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Outline

Peridynamics background

Linear waves
e Dispersion
e Attenuation
Nonlinear waves

e Solitons
e Shocks

Static waves: Weird is good.
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o ° . * ° o Sandia
Peridynamics:™ What it is )
e |t's an extension of continuum mechanics to media with cracks and long-range

forces.
e |t unifies the mechanics of continuous and discontinuous media within a single,

consistent set of equations.

Continuous body Discrete particles

Continuous body ith 2 defect
with a defec

e QOur goals
e Nucleate cracks and seamlessly transition to growth.

e Model complex fracture patterns.
e Communicate across length scales.

* Peri (near) + dyn (force)




Peridynamics concepts:
Horizon and family
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e Any point x interacts directly with other points within a distance o called the “horizon.”

e The material within a distance § of x is called the “family” of x, Hx.

Peridynamic equilibrium equation

f f(q,x) dVyq +b(x) =0

X

f = bond force density

* The peridynamic field equations

don’t use spatial derivatives H,= family of x
* so they are compatible with
cracks.

General references
eSS, Journal of the Mechanics and Physics of Solids (2000)
* SSand R. Lehoucq, Advances in Applied Mechanics (2010)




Simplification: Bond-based
peridynamics

e General peridynamic equation of motion:
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p(x)ii(z,t) = ]H £(g,7,t) dg + b, ).

Bond force f |
Nonlinear BB

e Bond-based: Each bond responds independently of the others, replace

Linear BB

»
»

Bond extension

f({I:I:t) — f(n£)1 £ = 4q— I W:“(Q) —'H.(I}.

e Microelastic: Each bond is an elastic spring.

dw

e Linear microelastic material: JV\/\

f(n,€) = CE)n

where C=micromodulus. Similar to Kunin's nonlocal theory (1983).




Micromodulus can depend on bond ) e,
length
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Physics requires C(—&) = C(§).

Bond force f Micromodulus C(§) ¢

Slope C(§)

/ Bond extension iy Bond length ¢
- 5 >




Fourier transform and convolution [

e Fourier transform and inverse:

o(k) = F{v}(k) = [w v(z)e T d

oe) = F o)) = 5 [ aw)e= d

e Convolution:

F { | ata=nhe) dp} — G(k)R(R).




Static waves ) i,
e Equilibrium equation:

g
[_ C©)(ule + &) — u(@)) dé + b(e) =0

e Take FT:
(C(k) — P)a(k) + b(k) =0, P = C(0).

e Example: Two oppositely directed point loads.

b(z) = Az — a) — A(z + a), a=0.1

where A is the Dirac delta function.

Force=-1 Force=1

e Solution is _ S —
( )_]:—1 b [ — —
u(xr) = P ( iy o




Nonlocality creates strange features ) i,

Di

splacement u

Nonlocal

¥ 4 >
JJ(/ "j a s Position x
Local
4 Micromodulus C
Force=-1 Force=1
A — >
* o) Bond Iength f
—a a .
Material model




Observations about nonlocal static waves @&,

* The displacement field has the same smoothness as the applied loads.
* Inthe last example, this was a delta function.
* But u gets smoother the farther away from the loading points you get.
* Smoother choices of the micromodulus function € (&) would result in a
smoother remote displacement field.
e But there would still be delta functions in the displacement field.

4 Micromodulus C
SS, M. Zimmermann, R. Abeyaratne. "Deformation of a peridynamic bar." Journal of Elasticity 73 (2003): 173-190.

o) Bond length &




Dynamic linear waves: Dispersion h S,

e Equation of motion with b = 0:
pise,t) = [ C(@ulz+60) - ulz, ) de
e Assume a wave in an infinite homogeneous bar of the form
’H[I, f) — Ei{k:ﬂ—wt}.

e Then -
= [ (% -1) d

e Therefore the dispersion relation is

w(k) = \/P _f(k)} P = C(0).




Dispersion curve
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* PD coincides with the local theory for long wavelengths (small k).
* Phase velocity w/k is not constant in PD.

* Group velocity dw/dk can be nonpositive.

Angular
frequency w

A

. Local theory

Peridynamic

»

>

Wave number k

Wave dispersion in (undamped)
peridynamics

SS, JMPS (2000).
Seleson, Parks, Gunzburger & Lehoucgq,
Multiscale Modeling & Simulation
(2009).
Weckner & SS, Multiscale
Computational Engineering (2011).
Gu, Zhang, Huang & Yv, Engineering
Fracture Mechanics (2016).
Butt, Timothy, & Meschke
Computational Mechanics (2017) .




