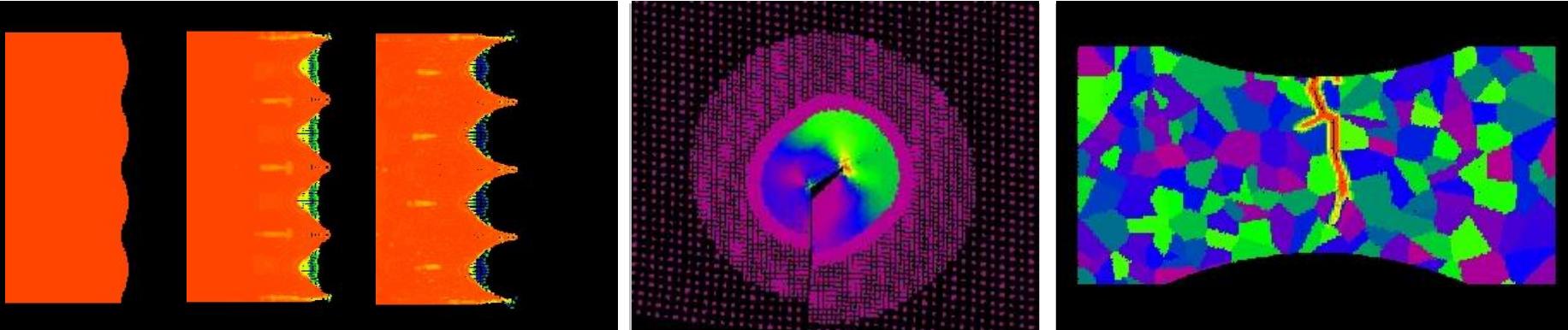


Exceptional service in the national interest



Nonlocal Waves in Continuous Media

Stewart Silling
Multiscale Science Department
Sandia National Laboratories, Albuquerque, New Mexico

UNL Mathematics Department Seminar, March 1, 2018

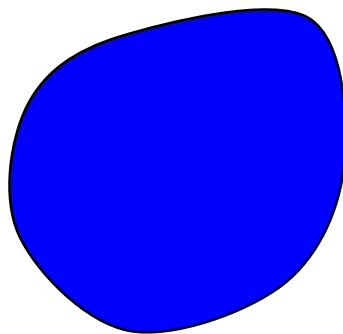
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Outline

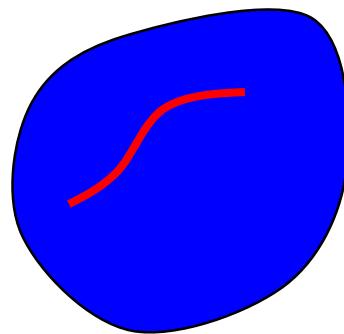
- Peridynamics background
- Static waves: Weird is good.
- Linear waves
 - Dispersion
 - Attenuation
- Nonlinear waves
 - Solitons
 - Shocks

Peridynamics: * What it is

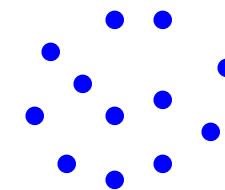
- It's an extension of continuum mechanics to media with cracks and long-range forces.
- It unifies the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body



Continuous body
with a defect



Discrete particles

- Our goals
 - Nucleate cracks and seamlessly transition to growth.
 - Model complex fracture patterns.
 - Communicate across length scales.

* Peri (near) + dyn (force)

Peridynamics concepts:

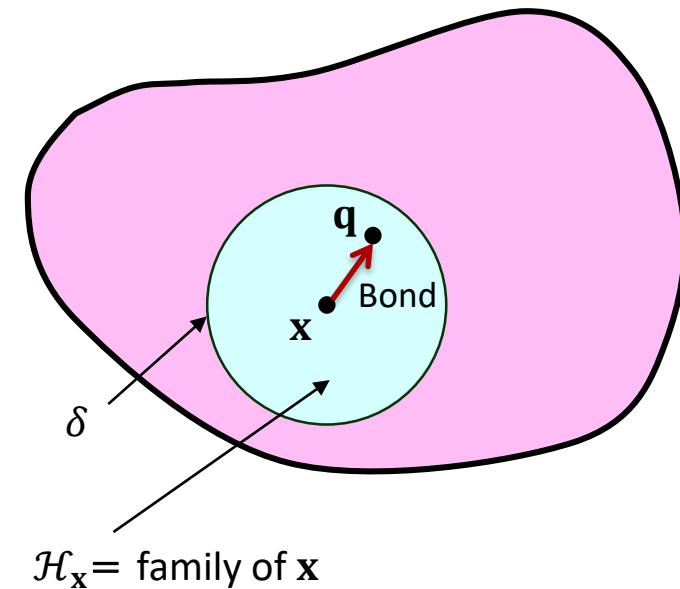
Horizon and family

- Any point \mathbf{x} interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of \mathbf{x} is called the “family” of \mathbf{x} , \mathcal{H}_x .

Peridynamic equilibrium equation

$$\int_{\mathcal{H}_x} \mathbf{f}(\mathbf{q}, \mathbf{x}) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

\mathbf{f} = bond force density



- The peridynamic field equations don't use spatial derivatives
 - so they are compatible with cracks.

