the distributed sensors are probed with experimentally practical resources, namely, field modes in
separable displaced thermal states, and focus on the optimal design of the optical receiver that
measures the phase-shifted returning field modes. We prove that the locally optimal measurement
strategy that achieves the standard quantum limit in this setting is a Gaussian measurement, and
moreover, one that is separable. We also demonstrate the utility of adaptive phase measurements
for making estimation performance robust in cases where one has little prior information on the
unknown parameters. In this setting we identify a regime where it is beneficial to use structured
optical receivers that entangle the received modes before measurement.

The technical maturity and low cost of a variety of
sensors has made distributed sensor networks ubiquitous
[1]. Such sensor networks are advantageous for extract-
ing and processing a variety of spatially distributed infor-
mation to achieve tasks such as boundary detection and
precise estimation of spatially varying fields. With the
rapid maturation and miniaturization of quantum sens-
ing technologies, distributed quantum sensing is naturally
emerging as a technological possibility. However, there
are still open questions regarding the extent to which
quantum sensors can provide performance improvements
for distributed sensing problems.

In the distributed sensing context, one can have two
types of quantum sensors. In the first type, each of the
N sensing nodes in a network could operate quantum
mechanically, but independently of all other nodes, while
in the second type, all sensing nodes could be coherently
linked, e.g., by sharing an entangled state or by being
jointly measured by an entangling measurement. For the
first type, any quantum enhancement in performance is
the same as in the non-distributed setting since one just
has N independent sensors. For the second type, there
is potential for a quantum-enhancement for sensing dis-
tributed properties due to shared quantum resources, and
we will focus on this case here. In this context, Proctor et
al. have recently shown that in a network where the quan-
tum state of each sensing node is dependent on a sepa-
rate parameter, whether there is a benefit to using quan-
tum resources (such as entanglement across the nodes or
an entangling measurement) depends on the form of the
distributed quantity one is interested in sensing [2]. In
particular, they show by computing the quantum Fisher
information (QFTI), that if the goal is to estimate all pa-
rameters, there is no benefit to using quantum resources,
but that if the goal is to estimate a global (non-local)
function of the parameters, then one can obtain a 1/N
enhancement in precision by initializing all sensor nodes
in a quantum entangled state.

* volkoff@konkuk.ac.kr
T mnsarov@sandia.gov

While the QFI optimized over input states yields the
ultimate bound on asymptotic estimation variance, it can
be misleading if the measurements required to achieve
this bound are not considered since these measurements
may be unfeasible under practical constraints. Moreover,
the QFI-optimal input states are usually non-classical
(and sometimes entangled) states, and preparing many
remote quantum sensors in non-classical states (or prob-
ing many sensors with entangled probe states) will be
technically challenging in the near-term.

Motivated by these considerations, in this work we con-
sider a practical variant of the distributed quantum sens-
ing problem, and quantify the benefits of using entan-
gling measurements to estimate functions of distributed
parameters. In particular, we consider a scenario where
N quantum sensors are interrogated by separable states
that can be measured jointly after interacting with the
sensors, see Fig. [I. Although such a setting is strictly
less powerful than the more general one where one also
allows for entangled probe states [3], it is more practi-
cal in the near-term, where constructing joint measure-
ments is more technically feasible. We explicitly con-
struct the ideal and resource-constrained (Gaussian, in-
cluding adaptive Gaussian) measurement strategies for
distributed sensing, and show that separable Gaussian
measurements can achieve the standard quantum limit
in this setting. This is surprising because in a similar
physical setting, joint measurements enabled by struc-
tured optical receivers have been shown to be necessary
for achieving classical communication capacities [4, 5].
Finally, we identify a special case where a mismatch in
prior information about the distributed parameters yields
a benefit to using a structured optical receiver that en-
tangles the received light.

