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Hierarchical Low-Rank (HLR) Matrices 
and Solvers
 Hierarchical matrices and solvers currently  popular

 Alphabet soup: H, H2, HODLR, HSS, …

 Key insight: Many matrices have useful (rank) structure
 Blocks far from diagonal can be approximated using low-rank

 Holds for elliptic PDEs, some other (e.g., advection-diffusion problems)

 Similar intuition as for Fast Multipole Methods (FMM)

 May also apply to data science (e.g. covariance matrix)

 Stanford/Sandia collaboration. Our goals
 Develop solver/preconditioner based on hierarchical matrices

 Speed up sparse direct solvers (high accuracy)

 Use as preconditioner (low accuracy)
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Low-Rank Structure

Low-rank structure often occurs in off-diagonal blocks in
 The inverse of A
 The LU factors of A
Hierarchical formats:
 HSS and HODLR may need high ranks in some blocks
 H and H2 need lower ranks due to more flexible partition

IFMM figure from 
Ambikasaran & 
Darve.
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Fast Sparse Solver Approaches

 Early work was on dense matrices; we focus on sparse

 Approximate LU factors of A
 Dense frontal matrices within sparse direct (multifrontal) method

 Xia, Li, Ambisakaran/Darve, Ho/Ying, …

 MUMPS, Pastix, Strumpack software

 Rely on nested dissection ordering with separators

 Work on entire sparse matrix (sparse triangular factors)

 H-LU (Hackbusch, Grasedyck, Kriemann, LeBorne, …)

 LoRaSp (Pouransari, Coulier, Darve) 

– Relies on graph partitioning (edge separators), as in domain decomp.
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The LoRaSp/ParH2 Method

 LoRaSp: Pouransari, Coulier, Darve, SISC 2017 

 Parallel version by Chen et al, Parallel Computing, 2007.

 Partition graph via recursive bisection, gives a tree

 Eliminate “clusters” (matrix blocks) starting at leaf level

 Approximate block LU factorization

 New “coarse” dof via extended sparsification

 Merge neighbors, repeat for each level in the hierarchy (bottom up)

5Figures courtesy Chen et al., and Pouransari et al. 
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Multilevel Block Incomplete Factorization

 Algebraic Interpretation:
 LoRaSp/H2 solver can be viewed as a variation of Block ILU 

factorization 

 A= LU+E, where E has block structure

 approximate E blockwise by low rank

 We compensate for the dropped blocks by adding new rows/columns 
to the matrix (extended sparsification)

 The Schur complement for these coarse vertices is a smaller matrix we 
can solve recursively

 Low-rank approximation is different from earlier ILU work
 We use H2 structure only implicitly

6
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Extended Sparsification


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ILU and Extended Sparsification 
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 Note: Fill blocks in the block LU factors often have low rank
 Schur complements in the Gaussian elimination

 Approach: Compute blocks in ILU(0) exactly, and
 Approximate blocks in ILU(1) (not in ILU(0)) using low-rank

 Extend matrix with new rows/cols
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Parallel Approaches
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Tree level structure for algorithm.
Figure courtesy Pouransari.

• Cluster tree gives dependencies
• Work on one level at a time

• Bottom up, can switch near top of tree
• Note: Each leaf not independent, cross 

edges typically exist!

• Similar to sparse direct solver at 
each level
• Can use nested dissection on (each level 

of) cluster graph
• Tree-based parallelism within each level 

– too complicated!

• Fill is limited to distance-2 vertices
• Allows simpler parallel method
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ParH2 Parallel Algorithm
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Example: 4 processors. Each 
vertex (node) corresponds to 
a cluster of variables.
Figure courtesy Chao Chen.

• Work on one tree level at a time
• Bottom up, can switch near top of tree

• Data parallel: Each processor works 
on a subgraph (subdomain).

• Consider the cluster graph:
• Only boundary vertices need 

communication.
• Interior vertices can be eliminated 

independently in parallel.

