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Performance Reliability Demonstration ) e

= Goal: To show that the product meets <]
its requirement(s) with the specified
reliability. = |

= |deal Statement: “We can demonstrate
with XX% confidence that YY% of our
product will pass its requirement(s).”

Density
0
N
=

= Based on the definition of a statistical tolerance
bound. . .

=  May be assessed using metrics, such as a o
“tolerance ratio” (TR=M/U)

Performance

= Example: A hypothetical launch safety
device on a missile has a requirement to

|
close within 23.5s of launch with 99.5% = i
reliability. S A |
|
= N=100 units tested. None of the units h !
yielded closing times greater than the S Q- :
requirement. % v i
= Can we make the statement that we are o i
95% confident that 99.5% of units will !
ass the 23.5s requirement? ° !
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Environmental “Reliability” Demonstration

=  Goal: To show that the product can continue to
meet its requirements with the specified
reliability at more severe environments than
originally planned.

= |deal Statement: “We can demonstrate that, up
to ZZ dB of environmental severity, at least YY%
of our product will continue to pass the
requirement with XX% confidence.

Can be viewed as “performance reliability as a
function of environment.”

=  Example: A hypothetical component in a bomb
will undergo shock testing to assess it’s
sensitivity to more extreme shock environments
than it is expected to see in it’s usual lifetime.

The component can be operated multiple times
without draining its useful life.

The component must pass a functional
requirement with 99% reliability.

Only N=5 units are available for testing.

Tests were performed at shock levels +3, +6, +9,
and +12 dB higher than nominal. Only one failure
was observed and that at +9 dB.

Can we determine the maximum severity level at
which 99% of units will pass their requirements
with 95% confidence?

Probability of Survival

04

Laboratories
M
U
M A
IQD 95099 | Qnas | : |
0 +3 +6 +9 +12 +13
Environmental Severity (dB)
Unit 1
Unit 2+
Unit 3+
Unit 4+
Unit 5+
T | | T
+3 +6 +9 +12
Environmental Severity (dB)
4



Complexity of Reliability Demonstration i) e

= Key Question: Is there enough information/data to make the ideal statement?
= Performance -> Have enough samples been collected?

= Environmental -> Have enough samples been collected? Is there enough resolution in the selected
test levels?

= |n practice, there are several barriers to the “full demonstration” indicated by the
ideal statements:

Test data have measurement uncertainty, are limited to a restrictive set
of inputs and conditions, and are relatively few in number.

Statistical models may be inadequate or insufficiently justified for
modeling the data.

Not all uncertainties can be straightforwardly quantified. |
L |

Quantities of interest may be poorly defined. |
A
/

Experts state of knowledge is imperfect. |
AN




Model Credibility =,

= Definition: The degree to which one believes a selected statistical model
adequately describes the behavior seen in the observed data.

= Analysts know that statistical model uncertainty decreases confidence in the results, but
often lack a method to communicate this uncertainty.

The [normal] tolerance interval... is not “[Obtaining] a numerical estimate of reliability based
distributionally robust to even small on knowledge of full probability distributions in
deviations from normality" (Fernholz and conjunction with QMU would place great demands
Gillespie 2001). on our ability to characterize uncertainties. In view of

this, it is inevitable that there would be pressure to
adopt ‘short cuts’ by simply assuming the forms of
PDFs or using PDFs that are not based on some but
inadequate supporting data. The response to such
pressure would make or break nuclear certification.
No analysis that is based on speculation or that
neglects significant possibilities can lead to genuine

« . extrapolation is often required in confidence, but instead will frequently lead to over-
reliability engineering/statistical analysis. confidence or under-confidence, both of which carry
Extrapolation is always risky...” (Meeker and || severe costs” (Sharp et. al 2003).

Escobar 2004) 6




Model Credibility in Practice i)

= |deal: Relate statistical model selection to model validation in engineering applications.

= Validity: Is the model an accurate representation of the real world for the intended uses of the
model? (Oberkampf and Barone 2006).

= Common practice: Extrapolative prediction from un-validated models.
=  Use statistical tools to select a (normal) model for the data.
= QQ plots: fit of model over all data, rather than “for the intended uses of the model.”
= Goodness of fit tests: can show evidence of lack of model fit, but cannot validate a model.
= Extrapolate to the tails using the model.