General references

- SS, Journal of the Mechanics and Physics of Solids (2000)
- SS and R. Lehoucq, Advances in Applied Mechanics (2010)

Simplification: Bond-based peridynamics

- General peridynamic equation of motion:

$$\rho(x)\ddot{u}(x, t) = \int_{\mathcal{H}} f(q, x, t) dq + b(x, t).$$

- Bond-based: Each bond responds independently of the others, replace

$$f(q, x, t) = f(\eta, \xi), \quad \xi = q - x, \quad \eta = u(q) - u(x).$$

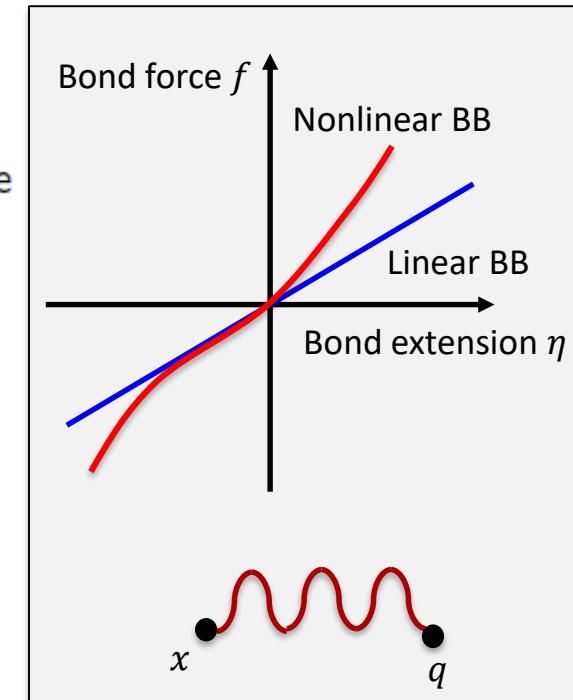
- Microelastic: Each bond is an elastic spring.

$$f(\eta, \xi) = \frac{\partial w}{\partial \eta}(\eta, \xi).$$

- Linear microelastic material:

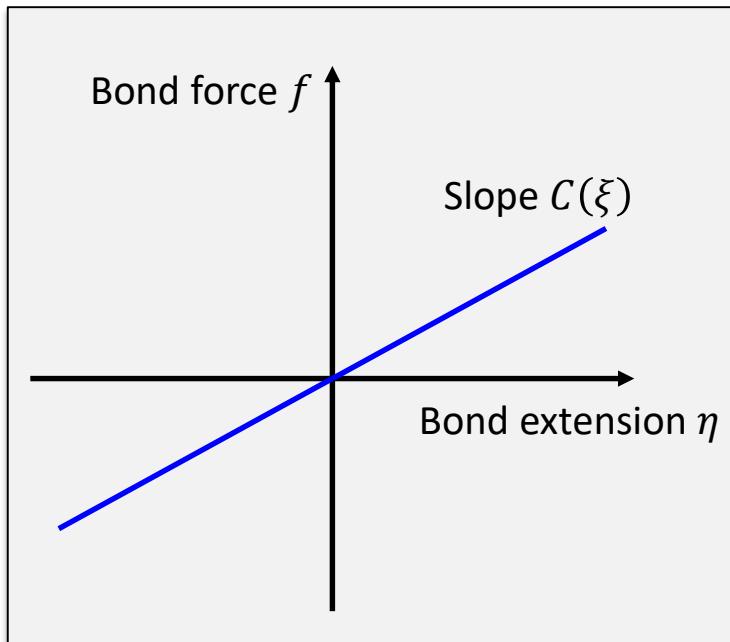
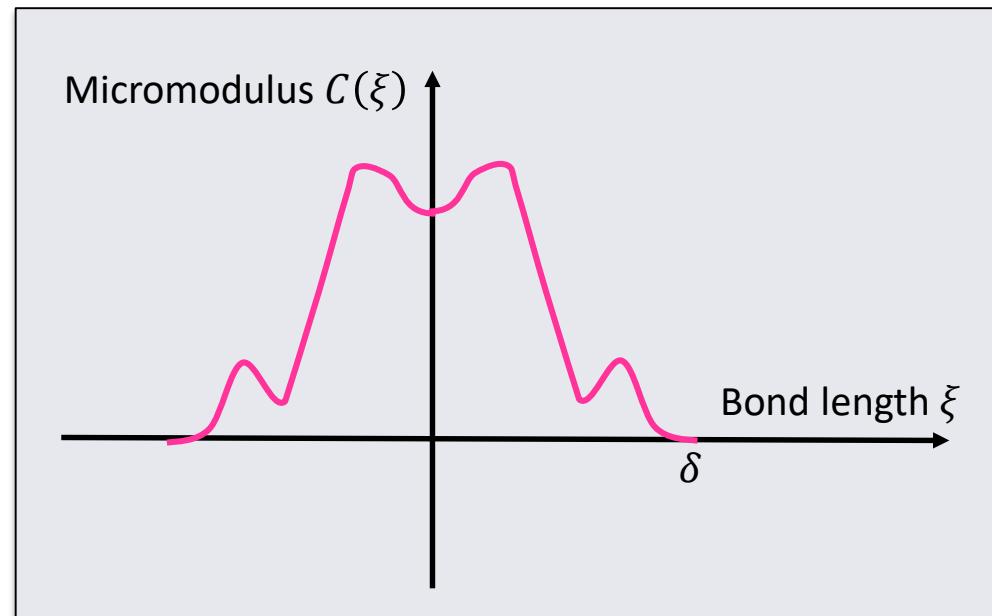
$$f(\eta, \xi) = C(\xi)\eta$$

where C =micromodulus. Similar to Kunin's nonlocal theory (1983).



Micromodulus can depend on bond length

Physics requires $C(-\xi) = C(\xi)$.



