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Hierarchical Low-Rank (HLR) Matrices
and Solvers

= Hierarchical matrices and solvers currently popular
= Alphabet soup: H, H2, HODLR, HSS, ...

= Key insight: Many matrices have useful (rank) structure
= Blocks far from diagonal can be approximated using low-rank
= Holds for elliptic PDEs, some other (e.g., advection-diffusion problems)
= Similar intuition as for Fast Multipole Methods (FMM)
= May also apply to data science (e.g. covariance matrix)
= Stanford/Sandia collaboration. Our goals
= Develop solver/preconditioner based on hierarchical matrices
= Speed up sparse direct solvers (high accuracy)
= Use as preconditioner (low accuracy)
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Low-Rank Structure

Low-rank structure often occurs in off-diagonal blocks in

= Theinverse of A

= The LU factors of A

Hierarchical formats:

= HSS and HODLR may need high ranks in some blocks

= Hand H2 need lower ranks due to more flexible partition

IFMM figure from
Ambikasaran &
Darve.

B - Full-rank;  [7] - Low-rank




Fast Sparse Solver Approaches

= Early work was on dense matrices; we focus on sparse

= Approximate LU factors of A

= Dense frontal matrices within sparse direct (multifrontal) method
= Xia, Li, Ambisakaran/Darve, Ho/Ying, ...
= MUMPS, Pastix, Strumpack software
= Rely on nested dissection ordering with separators
= Work on entire sparse matrix (sparse triangular factors)
= H-LU (Hackbusch, Grasedyck, Kriemann, LeBorne, ...)
= LoRaSp (Pouransari, Coulier, Darve)

— Relies on graph partitioning (edge separators), as in domain decomp.




The LoRaSp/ParH2 Method

= LoRaSp: Pouransari, Coulier, Darve, SISC 2017
= Parallel version by Chen et al, Parallel Computing, 2007.

= Partition graph via recursive bisection, gives a tree

= Eliminate “clusters” (matrix blocks) starting at leaf level
=  Approximate block LU factorization
= New “coarse” dof via extended sparsification

- Merge nelghbors repeat for each level in the hierarchy (bottom up)

level 0 root.
__‘1_3__1_[}_]..,_
level 1 r01[1.] .rlllll
level 2
level 3

Figures courtesy Chen et al., and Pouransari et al.




=

LABCRATORY DIRE

~ Multilevel Block Incomplete Factorization

= Algebraic Interpretation:

= LoRaSp/H2 solver can be viewed as a variation of Block ILU
factorization

= A= LU+E, where E has block structure
= approximate E blockwise by low rank

= We compensate for the dropped blocks by adding new rows/columns
to the matrix (extended sparsification)

= The Schur complement for these coarse vertices is a smaller matrix we
can solve recursively

= Low-rank approximation is different from earlier ILU work

= We use H2 structure only implicitly




Extended Sparsification

= For simplicity, assume symmetric A {can be extended)
= Suppose the off-diagonal blocks are {approx) low-rank:

(ur %)
vur A,
= We solve the equivalent extended system

A, 0 U 0
0 4, 0 V
ur o 0 -I
0 vl -1 0
= We sparsify the original matrix, but add extra rows/cols that
also need to be factored.

= The lower the ranks of U,V, the smaller extended system
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ILU and Extended Sparsification

= Note: Fill blocks in the block LU factors often have low rank

= Schur complements in the Gaussian elimination

= Approach: Compute blocks in ILU(O) exactly, and
= Approximate blocks in ILU(1) (not in ILU(O)) using low-rank

= Extend matrix with new rows/cols

QOriginal A, blocksize=4




LABCRATORY DRECTED

~Parallel Approaches

* Cluster tree gives dependencies

* Work on one level at a time

* Bottom up, can switch near top of tree ~ '=!" roote

* Note: Each leaf not independent, cross v
edges typically exist!

* Similar to sparse direct solver at

each level
e (Can use nested dissection on (each level
of) cluster graph
* Tree-based parallelism within each level
— too complicated!

e Fill 1s limited to distance-2 vertices
* Allows simpler parallel method

level 3

Tree level structure for algorithm.
Figure courtesy Pouransari.
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* Work on one tree level at a time
* Bottom up, can switch near top of tree

e Data parallel: Each processor works
on a subgraph (subdomain).

* Consider the cluster graph:
* Only boundary vertices need
communication.
* Interior vertices can be eliminated
independently in parallel.

* Use graph coloring on the boundary
to find concurrent work
* #synchronization points = #colors
* Can overlap boundary and interior
vertices

* That 1s, overlap communication and
computation

ParH2 Parallel Algorithm
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Example: 4 processors. Each
vertex (node) corresponds to
a cluster of variables.

Figure courtesy Chao Chen.
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Experiments

= ParH2 solver (and results) by Chao Chen
= Parallel extension of LoRaSp serial code
= MPI everywhere
= Eigen library for dense linear algebra (on node)

= SVD for low-rank compression
= Fixed eps in matrix compression

= Matrix ranks will vary

= Platform: Cray XC30 (Edison/NERSC)

= Used 16 (out of 24) cores per node
= Used up to 16 nodes (256 cores)



LABCRATORY DI

- Results: Compare sparse direct.

Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver
on irregular problems from UF/SuiteSparse. Vary compression threshold
epsilon. 16 processors (MPI ranks).
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esults: 3D Poisson Egn
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Results: Helmholtz eqgn.
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Improving Convergence

ldea: Improve convergence by preserving certain vectors on
coarser levels (similar to AMG)
= Yang, Pouransari, Darve, arXiv 1611.03189 (2016)

= Preserve the near-null-space
= often corresponds to translation & rotation

Test problem: Poisson on 2.5D box, Robin b.c.
= Motivated by ice sheet simulation
= Trade-off memory & cost per iteration vs #iterations

Method/ | Orig. Const. | Linear | Orig. Const. | Linear
mesh #iter #iter #iter Nnz/row | Nnz/row | Nnz/row

162x8 5 135 176 255 Results due
322x8 12 10 6 169 226 357 [0 Ray
Tuminaro
642x8 18 12 7 180 243 406
1282x8 25 15 7 188 250 439
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Variations on Graph Coloring

1
: : o -
* Processor/domain coloring | I
= Color the processor graph — ¢
= Dist-1 coloring NI S i l —
= Most processors will be idle each phase  --|--- e e S
= Node/boundary coloring 1 [ 1
= (Color the nodes along the boundaries * —9 *
= Dist-2 coloring ) G E A ®
= Most processors will have some work to Node coloring. Each node (vertex)
do in each phase corresponds to a cluster.

Figure courtesy Chao Chen.
Table 1: Node coloring (distance-2 coloring) g Y

N level # nodes # procs # colors makespan coloring time computation communication
5122 12 828 22 119 420 1.1e-2 1.71363 1.77387
10242 14 4844 42 145 534 7.5e-1 4.05081 10.4608
642 12 3432 23 288 £11 3.9e-2 3.29297 317157

Table 2: Domain coloring

N level # nodes # proes +# colors makespan coloring time computation communication
5122 12 828 22 40 828 5.4e-4 1.60225 4.85464
10242 14 4844 42 60 2216 1.Te-3 4.23214 35.6014

647 12 3432 23 36 1716 T.le-4 3.62744 16.9539 16




oy . . =
Graph Coloring: Work in Progress

= Distance-2 node coloring is too pessimistic

= Clusters on the same processor are processed sequentially, so can
have the same color

= Only need different colors for paths across processor boundaries
= Used it mainly because software was available (Zoltan)
= Better strategies

= General greedy algorithm for new coloring problem
= Custom heuristic based on faces/edges in the decomposition

= Both ways, we will reduce colors and improve performance!




= Hierarchical low-rank methods (HLR) augment the current
solver/preconditioner ecosystem.
= Faster than sparse direct

= Most useful as preconditioner

= Setup phase can be expensive.
= Can often amortize this cost over multiple solves

= Well suited for modern architectures
= Most work is in dense linear algebra (even for sparse problems)
= High arithmetic intensity
= Early days:
= Several algorithm options, best choice unclear
= Codes are still immature but rapidly improving
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Backup Slides
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Hierarchical Matrix Formats

Weak admissibility HODLR HSS
Any admissibility H H?2

= HSS is perhaps most popular but has drawbacks
= Weak admissibility may require high ranks (esp. 3D problems)

= Example: Inverse of 2D Poisson eqn. (Courtesy G. Chavez et al.)

a) Weak admissibility. b) Standard admissibility.
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HLR: Tree and Matrix

= Recursively bisect the vertices (clustering)

= Corresponds to a binary tree

= Matrix: Low-rank approximation of off-
diagonal blocks

= Only if “well-separated”

= How to choose ranks?
= Use SVD, ACA, ULV, or RRQR?




&0ur Hierarchical Low-Rank Sparse @&
Solver

= Collaboration Darve (Stanford) & Sandia

= Solver based on recent H> methods by Darve et al.
= |[FMM (dense), LoRaSp (sparse)

= Uses block approximate LU factorization with low-rank
compression for “well separated” interactions
= Partition matrix, build H-tree, factor approximately

= Leaves are subdomains, internal vertices correspond to
approximate Schur complements (low rank)

= Tree implicitly gives approximate LU factorization

= New method, differs from multifrontal HSS

= Simpler, no trees within trees



Variations

= Extended vs in-place sparsification

= QOrdering of clusters

= Definition of “well separated” — could allow ILU(k)
= Aggressive “coarsening” — merge more clusters

= Compress-eliminate or eliminate-compress?
= Low-rank compression: SVD, RRQR, RRLU, ID, etc.




Results: Variable coeff. Poisson
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- Ice Sheet Modeling: Greenland

We simulate ice sheet flow using Stokes’ egn. Use Albany/Felix software,
Trilinos solvers for linear systems. 2.5D geometry is challenging as the z
dimension is very different.

Precond. | 8km mesh | 4km mesh | 7

ML - - oo [

ML/custom 18 17

ILU (custom 12 21 al

order) ‘ 2

H2(1e-1) 141 423 wor £

H2(1e-2) 36 153 a

H2(1e-1)* 19 21

H2(1e2)* 14 13 JRy, X /S riutin]

x (km)

* This version uses x-y mesh partitioning and treats “diagonal” grid points

as neighbors (not well sep.)