Setting: Consider N sensors that are individually
probed by N optical probes, each of which is initially
in a displaced thermal state and acquires a phase shift
f;, see Fig. [I. The N modes are collected by a receiver,
which also has a local phase reference, and the goal is
to estimate a function f(61,6s,...,0y) of all the param-
eters. The classical strategy is to measure each mode
separately and compute the function f from the measure-

Sandia National Laboratories is amultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned

subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



F(01,00,..0x)

FIG. 1. Schematic of the distributed quantum sensing setting
considered here.

ment results. We ask if performing a joint measurement
on the N modes (plus the phase reference mode) is of
any benefit. Such a setting is relevant to any experimen-
tal scenario where information is imprinted in the phase
of optical probes. Two examples are: laser phase-shift
based range finding [6] and off-resonant optical probing
of an array of neutral atoms encoding sensed information
in clock state populations [7].

Two-mode, noiseless case: We first consider the
case N = 2 with no propagation loss or measure-
ment noise in order to present the main concepts. The
probe state is a two mode displaced thermal state,
pin = D(ay, az)pp, @ pg, D (a1, az), where D(a, ap) :=
X5-1%a} =795 ig the two-mode displacement operator,
pp = (1 —eP)> > e P"|n)(n| is a centered, ther-
mal state, and we take o; € R for simplicity. The
phase shifted state received by the receiver is then p; =

nginUei, where iIn Uy = 91(1];(11 + 92@12'(12 = H(g) Note
that pi, and py are both two-mode Gaussian states [8].

To motivate the Gaussian measurements considered
later, let us first derive the unconstrained optimal ques-

tion (i.e., two element projection-valued measurement)
for estimation of the phase difference, ¢; = 91*202 be-

tween the two modes. We compute the QFI and optimal
measurement that saturates it for this case by explicitly
computing the symmetric logarithmic derivative (SLD)
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where N; := (a;aﬁpg = (% —1)~!. For background
on the quantum Cramér-Rao bound, the symmetric log-
arithmic derivative (SLD), and estimation of bosonic
Gaussian states, see Ref. [10]. The QFT is independent
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When N; = No = 0 this quantity is 2a2 + 2a3, which is
the standard quantum limit (SQL) for estimation of 4
with separable probe states having total intensity n.y =
a?+a3 [11] [12]. Furthermore, for Ny = Ny = 0 and a; =
ag =: a, the SLD L, can be replaced by a rank 2 self-
adjoint operator PL,, P given by projecting L., on both
sides, such that PL,, P = 20, U(;(\a>®|a><a|®<a|)U; =

ilata; — abaz, |ae™) @ |ae™2) (ae™ | @ (ae™2]] (see

of #; and 6, and has the value trL%pg =

Supplemental Material for generic construction of P).
At 0, = 60y = 0, the optimal question is given by
the spectral projections {[£+)(£+|} of PLy, Plz_,, where

|€+) == 7‘60%‘6” and

(a;ag - aial) |a) ® |a)
av2

are orthogonal states. The state |es) is a superposi-
tion of photon-added coherent states. Therefore, the op-
timal question requires projection onto entangled non-
Gaussian states, suggesting that highly non-trivial quan-
tum resources are necessary to achieve the SQL. However,
we proceed to show that a separable Gaussian measure-
ment can approach the same performance.

|61> = |Ot> ® |Ol>, |€2> =

We denote by z := (x1,y1,72,72)" the column vec-
tor of coordinates on R* R := (qi1,p1,q2,p2) the row
vector of canonical observables that satisfy the Heisen-
berg uncertainty principle [Rz, R2'] = izT Azl for all z,
2 € R* (A := @7_ioy is the standard symplectic form
on R* and we have taken h = 1), and W(z) := e'f**
is a unitary operator that defines the Weyl form of
the canonical commutation relations via W(z)W(z') =