Fourier transform and convolution

- Fourier transform and inverse:

$$\bar{v}(k) = \mathcal{F}\{v\}(k) = \int_{-\infty}^{\infty} v(x) e^{-ikx} dx$$

$$v(x) = \mathcal{F}^{-1}\{\bar{v}\}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{v}(k) e^{ikx} dk.$$

- Convolution:

$$\mathcal{F} \left\{ \int_{-\infty}^{\infty} g(x-p) h(p) dp \right\} = \bar{g}(k) \bar{h}(k).$$

Static waves

- Equilibrium equation:

$$\int_{-\delta}^{\delta} C(\xi)(u(x + \xi) - u(x)) d\xi + b(x) = 0.$$

- Take FT:

$$(\bar{C}(k) - P)\bar{u}(k) + \bar{b}(k) = 0, \quad P = \bar{C}(0).$$

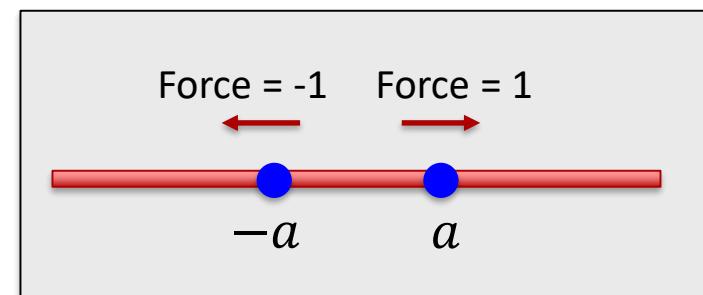
- Example: Two oppositely directed point loads.

$$b(x) = \Delta(x - a) - \Delta(x + a), \quad a = 0.1$$

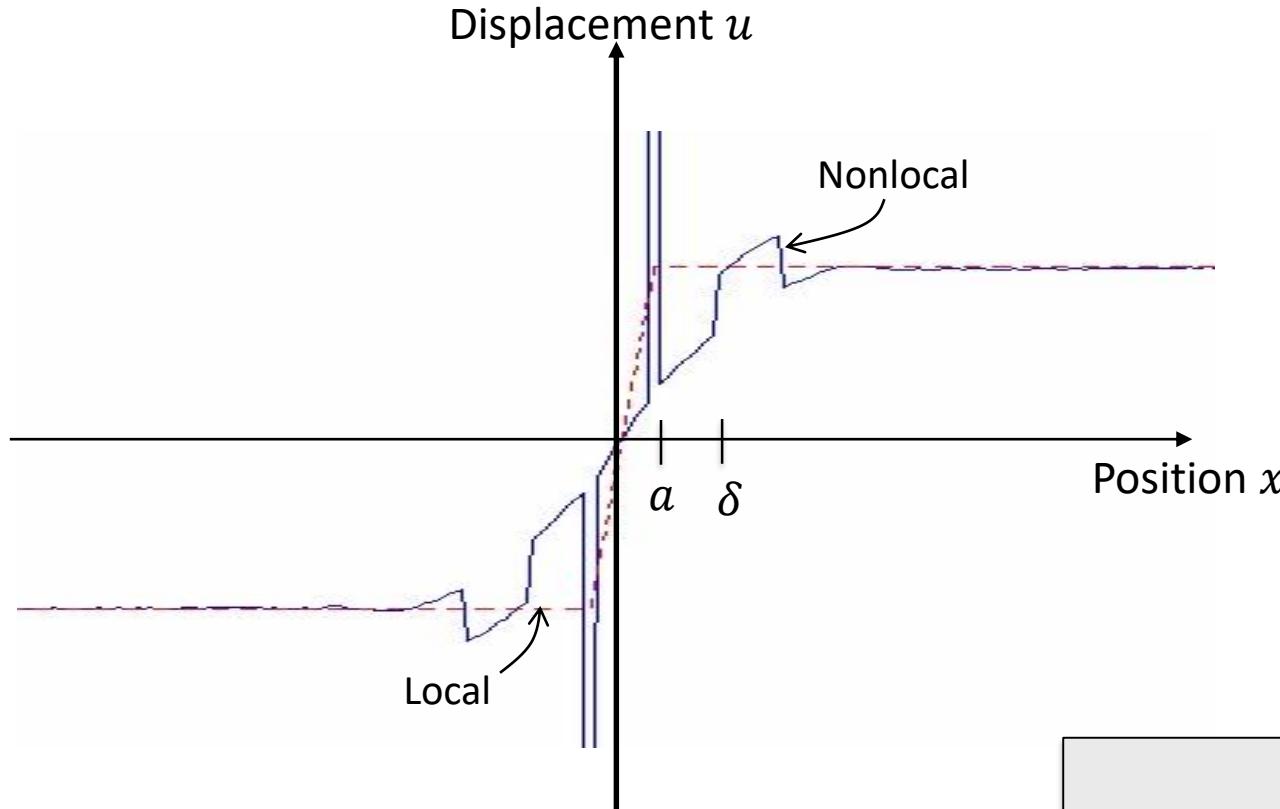
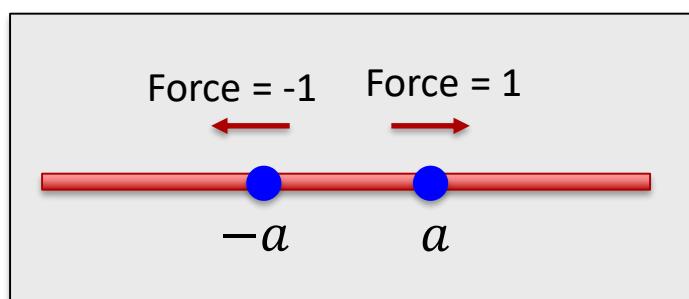
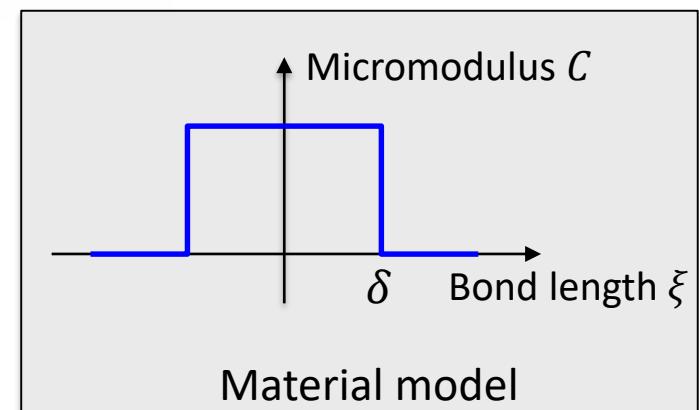
where Δ is the Dirac delta function.