Dispersion curve and stability

* Nonpositive w(k) means waves can grow unboundedly over time.
* “Imaginary wave speed” since V = w(k)/k.
* If w(o0) — 0, a small discontinuity can grow: fracture nucleation*.
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Angular
frequency w?

a

/

Stable

Fracture nucleation

/V Wave number k

Unstable

* *Silling, S. A., Weckner, O., Askari, E., & Bobaru, F. (2010) International Journal of Fracture, 162, 219-227.
* Lipton, R. (2014) Journal of Elasticity, 117, 21-50.
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Material instability can be a good thing @

There is a small elastically unstable region surrounding the tip of a growing
crack.
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*Silling, S. A., Weckner, O., Askari, E., & Bobaru, F. (2010) International Journal of Fracture, 162, 219-227.
Lipton, R. (2014) Journal of Elasticity, 117, 21-50.




Wave attenuation limits the usefulness of g
ultrasonic imaging

* Long wavelengths have low attenuation.
* (Can see deeply but with low resolution.
* Short wavelengths have higher attenuation.
* How resolution but small depth.

Attenuated steady wave:

*  Amplitude is independent of time at any fixed
Displacement x N position
* Decay constant «a is the attenuation coefficient.

Position x

Source




Microviscoelastic material )

e General peridynamic equation of motion:

plx)ii(z, £) = fﬂ f(a,z,t) da + bz, 9).

Viscoelasticity in peridynamics

e Bond-based linear microviscoelastic material: * Weckner & Mohamed, Applied
Mathematics and Computation

(2013).

flm,n,&) =C(E)n+ D(E)7 - Mitchell, SAND2011-8064 (2011).

* Madenci & S. Oterkus. Engineering
Fracture Mechanics (2017).

where C=micromodulus, )=damping modulus. « Nadimi, Miscovic & McLennan,
Journal of Petroleum Science and
e Requirement for linear momentum conservation: Engineering (2016).

C(=6)=CK) D=5 = D).

e (' and D can have different horizons (cutoff distances).

e Second law of thermodynamics implies

D(&) > 0.




Transformed equation of motion = @&

e Transformed equation of motion leads to the following condition on w(k):

w?(k) + 2ir(k)w(k) — wi(k) =0,

r(k) = @ D(k), wol(k) := \/P _:(k)

e 7 and w% depend only on the material properties.

e For an undamped wave, D =0 = w(k) = two(k).

e Otherwise, w(k) is in general complex (for real k).




Attenuated steady waves 1) .

¢ Seek an attenuated wave solution of the form

u(x,t) = e~ (ko) gi(koz—w(ko)t) ko, w real

where a(kg) is the attenuation coefficient (real).

e Condition on « turns out to be

Im {—ir(k +ia) + \/wg(k +ia) — r2(k + ia:)}




Example of a nonlocal attenuation curve (@&,

* Solve numerically the equation for a(k).
* Interesting features:
* Transition in exponent from 2 to 1.

20— 77—
* Band gaps. i s L ,’ Band gaps _
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Linear vs. nonlinear waves: Example @z,

VIDEQOS

Step function for
displacement at
boundary

Linear Nonlinear




What are solitary waves?

A solitary wave is a nonlinear wave that moves

without dispersion

without changing shape

without dissipation
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\ Time

Particle

velocity

Row of elastic beads

Contact \ SIoBg;l/V

e
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<

Gap spacing Position

7

without changing the state of the material it passes through.



Peridynamic soliton model .
e Peridynamic 1D equation of motion:

pure(z, 1) = / Slula+6.8) (e, 2).6) de + bz, 1)

where u is the displacement, f is the bond force density, ¢ is the horizon,
b= 0 is the body force, and & is the bond.
e Material model:

f(n,&) =F(s)sgn (&), s=4, 0<[f<d

— Ve

n=u(r+E) —u

where F' is a function and s is the bond strain.




Nonlinear bond force ) i,

e Consider a material model that stiffens in compression (similar to Fermi-
Pasta-Ulam lattice model):

F(s) = { c(1—s/sg)s ifs <0,

] es otherwise

where ¢ and sg are positive constants.

Pairwise
bond force
density f

2F
T |

| 7

e c is calibrated to the Young's modulus £:
N

Bond strain s




Steady wave assumption

e We seek steady-wave solutions of the form
u(z,t) = Ul(z), z=x—Vt
where V' is the wave velocity (to be determined).

e The equation of motion becomes
5
V() = [ 1().6) dg

e Taylor expansion

1 2 " 3
U(2)6? | U"(e)

Ulz+ &) =U(2) +U'(2)€ + ; c

(]HH(Z)£4

+ + O(6%).
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Our ODE resembles the KdV equation ) .

e The Taylor expansion leads to
,.OVQ : ’ Ve E! N Em E! EH ¢ Em 52
— € = |— — — :
E S50 24 650 1250

where the flocal strain field € is defined by

e(z) = U'(2).

e Compare KdV equation:

Or + QQppr + B, = 0.

e Some terms are the same, others different.