=328 W (2 + /). W(z2) is equal to the two-mode
quantum optical displacement operator D(aq,as) if one
takes z = (v2Imay, —v2Reaq, v2Imay, —v2Reas)T. A
Gaussian quantum state S on two modes of the electro-
magnetic field is associated with a mean vector mg :=
trSR and a 4 x 4 covariance matrix (Xg); ; := trS((R; —
m;) o (R; —m,;)), where o denotes the Jordan product.
An energy-constrained Gaussian measurement (ECGM)
on two modes is defined by E > 0 and a positive operator-
valued measure Mg (d*z) := W (2)SW (—z)d*z with sym-
plectic outcome space R* such that S is a two-mode, cen-
tered Gaussian state (i.e., mg = trSR = (0,0,0,0)) and
trS 23:1 a;r-aj = E. Due to the fact that S is centered,

the energy constraint can be rewritten %TrZS —-1=F
[13]. Note that when E = 0, this ECGM simply describes
a heterodyne measurement, and similary, when E — oo,
it describes a homodyne measurement. We will refer to
these as the heterodyne and homodyne limits, respec-
tively. For 0 < E < oo, the ECGM prescribes projection
onto a state with finite squeezing along some quadrature
of a mode, which is practically implemented as an adap-
tive phase measurement [14]. Hence, the parameter F
enables us to consider the full class of Gaussian measure-
ments, including adaptive strategies.

We consider the single-parameter estimation problem
with Cramér-Rao bound defined by the Fisher infor-
mation F(pz)1,1 = (JTF(pz)J)1,1, where F(pz) is the
Fisher information metric on the two-dimensional tan-
gent subspace spanned by (0g,,0,) at the probabil-
ity density py(z) = trW(2)SW(—2)pz, and J is the
Jacobian matrix of the transformation from (61,62) to



(g1(01,02),92(61,62)). Explicitly, F1 1 is given by [9]

- 1 _1\\2
Fiupg) = 5 (tr (96,9100, 5p; + 06, 9209,%,,;) ©71))
+ wl,lzflwll. (2)
where ¥ = X, + ¥g, w11 = (89191891171% +

89192892171%.) € R*, and ZPe‘ and My are the covariance
matrix and mean vector defining the state pj;.

We now specialize to the case of phase-difference es-
timation, g; = %(01 + (—1)?63) for which Eq. () be-
comes Fl,l = %(Fl_,l + Fy9 — 2F1 5). When the probe

state is a two-mode thermal state, i.e., of the form piy,
and only when it is so, the covariance matrix ¥, is inde-

pendent of 61, 2. Explicitly, 3, = @j (N + 3 )]12, and
= (v2Req, v2Ima, v2Rea, \fIma)Vgl@ng where

Vo = ( cosf; sinf;

J —sin 93 cos 0 > In this case, F1 1 Slmphﬁes to

- 1 3

Fiy = 5((891 - aoz)mﬂg)z 1((391 - 892)mpé.)T. (3)
We specialize to an isothermal (817 = B2 = f),
path-symmetric (a; = az = a) signal, die., py =

UgD(c, ) ps®psD(a, a)TU;, without sacrificing any im-
portant features of the problem. We seek to maximize
F11 over ¥g in the case that the state S that defines
the ECGM is a pure, two-mode Gaussian state, i.e.,
Yg = 4T7T for T € Sp(4,R). Under these assump-
tions, it follows that ¥ = (No + 3)I4 + 37T, where
No := (e —1)71. Because X! > O there exists an or-
thogonal matrix O that takes the eigenvector correspond-
ing to the maximal eigenvalue of ¥~! to the direction
(0o, — Op,) M. Because [0, cly] = 0 for any constant c,
we may conjugate X by the adjoint action of O to achieve
the maximum value of F} i, i.e.,

max Fl,l
TESp(4,R)
LT T-1=F

1 2 -1
_ = -0, b
TEI&EZ(,R) 2 13, 02)mp" 1”1 |

LT "T-1=F

1 1 -1
= 202 No+= JI+=T"'T (4
Bt 21((%+3)1457) 10
T TT-1=E

We refer to this quantity, the Fisher information max-
imized over all Gaussian measurements, as the Gaus-
stan Fisher information (GFI), and it is obviously up-
per bounded by the QFI. It follows from the Eu-
ler decomposition of Sp(4,R) [15] and the fact that
|OTE10| = ||=7!|| that we may restrict attention to
Y = diag(e™2m/2,e%1 /2,722 /2,€?2 /2), r; € R, such
that Z?zl sinh®r; = E. We then have that || =
(No+21+2emax{rira}) =1 from which it follows that the
constrained maximum of F 1,1 occurs when all the energy