- Solution is

$$u(x) = \mathcal{F}^{-1} \left\{ \frac{\bar{b}}{P - \bar{C}} \right\}.$$

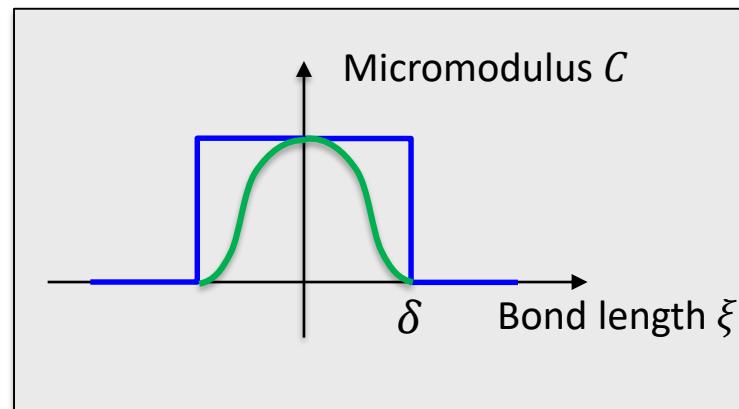


Nonlocality creates strange features



Observations about nonlocal static waves

- The displacement field has the same smoothness as the applied loads.
 - In the last example, this was a delta function.
 - But u gets smoother the farther away from the loading points you get.
- Smoother choices of the micromodulus function $C(\xi)$ would result in a smoother remote displacement field.
 - But there would still be delta functions in the displacement field.



SS, M. Zimmermann, R. Abeyaratne. "Deformation of a peridynamic bar." Journal of Elasticity 73 (2003): 173-190.

Dynamic linear waves: Dispersion

- Equation of motion with $b = 0$:

$$\rho \ddot{u}(x, t) = \int_{-\infty}^{\infty} C(\xi) (u(x + \xi, t) - u(x, t)) d\xi$$

- Assume a wave in an infinite homogeneous bar of the form

$$u(x, t) = e^{i(kx - \omega t)}.$$

- Then

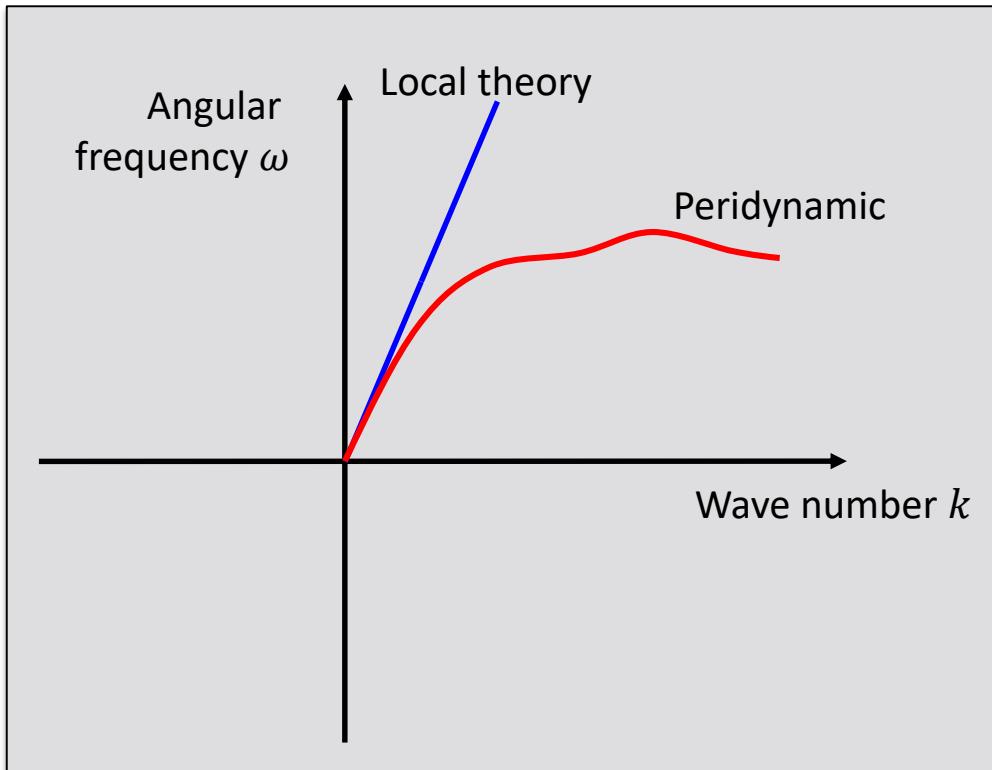
$$-\rho \omega^2 = \int_{-\infty}^{\infty} C(\xi) (e^{ik\xi} - 1) d\xi.$$

- Therefore the dispersion relation is

$$\omega(k) = \sqrt{\frac{P - \bar{C}(k)}{\rho}}, \quad P = \bar{C}(0).$$

Dispersion curve

- PD coincides with the local theory for long wavelengths (small k).
- Phase velocity ω/k is not constant in PD.
- Group velocity $d\omega/dk$ can be nonpositive.