= Conclusion: demonstrate 99.5% reliability with 95% confidence, assuming the model is correct.
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Metrics for Model Credibility (1) i

= When assessing the ability to demonstrate reliability, a good
approach is to ask the following questions:

\
* Model-Free: Can | demonstrate reliability

without the need for a statistical model?

s NEEEENE « Model-Based: Can | distinguish an

e appropriate statistical model?

data-driven? -/

\
* Does the data corroborate with current
understanding and beliefs regarding the
If the inference product’s reliability?

cannot be completel o & . . ”
data.driven. what s Evidence-driven” approach.

the alternative? j




Data-Driven Metrics

1. Degree of extrapolation: Is a
extrapolation outside the range

Binomial confidence (Wilks 1941)

n* = log(1 —y) /log(r)

7| Netora

of the observed data occurring? /
Return-level plots\

2. Model fit in the tails: How
consistent are the observed tails
of the data with the fitted

model? ﬁ
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3. Model adequacy: Does the
model adequately describe the \
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/ N-index (Lindsay and Liu 2009)\

Power
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Sample Size

data, even though it may not %
match perfectly? fl\/lodel-validation

4. Sensitivity to model choice: How
much do the tail estimates ﬁ
change when the modeling

assumptions are relaxed?

\_

Reliability metric:
R=P(Q;—Q2< ¢)
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Evidence-Driven Approach

=  Key Idea: Are the findings from the data consistent with the current
understanding of the product’s behavior?

= The goal is then to assert product reliability when it is not (yet) possible to fully
demonstrate reliability.

= Data are part of an evidence package for asserting reliability rather than being the sole
evidence given.

= This approach can also help with test planning; allowing test planners to allocate their
resources more efficiently when they are constrained.

|

Critical Prior Interval (CPI): The l

range of prior values capable of :
rendering the claimed findings no | Effect Size

longer credible (Matthews 2018). |

|

|

CPI
¥ |

- i o |
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Example of Using Data-Driven
Metrics

= Closure time: estimate 99.5 percentile
with 95% confidence.

Density

= Degree of extrapolation: When n =100,
extrapolation is occurring beyond the
97t percentile. We would need a sample
6 times larger to avoid extrapolation.
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= Validation metrics: Median of the 99.5%
percentile estimate is 23.4 s under model
making weaker assumptions versus 22.9
s under normal model. -

Cold CT (s)
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We conclude:
-  The model cannot be evaluated where prediction will occur, and
- The demonstration decision is sensitive to selection of the normal model.
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Performance Reliability — Evidence-Driven Approach i) feema_

= Practical solutions: use summary statistics to evaluate performance
margin with heuristic measure of uncertainty.

Closure Time

Component

100
Sample Mean 20.02 s
Sample Standard Deviation 1.12s
19.99 s
Inter-Quartile Range 19.38 s, 20.71 s
Range 16.03 s, 22.98 s

16.03 s, 16.83 s, 22.98 s

Requirement 23.5s
3.10
95% Confidence Bound on K-Factor 2.71s

We can conclude:

- There does appear to be positive margin in the closure time. The confidence bound is
guite close to the raw k-factor estimate, indicating reduced uncertainty. Decision-
makers would have to decide whether the asserted margin of 3.1 sample standard

deviations is sufficient for this component. 12



Environmental Reliability Example )

= Severity level: estimate level at which
99t percentile corresponds to
requirement with 95% confidence.

< | - Desired Return Level

= Degree of extrapolation: When n =4,
extrapolation is occurring beyond the
48t percentile. We would need a sample
75 times larger to avoid extrapolation.

Environmental Severity (dB)
12
|
L
.\

= Validation metrics: The estimated level

varies greatly based on the choice of . | 1 | |
5 10 20 a0 100
model.

= Weibull-2.47 dB
= Logistic— -0.74 dB

Return Level

We conclude:
- The model cannot be evaluated anywhere near where the prediction will occur, and
- The demonstration decision is extremely sensitive to selection of the model.
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Environmental Reliability — Evidence-Driven Approach

= Practical solutions: Use summary statistics to evaluate performance
margin with heuristic measures of uncertainty.

o .
Test levels +3dB, +6dB, +9dB, +12 dB
# of failures observed 1
When failures occurred Failure at +9 dB
Highest level at which no failures +6 dB
occurred (E, )
95% lower bound at E,, ;¢ 47%

We can conclude:
- There is some evidence for positive margin, though there is still quite a bit of
uncertainty. Other information is required for the evidence package to make a final

assertion. 14
I



Evidence-Driven Approach to Test Planning ) e

= An evidence-driven approach can prove very useful for test
planning purposes.
= |n performance reliability assessment...

= Test planners can allocate more resources toward testing under
conditions where there is less evidence.

= |n environmental reliability assessment...

= Test planners can start at higher levels where they expect their
product to survive or are uncertain of their product’s performance.

= |n summary, an evidence-driven approach allows test
planners to focus limited resources on areas with little
evidence.

= Reduces the need to test in areas with sufficient evidence.
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Summary and Conclusions i) feema_

= The ideal approach to reliability demonstration is often not
feasible given on the constraints on data and available
information.

= Model credibility when analyzing data is an important, yet
often overlooked aspect of reliability analysis.

= |syour inference data-driven or model-driven?

= Utilizing the concept of an “evidence-driven” package to
assert reliability is a practical alternative for when it is not
(yet) possible to fully demonstrate reliability.

= Also avoids the risk of making statistically rigorous statements based
on unjustifiable assumptions.
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