is invested into a single mode.
Fisher information is given by

The resulting maximum

I3 202 (5)
max =

TéspaR) ' No+1+E—VE2+ E

LT T-1=F

This is the GFI for the phase difference parameter. Note
that in the homodyne limit (i.e., E — 00), this quantity
limits to 4a?/(2Np+1), which coincides with the QFI, see
discussion after Eq. (1]). Hence, the optimal estimation
strategy is achievable by a Gaussian measurement.

It remains to identify the ECGM that achieves the op-
timal value in Eq. (). An arbitrary pure, centered, two
mode Gaussian state S can be written as S = |E)(E]
with [B) 1= ¢! Zi=1 459595 . eZ5=1 395 -03)|0) ©|0), with
r; € R, and U := eSalaz—Calar being a beam-splitter (¢
is an angle in the closed complex disk with center 0 and
radius 7/2) [16]. We set ¢; = Arg( = 0 because these
parameters do not impact the GFI and hence can be set
arbitrarily when defining the optimal measurement. Uti-
lizing this explicit form for the ECGM, the energy con-
strained maximization of Eq.(3) at the parameter values
61 = 03 = 0 [17] reduces to maximization of the expres-
sion

1)7+ 1 sin 2|(|
2N0 —+ ]. -+ e_zrﬂ

20 22 (6)

subject to 2?21 sinh®(r;) = E. Eq. (@) achieves the
value in Eq. (f) when |¢| = 7/4 and when all the energy is
invested in squeezing a single mode, i.e., r; = sinh ™' VE
and ro = 0. In the homodyne limit, this corresponds to
a homodyne measurement of a; — as, which is obviously
an entangling measurement of the two received modes.
In fact, the entanglement entropy in S = |Z)(E|, takes
the value H(tr2S) = g(3(vVE+1 — 1)), where g(z) =
(x4 1)logy(z + 1) — zlog, x.

Comparison to separable strategy: Having identi-
fied the optimal ECGM, we now compare this to the best
separable Gaussian strategy, where each received mode is
measured separately subject to a total energy constraint.
We maximize Eq. (3) over separable pure centered S,
ie., S = |B)(®| with |®) = eZi=1 7 (@=%7)|0) & |0),
r; € R and Z lsinh2 r;j = E. The state S is a
tensor product ofz single-mode squeezed states and the
restriction to real r; is possible because a local rota-
tion of S only decreases the maximum constrained value
of Fy,;. Utilizing this explicit form for the separable
ECGM, the maximization of Eq.(8) reduces to maxi-
mization of 2a? Z?Zl(QNO + 1+ e 27)~! subject to
2321 sinh? r; = E. While for finite E this quantity is al-
ways less than the QFI, 4% /(2N + 1), in the homodyne
limit it asymptotes to the QFI. Hence, the SQL is achiev-
able by separable homodyne measurements on the two
modes. This is surprising for two reasons: (i) the analysis



FIG. 2. Ratio between the achievable and maximal Fisher
information (the FIR) when the measurement used is formu-
lated assuming parameter values #; = 03 = 0, while the true
parameter values are indicated on the axes. a =1, Ny = 0.

based on the SLD suggested that a non-Gaussian, entan-
gling measurement is necessary to achieve the SQL, and
(ii) the proven necessity of entangling measurements to
achieve classical communication capacities over bosonic
channels [4].

Generalizations: In [9] we generalize the above calcu-
lations to the case of N probe modes and estimation of
arbitrary linear functions of the parameters 6;. In such
general settings we also find that the optimal GFI can be
achieved by an entangling Gaussian measurement in the
homodyne limit, and a separable Gaussian measurement
in the homodyne limit.

