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Peridynamics:* What it is
• It’s an extension of continuum mechanics to media with cracks and long-range 

forces.

• It unifies the mechanics of continuous and discontinuous media within a single, 
consistent set of equations.

Continuous body Continuous body 
with a defect

Discrete particles

• Our goals

• Nucleate cracks and seamlessly transition to growth.

• Model complex fracture patterns.

• Communicate across length scales.
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* Peri (near) + dyn (force)



Peridynamics concepts: 
Horizon and family
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General references
• SS, Journal of the Mechanics and Physics of Solids (2000)
• SS and R. Lehoucq, Advances in Applied Mechanics (2010)

Peridynamic equilibrium equation

f = bond force density

𝐪

Bond
𝐱

ℋ𝐱= family of 𝐱

𝛿

• The peridynamic field equations 
don’t use spatial derivatives
• so they are compatible with 

cracks.



Simplification: Bond-based 
peridynamics
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𝑥 𝑞

Bond extension 𝜂

Bond force 𝑓

Linear BB

Nonlinear BB



Micromodulus can depend on bond 
length
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Bond extension 𝜂

Bond force 𝑓

Slope 𝐶 𝜉

Bond length 𝜉

Micromodulus 𝐶 𝜉

𝛿

Physics requires 𝐶 −𝜉 = 𝐶 𝜉 .



Fourier transform and convolution
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Static waves
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𝑎−𝑎

Force = 1Force = -1



Nonlocality creates strange features
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𝑎−𝑎

Force = 1Force = -1

Displacement 𝑢

Position 𝑥

Nonlocal

Local

𝛿𝑎

𝛿 Bond length 𝜉

Micromodulus 𝐶

Material model



Observations about nonlocal static waves
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• The displacement field has the same smoothness as the applied loads.
• In the last example, this was a delta function.
• But 𝑢 gets smoother the farther away from the loading points you get.

• Smoother choices of the micromodulus function 𝐶(𝜉) would result in a 
smoother remote displacement field.

• But there would still be delta functions in the displacement field.

SS, M. Zimmermann, R. Abeyaratne. "Deformation of a peridynamic bar." Journal of Elasticity 73 (2003): 173-190.

𝛿 Bond length 𝜉

Micromodulus 𝐶



Dynamic linear waves: Dispersion
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Dispersion curve
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Wave number 𝑘

Angular 
frequency 𝜔

Local theory

Peridynamic

• PD coincides with the local theory for long wavelengths (small 𝑘).
• Phase velocity 𝜔/𝑘 is not constant in PD.
• Group velocity 𝑑𝜔/𝑑𝑘 can be nonpositive.

Wave dispersion in (undamped) 
peridynamics

• SS, JMPS (2000).
• Seleson, Parks, Gunzburger & Lehoucq, 

Multiscale Modeling & Simulation 
(2009). 

• Weckner & SS, Multiscale 
Computational Engineering (2011).

• Gu, Zhang, Huang & Yv, Engineering 
Fracture Mechanics (2016). 

• Butt, Timothy, & Meschke
Computational Mechanics (2017) .



Dispersion curve and stability
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• Nonpositive 𝜔 𝑘 means waves can grow unboundedly over time.
• “Imaginary wave speed” since V = 𝜔 𝑘 /𝑘.
• If 𝜔 ∞ → 0, a small discontinuity can grow: fracture nucleation*.

Wave number 𝑘

Angular 
frequency 𝜔2

Unstable

Stable

Fracture nucleation

• *Silling, S. A., Weckner, O., Askari, E., & Bobaru, F. (2010) International Journal of Fracture, 162, 219-227.
• Lipton, R. (2014) Journal of Elasticity, 117, 21-50.



Material instability can be a good thing
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• There is a small elastically unstable region surrounding the tip of a growing 
crack.

• *Silling, S. A., Weckner, O., Askari, E., & Bobaru, F. (2010) International Journal of Fracture, 162, 219-227.
• Lipton, R. (2014) Journal of Elasticity, 117, 21-50.



