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Performance Reliability Demonstration

 Goal: To show that the product meets 
its requirement(s) with the specified 
reliability.

 Ideal Statement: “We can demonstrate 
with XX% confidence that YY% of our 
product will pass its requirement(s).”

 Based on the definition of a statistical tolerance 
bound.

 May be assessed using metrics, such as a 
“tolerance ratio” (TR=M/U)

 Example: A hypothetical launch safety 
device on a missile has a requirement to 
close within 23.5s of launch with 99.5% 
reliability.  

 N=100 units tested. None of the units 
yielded closing times greater than the 
requirement.

 Can we make the statement that we are 
95% confident that 99.5% of units will 

pass the 23.5s requirement?
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Environmental “Reliability” Demonstration

 Goal: To show that the product can continue to 
meet its requirements with the specified 
reliability at more severe environments than 
originally planned.

 Ideal Statement: “We can demonstrate that, up 
to ZZ dB of environmental severity, at least YY% 
of our product will continue to pass the 
requirement with XX% confidence.

 Can be viewed as “performance reliability as a 
function of environment.”

 Example: A hypothetical component in a bomb 
will undergo shock testing to assess it’s 
sensitivity to more extreme shock environments 
than it is expected to see in it’s usual lifetime. 

 The component can be operated multiple times 
without draining its useful life. 

 The component must pass a functional 
requirement with 99% reliability.

 Only N=5 units are available for testing. 

 Tests were performed at shock levels +3, +6, +9, 
and +12 dB higher than nominal. Only one failure 
was observed and that at +9 dB.

 Can we determine the maximum severity level at 
which 99% of units will pass their requirements 
with 95% confidence? 4



Complexity of Reliability Demonstration

 Key Question: Is there enough information/data to make the ideal statement?

 Performance -> Have enough samples been collected?

 Environmental -> Have enough samples been collected? Is there enough resolution in the selected 
test levels?

 In practice, there are several barriers to the “full demonstration” indicated by the 
ideal statements:

Test data have measurement uncertainty, are limited to a restrictive set 
of inputs and conditions, and are relatively few in number. 

Statistical models may be inadequate or insufficiently justified for 
modeling the data.

Not all uncertainties can be straightforwardly quantified.

Quantities of interest may be poorly defined.

Experts state of knowledge is imperfect.



 Definition: The degree to which one believes a selected statistical model 
adequately describes the behavior seen in the observed data.

 Analysts know that statistical model uncertainty decreases confidence in the results, but 
often lack a method to communicate this uncertainty. 
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The [normal] tolerance interval... is not 

distributionally robust to even small 

deviations from normality" (Fernholz and 

Gillespie 2001).

“Estimating tail parameters is analogous to 

estimating parameters `exterior to the data'... 

Many times estimates are made by assuming 

the data is sampled independently from a 

parametric family. This can lead to disastrous 

results” (Scholz 2005).

Model Credibility

“[Obtaining] a numerical estimate of reliability based 

on knowledge of full probability distributions in 

conjunction with QMU would place great demands 

on our ability to characterize uncertainties. In view of 

this, it is inevitable that there would be pressure to 

adopt ‘short cuts’ by simply assuming the forms of 

PDFs or using PDFs that are not based on some but 

inadequate supporting data. The response to such 

pressure would make or break nuclear certification. 

No analysis that is based on speculation or that 

neglects significant possibilities can lead to genuine 

confidence, but instead will frequently lead to over-

confidence or under-confidence, both of which carry 

severe costs” (Sharp et. al 2003).

“… extrapolation is often required in 
reliability engineering/statistical analysis. 
Extrapolation is always risky…” (Meeker and 
Escobar 2004)



Model Credibility in Practice

 Ideal: Relate statistical model selection to model validation in engineering applications.

 Validity: Is the model an accurate representation of the real world for the intended uses of the 
model? (Oberkampf and Barone 2006).

 Common practice: Extrapolative prediction from un-validated models.

 Use statistical tools to select a (normal) model for the data.

 QQ plots: fit of model over all data, rather than “for the intended uses of the model.”

 Goodness of fit tests: can show evidence of lack of model fit, but cannot validate a model.

 Extrapolate to the tails using the model.

 Conclusion: demonstrate 99.5% reliability with 95% confidence, assuming the model is correct.
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Metrics for Model Credibility

 When assessing the ability to demonstrate reliability, a good 
approach is to ask the following questions:
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Do I have sufficient 
data to ensure my 

inference is primarily 
data-driven?

• Model-Free: Can I demonstrate reliability 
without the need for a statistical model?

• Model-Based: Can I distinguish an 
appropriate statistical model?

If the inference 
cannot be completely 
data-driven, what is 

the alternative?

• Does the data corroborate with current 
understanding and beliefs regarding the 
product’s reliability?
• “Evidence-driven” approach.