Finally, we note that the effects of common imperfec-
tions in the transmission channel can be easily incor-
porated into the above analysis. Transmission through
common media such a fibers and free-space is modeled
well by a linear bosonic channel that results in loss and
injection of thermal noise. These effects simply rescale
the amplitude and effective temperature of the received
state, pg, respectively; i.e., a — na, where 0 < n < 1,
and NO =2 NO == Nchannel-

Local optimality versus robustness: So far we have
shown that separable homodyne measurements achieve
the optimized Cramer-Rao bound for distributed sensing
with displaced thermal state probes; in essence, the best
thing to do is the classical strategy of estimating each
parameter separately and then computing the function
f(01,...0n). However, it is important to note that the
QFT analysis results in locally optimal strategies [18]. In
particular, the form of the optimal measurement is de-
pendent on the values of the parameters #;. In the two
mode example, the values of 61, 65 dictate the local phase
parameters ¢1, ¢2 in the state |Z) that determines the op-
timal measurement. This is not a practical issue if one
has a prior distribution over the parameters that is nar-
row. However, in cases where this is unavailable, or the
prior distribution has broad support (e.g., a uniform or
maximally uninformative prior) the locally optimal esti-
mation strategy can fail spectacularly. To illustrate this,
in Fig. [2 we plot the ratio between (i) the actual Fisher

information achieved when applying the optimal mea-
surement (with E = 108, close to the homodyne limit)
formulated for #; = 6 = 0 to a returning state im-
printed with different values of ;, and (ii) the maximal
GFI (4a%/(2Ny +1)). If the actual values of the parame-
ters are significantly different from the assumed ones this
Fisher information ratio (FIR) can be less that one, and
in some cases go to zero.

We note that a Gaussian strategy that does not suf-
fer from this sensitivity to prior information employs
heterodyne measurements for all modes. The Fisher
information for heterodyne measurement (E = 0) is
402 /(2Ny + 2), regardless of whether we allow for en-
tangling, or only separable, measurements. Since this
measurement has no dependence on the actual value of
the parameters (i.e., |E) = |®) = |0) ® |0)) the Fisher in-
formation remains constant regardless of the actual value
of the parameters. However, this lack of sensitivity comes
at the cost of a smaller value of Fisher information.

One way to negotiate this trade-off between estimation
precision and robustness is to use an adaptive measure-
ments (0 < E < oo) that smoothly interpolate between
heterodyne (which prefers no quadrature) and homodyne
(which prefers one particular quadrature). In this sense,
FE can be considered a parameter that quantifies the de-
gree of confidence in the prior information on the pa-
rameters. This also suggests a scenario where there is a
benefit to using a structured optical receiver. Namely,
consider a setting where one is very uncertain about the
distribution of the individual parameters 6;, but has a
narrow prior on the collective parameter f(61,...0x). If
one is concerned with minimizing uncertainty in estima-
tion precision (e.g., quantified by the variance in Fisher
information) then the best separable strategy is to use
heterodyne measurements on all modes, in which case
the Fisher information is 4a?/(2Ny + 2). However, if
one employs an entangling measurement that concen-
trates the collective parameter into a single mode, one
can exploit the narrow prior on this parameter and ap-
ply a homodyne measurement on this mode to attain the
optimized Fisher information for the estimation prob-
lem 4a?/(2Ny + 1). Although this is only a constant
gain in estimation precision it could be beneficial in ex-
tremely low-power, low-noise applications where o? < 1
and N() < 1

Conclusions: We have analyzed distributed quantum
sensing applications where thermal probe fields are im-
printed with phase shifts proportional to distributed pa-
rameters, and one is interested in a global function of the
parameters. We proved that a separable, Gaussian mea-
surement strategy can achieve the SQL in this setting. In
addition, we showed that this is a locally optimal strategy
that can result in large estimation performance variation
unless one has narrow prior distributions over the param-
eters. Finally, we highlighted a scenario where one has a
mismatch between prior information about the individ-
ual parameters and the global function of the parameters,
where an entangling measurement can yield some benefit.