• Use graph coloring on the boundary 
to find concurrent work
• #synchronization points = #colors

• Can overlap boundary and interior 
vertices
• That is, overlap communication and 

computation
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Experiments

 ParH2 solver (and results) by Chao Chen
 Parallel extension of LoRaSp serial code

 MPI everywhere

 Eigen library for dense linear algebra (on node)

 SVD for low-rank compression
 Fixed eps in matrix compression

 Matrix ranks will vary

 Platform: Cray XC30 (Edison/NERSC)
 Used 16 (out of 24) cores per node

 Used up to 16 nodes (256 cores)

11
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Results: Compare sparse direct.
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Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver 
on irregular problems from UF/SuiteSparse. Vary compression threshold 
epsilon. 16 processors (MPI ranks).
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Results: 3D Poisson Eqn. 
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Results: Helmholtz eqn.
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Improving Convergence

Idea: Improve convergence by preserving certain vectors on 
coarser levels (similar to AMG)
 Yang, Pouransari, Darve, arXiv 1611.03189 (2016)
 Preserve the near-null-space 

 often corresponds to translation & rotation

Test problem: Poisson on 2.5D box, Robin b.c.
 Motivated by ice sheet simulation
 Trade-off memory & cost per iteration vs #iterations
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Method/
mesh

Orig.
#iter

Const.
#iter

Linear
#iter

Orig.
Nnz/row

Const.
Nnz/row

Linear
Nnz/row

162x8 8 8 5 135 176 255

322x8 12 10 6 169 226 357

642x8 18 12 7 180 243 406

1282x8 25 15 7 188 250 439

Results due 
to Ray 
Tuminaro
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Variations on Graph Coloring
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 Processor/domain coloring
 Color the processor graph
 Dist-1 coloring
 Most processors will be idle each phase

 Node/boundary coloring
 Color the nodes along the boundaries
 Dist-2 coloring
 Most processors will have some work to 

do in each phase
Node coloring. Each node (vertex) 
corresponds to a cluster. 
Figure courtesy Chao Chen.
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Graph Coloring: Work in Progress
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 Distance-2 node coloring is too pessimistic
 Clusters on the same processor are processed sequentially, so can 

have the same color

 Only need different colors for paths across processor boundaries

 Used it mainly because software was available (Zoltan)

 Better strategies
 General greedy algorithm for new coloring problem

 Custom heuristic based on faces/edges in the decomposition

 Both ways, we will reduce colors and improve performance!
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Conclusions

 Hierarchical low-rank methods (HLR) augment the current 
solver/preconditioner ecosystem. 
 Faster than sparse direct

 Most useful as preconditioner

 Setup phase can be expensive.
 Can often amortize this cost over multiple solves

 Well suited for modern architectures
 Most work is in dense linear algebra (even for sparse problems)

 High arithmetic intensity

 Early days: 
 Several algorithm options, best choice unclear

 Codes are still immature but rapidly improving

18
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Backup Slides
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Hierarchical Matrix Formats

 HSS is perhaps most popular but has drawbacks
 Weak admissibility may require high ranks (esp. 3D problems)

 Example: Inverse of 2D Poisson eqn. (Courtesy G. Chavez et al.)

Simple basis Nested basis

Weak admissibility HODLR HSS

Any admissibility H H2
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HLR: Tree and Matrix
 Recursively bisect the vertices (clustering)
 Corresponds to a binary tree 
 Matrix: Low-rank approximation of off-

diagonal blocks
 Only if “well-separated”
 How to choose ranks?
 Use SVD, ACA, ULV, or RRQR?
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Our Hierarchical Low-Rank Sparse 
Solver
 Collaboration Darve (Stanford) & Sandia

 Solver based on recent H2 methods by Darve et al.
 IFMM (dense), LoRaSp (sparse)

 Uses block approximate LU factorization with low-rank 
compression for “well separated” interactions
 Partition matrix, build H-tree, factor approximately

 Leaves are subdomains, internal vertices correspond to 
approximate Schur complements (low rank)

 Tree implicitly gives approximate LU factorization

 New method, differs from multifrontal HSS
 Simpler, no trees within trees

22
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Variations

 Extended vs in-place sparsification

 Ordering of clusters

 Definition of “well separated” – could allow ILU(k)

 Aggressive “coarsening” – merge more clusters

 Compress-eliminate or eliminate-compress?

 Low-rank compression: SVD, RRQR, RRLU, ID, etc.

23
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Results: Variable coeff. Poisson
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We simulate ice sheet flow using Stokes’ eqn. Use Albany/Felix software, 
Trilinos solvers for linear systems. 2.5D geometry is challenging as the z 

dimension is very different.

Ice Sheet Modeling: Greenland

Precond. 8km mesh 4km mesh

ML - -

ML/custom 18 17

ILU (custom 
order)

12 21

H2(1e-1) 141 423

H2(1e-2) 36 153

H2(1e-1)* 19 21

H2(1e-2)* 14 13

* This version uses x-y mesh partitioning and treats ”diagonal” grid points 

as neighbors (not well sep.)