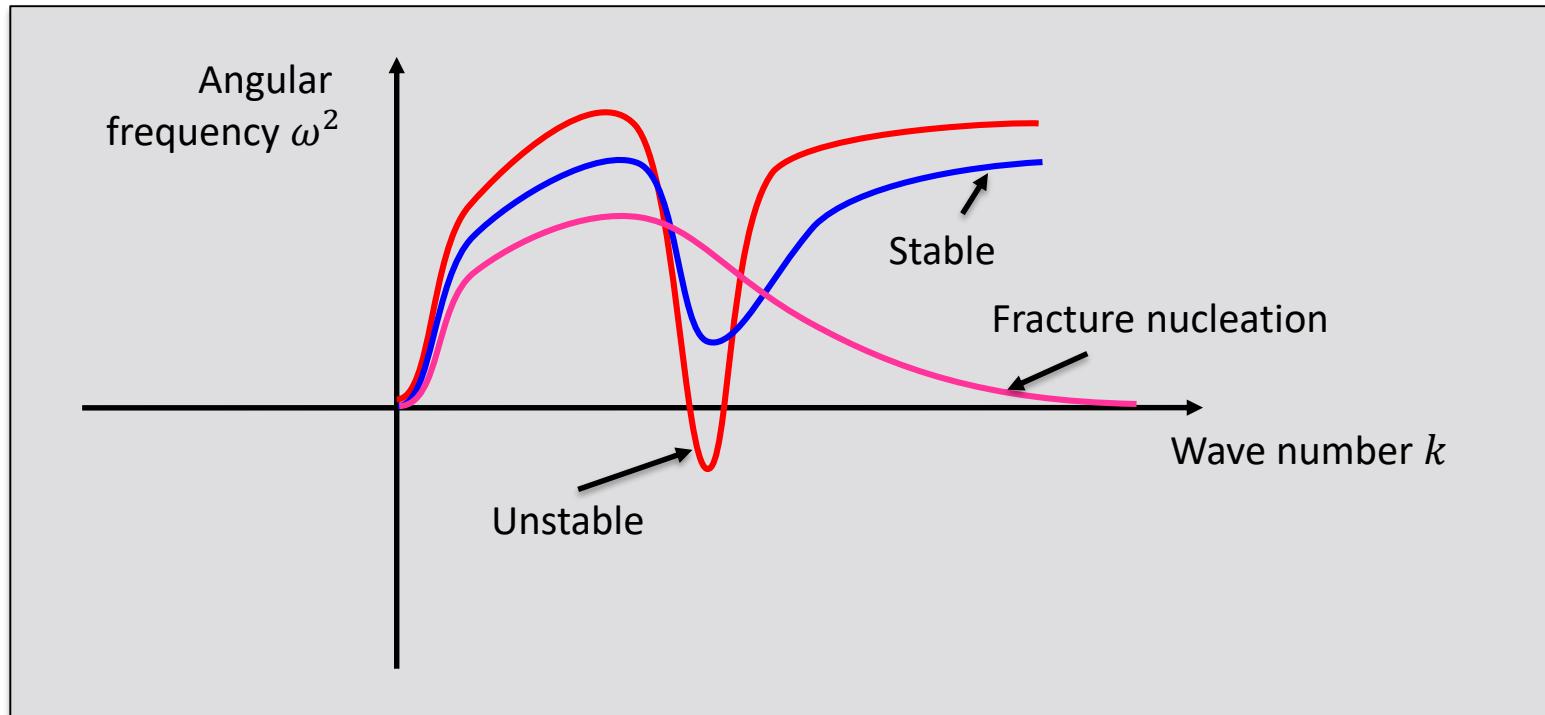


Wave dispersion in (undamped) peridynamics

- SS, *JMPS* (2000).
- Seleson, Parks, Gunzburger & Lehoucq, *Multiscale Modeling & Simulation* (2009).
- Weckner & SS, *Multiscale Computational Engineering* (2011).
- Gu, Zhang, Huang & Yv, *Engineering Fracture Mechanics* (2016).
- Butt, Timothy, & Meschke *Computational Mechanics* (2017) .