Therefore, even when using probe states that are almost
classical (separable displaced thermal states), there are
situations where one can gain an estimation advantage by
utilizing a structured receiver that interferes/entangles
the returning light.
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SUPPLEMENTAL MATERIAL
Symmetric logarithmic derivative for the phase difference parameter for N = 2

Here we present the detailed derivation of SLD for the phase difference parameter in the NV = 2 case analyzed in
the main text. By explicit calculation, one finds that for py = D(a1, a2)ps, ® pg, D(au, az)f, where aj € R, N; >0,

. 0. O
Do, pg = ie'% #ajpg + h.c. . (7)
J
However, using the identities
ajpg = pg (e (a5 — aje™") + aje™™)

(
pga} = (e_ﬁj (a;r- — aje) + ozjewj) Py (8)

it follows that dy,p7 = pg o Le,, where

.
Ly, = J
TN+

(ie'a; + h.c) = L};j (9)

are the SLD operators in the dy, directions. Using the Jacobian to transform two-dimensional tangent subspace
span{Le, }j=1,2 at pz to the basis {L,,};=12 gives Eq.(1)).

For a pure state [1), the defining equation of the SLD (in the direction 8y, ) Oy, 1) (¥| = 3|¥)(¥|Ly, + 2 Ly, [1) (|
combined with the fact that (|L,,[1)) = 0 implies that P(0,,|¢)(¥|)P = 0,,|¥)(¢)|, where P is the projection
to the two-dimensional complex Hilbert space span{|¢), L., |¢)} (clearly, P is dependent on |¢); here we omit the
subscripts on P, shown explicitly in the main text, that indicate this dependence). Then, since [P, |¢){(¥]] = 0, it
follows that Oy, |1)(¥| = 3|} (| PLy, P+ 3 PLy, P|1)(3|. Calculation of the spectral projections of PL,, P amounts
to diagonalization of a 2 X 2 matrix.

Explicit form of the Fisher information in the Gaussian setting

Here we present the detailed derivation of Eq. () in the main text. The measure p,, (d4z) =

tr (oW (2)SW (—2)) % on R* has density py(z) := ﬁtr (pgW (2)SW (—z)) with respect to Lebesgue measure.

The quantity of interest is the 2x2 Fisher information metric
Fj = /d4zp9~(z)89i log py(2)0y, log py(2)
= [ dpgle) 0 55()0,p3() (10)

Actually, for phase difference estimation, we really only care about Fm, where F' = JTF.J is the Fisher information

_ 1 1
i s _ pitee — P2—¢1 - 1
metric in terms of @1, o after the change of parameters 6; = 75 0, = 7 and J = 7 {_1 1}. To

calculate py(z), we use the expansion of the states over the CCR C*-algebra, e.g., py = il gTz)lszg(zl)W(—zl) where

—12I5, zi4+im! 21 . L. . . .
Xps(21) =€ * 17rg" ™ s the characteristic function of pg defined by the covariance matrix X, and the mean

vector m,,...
6



4y dhz
is) = Tryetn [ G g Xeaa s ()W (—2) W ()W (—22)W (—2)

1 d*z d* ; i
B O sl (CREP

= (27‘()2 (27r)2 (271_)2 ng

_ 1 d42’1 A

@2 / Wxﬂe'(zl)Xs(—zl)e

) (2;-)2 (det (295 " ES))il/Q 6_% <mp§_mS_ZTA> (2p9~+25) - (mpg_ms-FAZ)T (11)

where, in the third line, we have used trW(z) = (27)%6(z) for a two mode system. Now, we calculate 9y, pz(z) by
using the third line Eq.(11)) and a generating function.