Wave attenuation limits the usefulness of 
ultrasonic imaging
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Attenuated steady wave:
• Amplitude is independent of time at any fixed 

position
• Decay constant 𝛼 is the attenuation coefficient.

Position 𝑥

Displacement 𝑥

Envelope 𝑒−𝛼𝑥

Source

• Long wavelengths have low attenuation.
• Can see deeply but with low resolution.

• Short wavelengths have higher attenuation.
• How resolution but small depth.



Microviscoelastic material
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Viscoelasticity in peridynamics
• Weckner & Mohamed, Applied 

Mathematics and Computation 
(2013).

• Mitchell, SAND2011-8064 (2011).
• Madenci & S. Oterkus.  Engineering 

Fracture Mechanics  (2017).
• Nadimi, Miscovic & McLennan, 

Journal of Petroleum Science and 
Engineering (2016).



Transformed equation of motion
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Attenuated steady waves
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𝑥

𝑢

𝑒−𝛼𝑥



Example of a nonlocal attenuation curve
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• Solve numerically the equation for 𝛼 𝑘 .
• Interesting  features:

• Transition in exponent from 2 to 1.
• Band gaps.

Modulus

Bond length 𝜉

Damping 𝐷 𝜉

Micromodulus 𝐶 𝜉

𝐷0

Band gaps

log10 𝑘

lo
g
1
0
𝛼

𝐷0 = 100

𝐷0 = 10−2

𝐷0 = 10−4
Slope=2

Slope=1

Local: Slope=2



Linear vs. nonlinear waves: Example
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Linear Nonlinear

Step function for 
displacement at 
boundary

VIDEOS



What are solitary waves?
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Particle 
velocity

Gap spacing

Contact Slope = 1/𝑉Time

Position

Row of elastic beads



Peridynamic soliton model
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Nonlinear bond force
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Pairwise 
bond force 

density 𝑓

Bond strain 𝑠

Slope 𝑐
−𝑠0



Steady wave assumption
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Our ODE resembles the KdV equation
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The Taylor expansion leads to



Exact solution to the 3rd order 
nonlinear ODE
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𝜖 𝑧

𝑧

𝑤−𝑤

− 8∆𝑈/𝜋𝛿



Solitary wave velocity (ODE vs Emu)
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Wave shape (ODE vs. Emu)
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Collisions between solitary waves
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VIDEOS

• SS, Solitary waves in a peridynamic elastic solid, JMPS 96 (2016) 121-132.
• Pego, Robert L., and Truong-Son Van. "Existence of solitary waves in one dimensional 

peridynamics." arXiv preprint arXiv:1802.00516 (2018).



Shock waves
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Position 𝑥

Velocity ƴ𝑢

Shock speed 𝑉

Stress 𝜎

Stress 𝜎

Strain 
ϵ = 𝜕𝑢/𝜕𝑥

Air: 𝜎 = −𝐾(−𝜖)1.6

• A shock is a wave that carries a large jump 
in velocity.

• (A solitary wave carries a large jump 
in displacement.) 

• Important applications:
• Supersonic gas flow
• Impact and detonation waves

Shock in air
Image: Milton Van Dyke, An Album of Fluid Motion (1982).



Shock waves: Elastic model predicts 
wave velocity but is wrong physically
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Position 𝑥

Shock speed 𝑉

Strain 𝜖

𝜖0



Same material model as with solitons 
but with nonlinear bond damping
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New



Dissipative material model leads to a 
stable shock wave
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𝑧

𝜖 𝑧

−𝑤

Shock wave structure



Numerical solution also shows a stable 
shock wave
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Nonlinear nonlocal waves:
an almost completely unexplored area
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• Just by choosing an appropriate material model, the basic equations without 
modification reproduce

• Solitary waves 
• Phase boundaries 
• Fracture
• Bending waves of beams and shells (O’Grady & Foster)
• Unknown:

• Periodic media
• Metamaterials
• Band gaps
• Quantized energy levels
• Monotonicity
• Blow-up
• Scattering



Extra slides
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General solution for the attenuation 
coefficient
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Wave solution dissipates energy
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Waves interact weakly (Emu)
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Reflections

• Larger wave overtakes a smaller wave.