Dispersion curve and stability

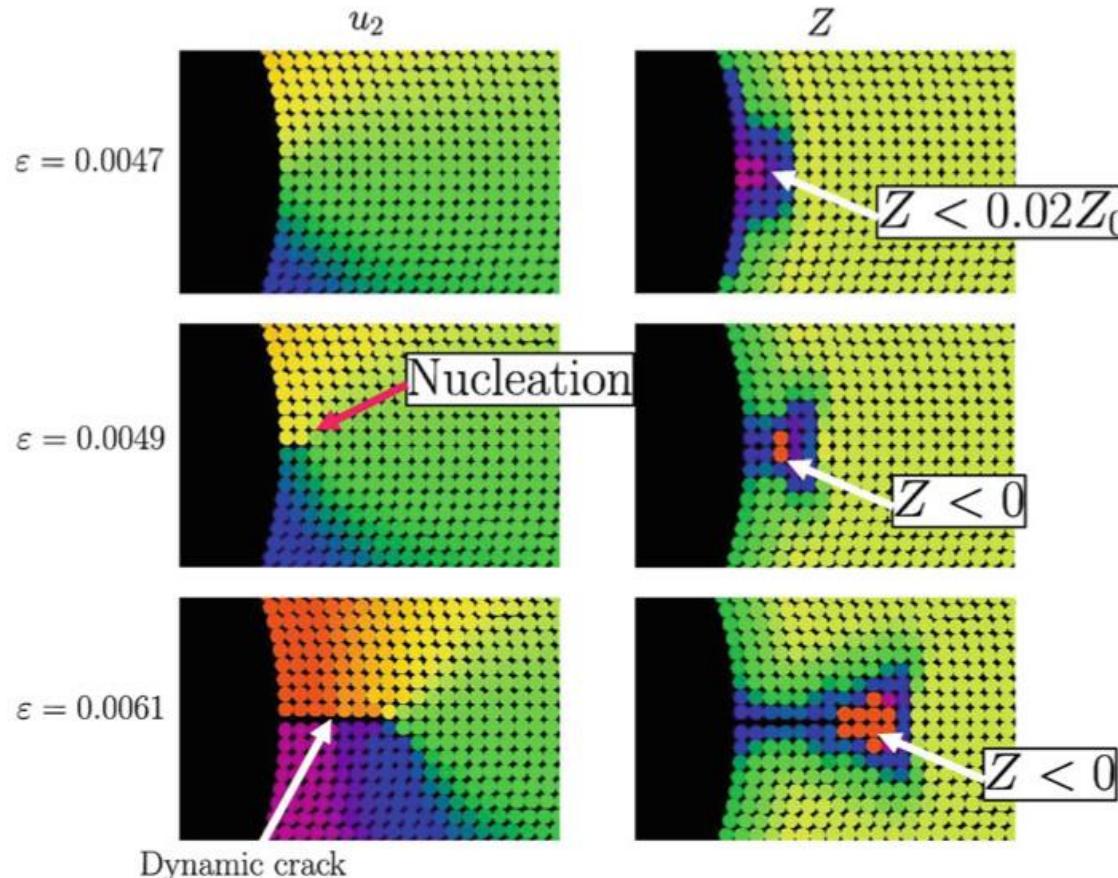
- Nonpositive $\omega(k)$ means waves can grow unboundedly over time.
- “Imaginary wave speed” since $V = \omega(k)/k$.
- If $\omega(\infty) \rightarrow 0$, a small discontinuity can grow: fracture nucleation*.



- *Silling, S. A., Weckner, O., Askari, E., & Bobaru, F. (2010) International Journal of Fracture, 162, 219-227.
- Lipton, R. (2014) Journal of Elasticity, 117, 21-50.

Material instability can be a good thing

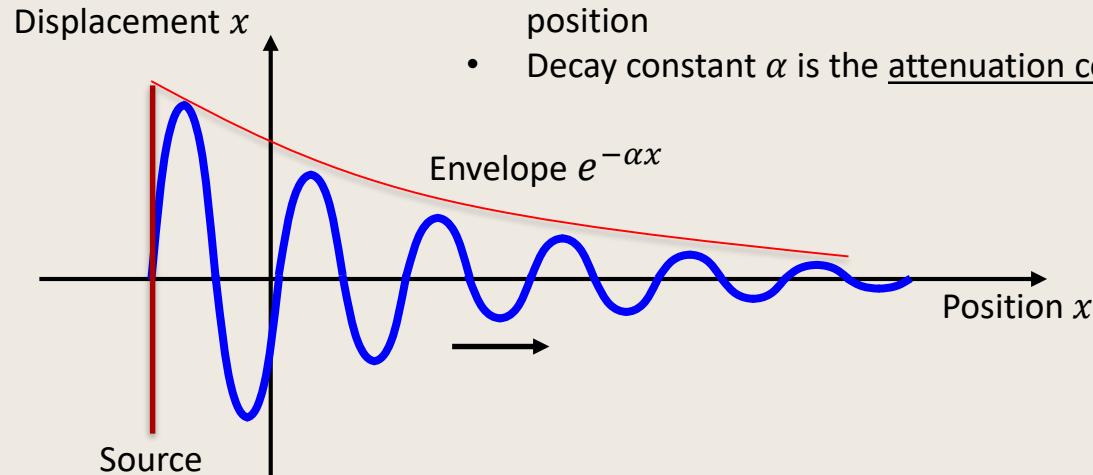
- There is a small elastically unstable region surrounding the tip of a growing crack.



- *Silling, S. A., Weckner, O., Askari, E., & Bobaru, F. (2010) International Journal of Fracture, 162, 219-227.
- Lipton, R. (2014) Journal of Elasticity, 117, 21-50.

Wave attenuation limits the usefulness of ultrasonic imaging

- Long wavelengths have low attenuation.
 - Can see deeply but with low resolution.
- Short wavelengths have higher attenuation.
 - High resolution but small depth.



Microviscoelastic material

- General peridynamic equation of motion:

$$\rho(x)\ddot{u}(x, t) = \int_{\mathcal{H}} f(q, x, t) dq + b(x, t).$$

- Bond-based linear microviscoelastic material:

$$f(\eta, \dot{\eta}, \xi) = C(\xi)\eta + D(\xi)\dot{\eta}$$

where C =micromodulus, D =damping modulus.