N-index (Lindsay and Liu 2009)

Model-validation

Binomial confidence (Wilks 1941)Data-Driven Metrics
1. Degree of extrapolation: Is 

extrapolation outside the range 
of the observed data occurring?  

2. Model fit in the tails: How 
consistent are the observed tails 
of the data with the fitted 
model?

3. Model adequacy: Does the 
model adequately describe the 
data, even though it may not 
match perfectly?

4. Sensitivity to model choice: How 
much do the tail estimates 
change when the modeling 
assumptions are relaxed?
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n∗ = log 1 − � /log(�)

Reliability metric:
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Return-level plots



Evidence-Driven Approach
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 Key Idea: Are the findings from the data consistent with the current 
understanding of the product’s behavior?

 The goal is then to assert product reliability when it is not (yet) possible to fully 
demonstrate reliability. 

 Data are part of an evidence package for asserting reliability rather than being the sole 
evidence given. 

 This approach can also help with test planning; allowing test planners to allocate their 
resources more efficiently when they are constrained. 

Critical Prior Interval (CPI): The 
range of prior values capable of 
rendering the claimed findings no 
longer credible (Matthews 2018).



Example of Using Data-Driven 
Metrics

 Closure time: estimate 99.5th percentile 
with 95% confidence.

 Degree of extrapolation: When n = 100, 
extrapolation is occurring beyond the 
97th percentile. We would need a sample 
6 times larger to avoid extrapolation.

 Validation metrics: Median of the 99.5th

percentile estimate is 23.4 s under model 
making weaker assumptions versus 22.9 
s under normal model. 
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We conclude: 
- The model cannot be evaluated where prediction will occur, and
- The demonstration decision is sensitive to selection of the normal model.



Performance Reliability – Evidence-Driven Approach

 Practical solutions: use summary statistics to evaluate performance 
margin with heuristic measure of uncertainty.
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We can conclude: 
- There does appear to be positive margin in the closure time. The confidence bound is 

quite close to the raw k-factor estimate, indicating reduced uncertainty.  Decision-
makers would have to decide whether the asserted margin of 3.1 sample standard 
deviations is sufficient for this component. 

Component Closure Time

n 100

Sample Mean 20.02 s

Sample Standard Deviation 1.12 s

Median 19.99 s

Inter-Quartile Range 19.38 s, 20.71 s

Range 16.03 s, 22.98 s

Outliers 16.03 s, 16.83 s, 22.98 s

Requirement 23.5 s

K-Factor 3.10

95% Confidence Bound on K-Factor 2.71 s



Environmental Reliability Example

 Severity level: estimate level at which  
99th percentile corresponds to 
requirement with 95% confidence.

 Degree of extrapolation: When n = 4, 
extrapolation is occurring beyond the 
48th percentile. We would need a sample 
75 times larger to avoid extrapolation.

 Validation metrics: The estimated level 
varies greatly based on the choice of 
model.

 Weibull – 2.47 dB

 Logistic – -0.74 dB
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We conclude: 
- The model cannot be evaluated anywhere near where the prediction will occur, and
- The demonstration decision is extremely sensitive to selection of the model.



Environmental Reliability – Evidence-Driven Approach

 Practical solutions: Use summary statistics to evaluate performance 
margin with heuristic measures of uncertainty.
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We can conclude: 
- There is some evidence for positive margin, though there is still quite a bit of 

uncertainty. Other information is required for the evidence package to make a final 
assertion.

Component Failure Mode

n 4

Test levels + 3 dB, + 6 dB, + 9 dB, +12 dB

# of failures observed 1

When failures occurred Failure at +9 dB

Highest level at which no failures 
occurred (�����)

+6 dB

95% lower bound at ����� 47%



Evidence-Driven Approach to Test Planning

 An evidence-driven approach can prove very useful for test 
planning purposes. 

 In performance reliability assessment…

 Test planners can allocate more resources toward testing under 
conditions where there is less evidence.

 In environmental reliability assessment…

 Test planners can start at higher levels where they expect their 
product to survive or are uncertain of their product’s performance.

 In summary, an evidence-driven approach allows test 
planners to focus limited resources on areas with little 
evidence.

 Reduces the need to test in areas with sufficient evidence.
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Summary and Conclusions

 The ideal approach to reliability demonstration is often not 
feasible given on the constraints on data and available 
information.

 Model credibility when analyzing data is an important, yet 
often overlooked aspect of reliability analysis. 

 Is your inference data-driven or model-driven?

 Utilizing the concept of an “evidence-driven” package to 
assert reliability is a practical alternative for when it is not 
(yet) possible to fully demonstrate reliability.

 Also avoids the risk of making statistically rigorous statements based 
on unjustifiable assumptions. 
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