Exact solution to the 3 order )
nonlinear ODE P

e An exact solution to the ODE is

| —\/gAU cos” V22
€(z) = < ) 0

0, otherwise

if |z| < w,

\

where the pulse half-width is —V8AU /6

and AU is the total displacement change through the pulse.

e [he wave velocity depends on the total displacement:

o2 ()
3p w0 So




Solitary wave velocity (ODE vs Emu) @&=.
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Wave shape (ODE vs. Emu) T .
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Collisions between solitary waves

VIDEOS

SS, Solitary waves in a peridynamic elastic solid, JMPS 96 (2016) 121-132.
Pego, Robert L., and Truong-Son Van. "Existence of solitary waves in one dimensional
peridynamics." arXiv preprint arXiv:1802.00516 (2018).



Shock waves

* Ashock is a wave that carries a large jump
in velocity.
* (A solitary wave carries a large jump
in displacement.)
* Important applications:
* Supersonic gas flow
* Impact and detonation waves

Stress o 4

»

[
»

Strain
€ = Jdu/ox

Air:o = —K(—€)'®
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Shock in air
Image: Milton Van Dyke, An Album of Fluid Motion (1982).

Velocity 11
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Stress o

=1 Shock speed I/

[
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Position x




Shock waves: Elastic model predicts )
wave velocity but is wrong physically

. N _ Strallp €
e Local theory: jump conditions allow weak solutions Position x
co =1u/V =—1"Shock speed I/
o(eg) = —pV.
€o
e Given © we can find V' and o.

o However the resulting W fails to satisfy the energy jump (Rankine-Hugoniot)

condition: )
€= —aﬂcr =W

where e is the internal energy density behind the shock.

e So without some way of dissipating energy, this is not an admissible so-
lution.




Same material model as with solitons =
but with nonlinear bond damping

Laboratories

e 1D equation of motion:
5
pia,) = | | 0.11) dE + bz, 1)

e Material with nonlinear elastic and damping terms:

Fin€) = (F(s) + FU3) sgn(©), =4,  0<[]<0
where s=bond strain, £=bond vector.

e, v | c(l—s/sg)s ifs <O, dro —D&* ifs<0,
Fo(s) = { cs otherwise '’ F(8) = 0 otherwise
where ¢ and ) are constants. \

New




Dissipative material model leads to a ) s
stable shock wave

e Use the same trick again to get an ODE:

[ﬁV‘? B 1] E; _ [_ QEEF B ZISE!'EH] —|_ |:E.H'f E!EH EEJ‘H’ ﬁE!EHH B IBEHEHI:| 52

E 30 24  6sg 125y 12 6
e Ansatz:
€0 . . .
) F(M—coskz) if —mw<kz <0,
€(z) = { 0 otherwise.
e This ¢(2) satisfies the ODE with p €2
E 82p €0
VJZP H\/L(L_B»Dsu)]‘ b=1-3
e Shock thickness is
7wV D
=5\ Shock wave structure




Numerical solution also shows a stable  ([m)&s
shock wave

Yelocity, t= 4.000E-04
12 T T T

1 -
1 -




Nonlinear nonlocal waves: ) i,
an almost completely unexplored area

* Just by choosing an appropriate material model, the basic equations without
modification reproduce
e Solitary waves
* Phase boundaries
* Fracture
* Bending waves of beams and shells (O’Grady & Foster)
 Unknown:
* Periodic media
 Metamaterials

* Band gaps

* Quantized energy levels l,l!
* Monotonicity m
* Blow-up ;

* Scattering




Extra slides ) i




General solution for the attenuation @&
coefficient

o Set p=Fk — i

w?(p) + 2ir(p + ic)w(p) — wi(p + ia) = 0.

e Solve for w(p):

w(p) = —ir(p+ia) + \/wg(p—l—ia) —1r2(p + 1a).

e Our ansatz was that w(p) is real whenever is p real.

e For any real p, find o such that

Im {—ir(p + 1a) + \/wﬁ?(p—l— ia) —r2(p + ia]} = 0.

o This is a nonlinear algebraic equation that can be solved numerically for
a(p). (Examples later.)
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Wave solution dissipates energy

e Rankine-Hugoniot condition:

e Define the dissipated energy @ by

O=c—W.
e Compute
E [, ¢ E (5 26 —FEé?
o=z (*-5))-[F(-5%)] =50

e So our shock wave obeys the dissipation inequality @ > 0 which is con-
sistent with the second law of thermodynamics.
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Waves interact weakly (Emu)

* Larger wave overtakes a smaller wave.
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