- Requirement for linear momentum conservation:

$$C(-\xi) = C(\xi) \quad D(-\xi) = D(\xi).$$

- C and D can have different horizons (cutoff distances).
- Second law of thermodynamics implies

$$D(\xi) \geq 0.$$

Viscoelasticity in peridynamics

- Weckner & Mohamed, *Applied Mathematics and Computation* (2013).
- Mitchell, SAND2011-8064 (2011).
- Madenci & S. Oterkus. *Engineering Fracture Mechanics* (2017).
- Nadimi, Masicovic & McLennan, *Journal of Petroleum Science and Engineering* (2016).

Transformed equation of motion

- Transformed equation of motion leads to the following condition on $\omega(k)$:

$$\omega^2(k) + 2ir(k)\omega(k) - \omega_0^2(k) = 0,$$

$$r(k) := \frac{Q - \bar{D}(k)}{2\rho}, \quad \omega_0(k) := \sqrt{\frac{P - \bar{C}(k)}{\rho}}.$$

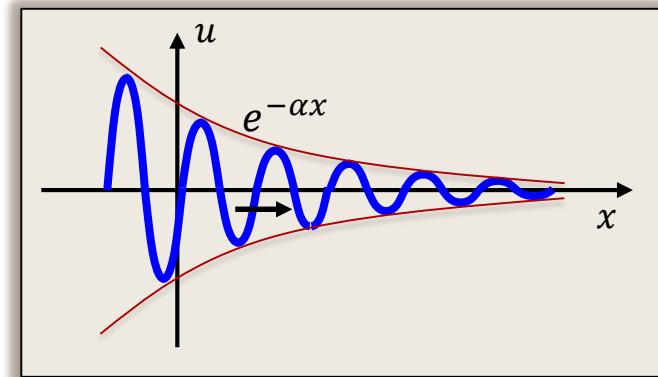
- r and ω_0^2 depend only on the material properties.
- For an undamped wave, $D \equiv 0 \implies \omega(k) = \pm\omega_0(k)$.
- Otherwise, $\omega(k)$ is in general complex (for real k).

Attenuated steady waves

- Seek an attenuated wave solution of the form

$$u(x, t) = e^{-\alpha(k_0)x} e^{i(k_0 x - \omega(k_0)t)}, \quad k_0, \omega \text{ real}$$

where $\alpha(k_0)$ is the *attenuation coefficient* (real).

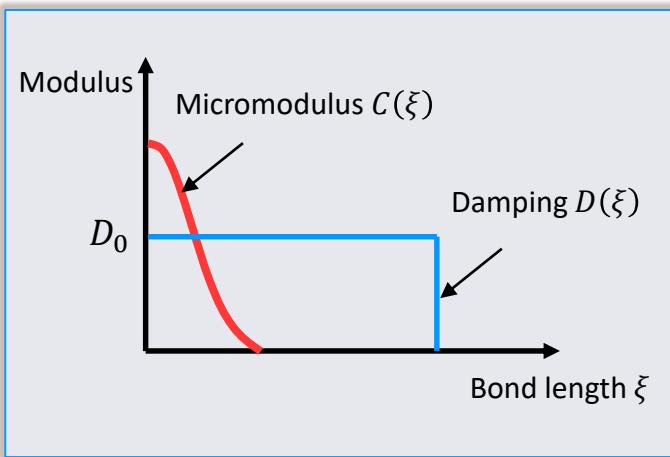
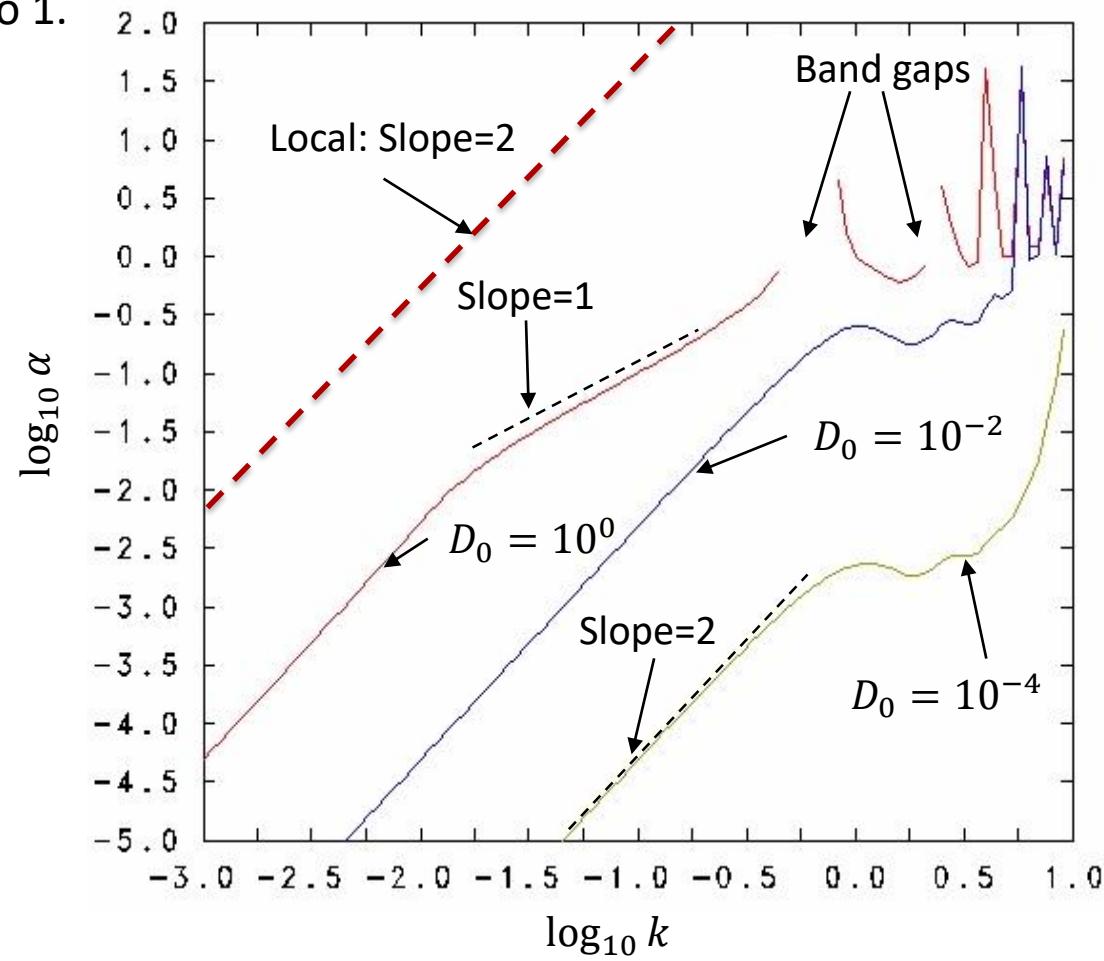