2

42’1 . 5
99, pg(2) = #/éT)Q —% > (~i85,,)108, Zoglmn(—i0;,)

m,n=1
2
+ Y il00,mp,ln(=i0;,)
n=1

67-212z1+1(mp6_ mg—=z A)zle” 21

Jj=0

- (277)2~1/d—et D {—%tr ((5912/)5)271) - (691m[)§)271(mp§ —mg—2"A)T| ps(2) (12)

where the Gaussian integral version of Wick’s theorem has been used to get the last line. Now, we perform a final
integration over z to get the Fisher metric. We will show the off-diagonal element F} 2 so that it will be clear how

the other elements go. Finally, we will present the result for 1*:'1,1.

Fio= /d42pg(z)_laelpg'(z)aewg(z)
1
2m)?

(det ) ~1/2

Expanding the brackets and noting that: 1) for any v € R*, and positive A € My(R), [d*zvTue 3" TAu — 0 2)
taking u = m,. — mg + Az gives

Fua= (00 (00 35) 57 1 ((00,3,,) 57

det B)~1/2
(GT/dAl (%lmp )X 1uT) ((892771,,9)2 L T) —guE Ul (14)

Using the identity

detZ —1/2 2 | o
( l Z ]nl)(Q)'nQ(*Zajn?)‘| /d4ue72u z uezu 4

ni,me=1

=Ly (15)
7=0
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FIG. 3. Maximal value of Fy; for probe state pin = D(a,a)ps, ® ps, D' (a, ), with o = 1. The average thermal photon
numbers N; = (et —1)~! are swept across the two axes. The optimal ECGM is obtained for the energy constraint £ = 4. F
is symmetric about N1 = Na.

for row vectors L, @ € R*, allows one to simplify the last line of Eq.(14).

Fg = <itr (86, 255) =) tr (86, 5,,) 2—1)>
I (691mpg‘)271(892m/)§)-r (16)

For Fy 1, F 2, just use the appropriate dp,. From the transformation Fi, ;= (JTFJ); ; that arises from an arbitrary
diffeomorphism 0= (01,02) — (91(01,02),92(01,62)), one finds that

Fi,j = I1,1(09,91)(00,91) + F2,2(0p,92) (00, 92)
+ F1,2(09,9100, 92 + 09,9200, 91)- (17)

Eq.(2) in the main text follows immediately from Eq.(16) and Eq.(17).

Non-isothermal probe states

In the main text the probe state is assumed to be isothermal (i.e., the temperature of all modes is the same). In
this section we compute the GFI for non-isothermal states for completeness.

Consider the N = 2 case, and path-symmetric, non-isothermal (8; # B2) probes for phase difference estimation.
Because X, is no longer a constant multiple of the identity matrix, the arguments leading to Eq(@) in the main
text cannot be applied. In this case, it is most convenient to carry out constrained numerical optimization of Eq.(3)
over states S defined by S = |Z)(E| with |E) as defined in the main text, and Fig. [J presents the results of this
calculation. It is clear from this data that the maximal value of F1,1 decreases most rapidly for uniform probe state
noise. The entanglement entropy of the optimal S (not shown) satisfies the following properties: 1) it is constant
along the N; = N line and in agreement with Eq.(??) for all values of E, and 2) it monotonically decreases from the
N; = N value along the quarter circle of radius /N7 + N3.

Scaling analysis and entanglement gain

We consider the general setting where one has IV sensors, each probed by a displaced thermal state that picks up a

phase shift 6;. We restrict to computmg linear functions of the phases, and define the quantity of interest as the first
component of the function g(@) — (#y-0,...,0x - 0) where {T}r—1... .~ is an orthonormal set in RY. The Jacobian

—

matrix of the map 0 — [g1(8), ..., gn( )] is given by J := [,..., ¥ } Then, from F = JTF.J, we get

Fiy = (51 Vo)my, (8o, + 2s) " (@ - Vg)mpe_)-r.



We seek to maximize this quantity, subject to the energy constraint <Z§V:1 a;r-aj> s=F;ie.,
1
a o1 - Vo)m, |2(Zp, + =TTT) 7. 18
rema @ Vo)my P IS, + 5T7T)7| (18)

1 (T N __
LT TT-N=F

This can be solved in the same way as the two mode case if we take the isothermal, path symmetric probe state
pin = D(a,. .. ,a)p?ND(a, -, )T, since in this case [|(Z,; + 3TTT)~!| = [[(No + (1/2))Ian + £5) 7|, and we
can assume that g is diagonal, i.e., is a tensor product of squeezed states with squeezing of the ¢ or p quadrature
only.. Clearly, the matrix norm will be maximized if all the squeezing is in one mode (i.e., all the energy is used for

7

squeezing), and we have ||((No + (1/2))Ian + Xs) 7Y = ((No + (1/2) + 6;2 )~1, where sinh? r = E. Rewriting, and
using the fact that My = Mp,_ EB;VZI Ve, , gives:

- 1% - Vo)my, |12
max Fiq=

TeSp(2N,R) (No+1+ E—-VE?+E)
laT"T-Y=E

_ 202 (19)
- (No+1+E-VE?+E)

This quantity has no dependence on the number of modes, V. To understand the import of this we must compare
this quantity to the GFI when one is limited to separable measurements. To do so, we maximize F;; under the
restriction of energy constrained separable measurements, see [19] for details. We define the ratio of Eq. (19) to
the maximum achieved by separable strategies, the entanglement gain (EG). The best separable strategy actually
depends on the structure of ¢; if ¥} is dominated by one entry (the unbalanced case), say (U7)1, then its preferable to
invest most of the energy available for measurement into measuring the first mode. In contrast, if ¥; contains entries
of almost equal magnitude (the balanced case), then the best separable strategy distributes the energy available for
measurement among all N modes. As the homodyne limit is taken (E — o), the entanglement gain asymptotes to
Egunbal ﬁ for the unbalanced case, and EG* — 1 for the balanced case. We see that in the general N
case also, that separable and entangling Gaussian measurements can achieve the same estimation performance in the
homodyne limit.

. =1
For S a separable ECGM, from Eq. (), we have that Fy; = Zjvzl 2(01)3a? (NO +(1/2) + = 22]) , where

2321 sinh? r; = . When attempting to maximize this, care must be taken in consideration of the vector @;. If the

vector ¥ has a unique entry of maximum magnitude (the unbalanced case), we should put all the energy into the
corresponding ;. Without loss of generality, let (71)3 > (171)]2, j # 1, and put all the constraint energy into measuring
that mode. In that case,

max Fi1 =202 (7)1 + iv: (ﬁl)?
S separablﬁ, Gaussian Ll No+14+E — /E?2 + FE i= Nog+1
(i, alag)s=E N

(unbalanced) (20)

In the opposite extreme, let us consider (7)3 = 1/N (the balanced case), which encompasses the case of two-mode
phase difference sensing that is considered in the main text. In this case, the maximum is achieved when the constraint
energy is distributed equally for squeezing each mode of the state S that defines the ECGM, and we can show,

o 202
max = a (balanced) (21)

S separable, Gaussian

7 E EN2 | E
(CN,alas)s=E No+1+% (%) + %

In the main text, we presented the finite-energy EG for the balanced case, and here we examine the same quantity
for the unbalanced case. Note that Eq. (19) in the main text nor Eq. (20) have an explicit dependence on the
number of modes, N. However, there is an implicit dependence on this quantity through (#;);; namely, since this
is assumed to be the largest element of the normalized vector v, its magnitude bounds the number of modes,
i.e., N > (1—(91)})/(%1)?. In Fig. 4 we plot the EG as a function of E and (#)3. As seen in this figure, the benefit of
an entangling measurement decreases with increasing (7)?; as the function becomes more unbalanced the estimation
precision can be minimized by performing separable measurements, and minimizing the variance of the generator of
the dominating parameter, 6;.
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FIG. 4. Entanglement gain for the unbalanced case as a function of the largest element in ¥, (#1)3%, and the energy constraint

E.
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