- Condition on α turns out to be

$$\operatorname{Im} \left\{ -ir(k + i\alpha) + \sqrt{\omega_0^2(k + i\alpha) - r^2(k + i\alpha)} \right\}$$

Example of a nonlocal attenuation curve

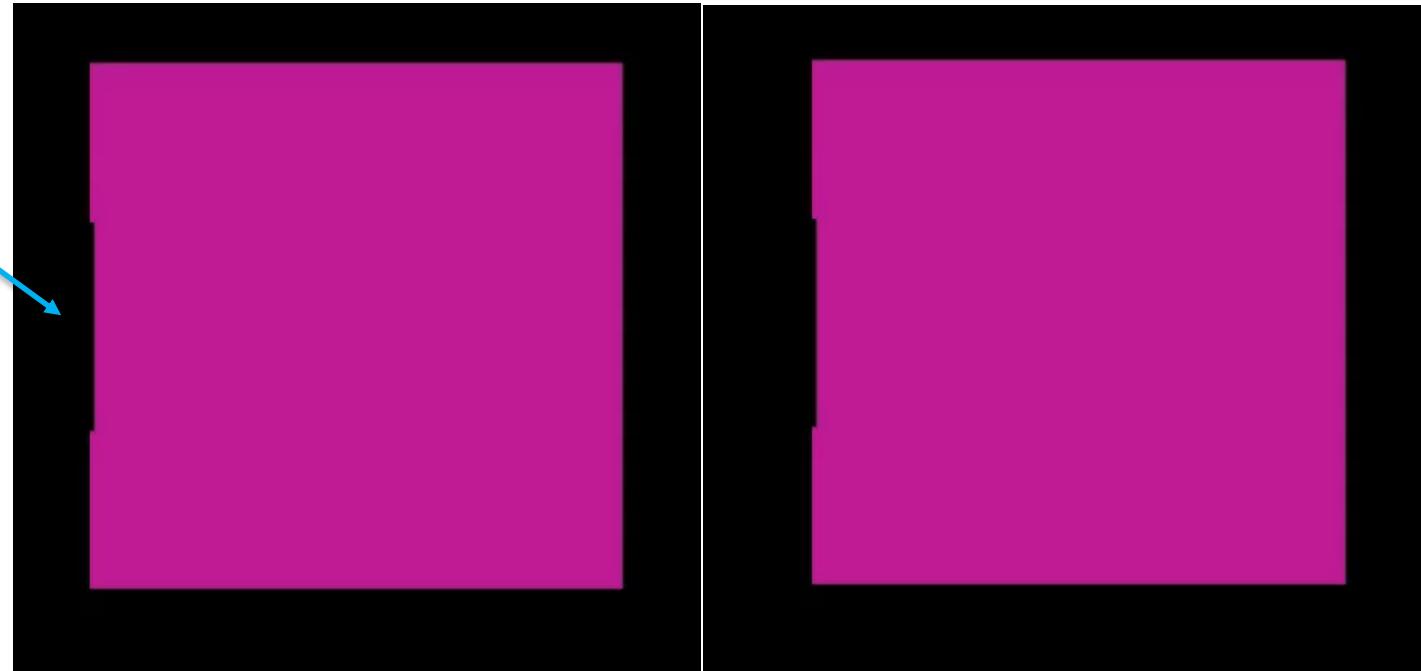
- Solve numerically the equation for $\alpha(k)$.
- Interesting features:
 - Transition in exponent from 2 to 1.
 - Band gaps.



Linear vs. nonlinear waves: Example

VIDEOS

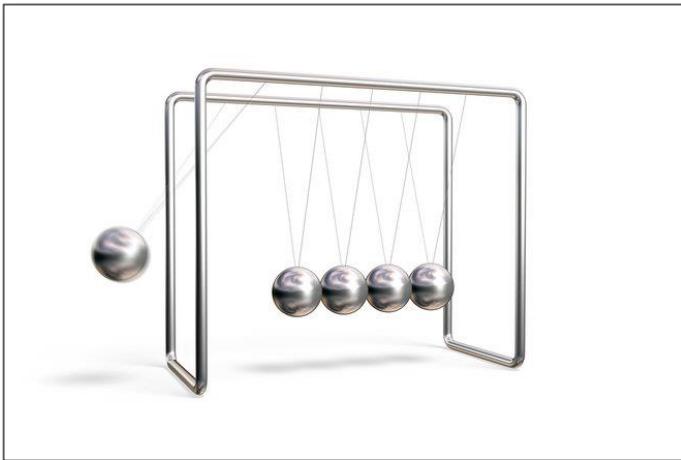
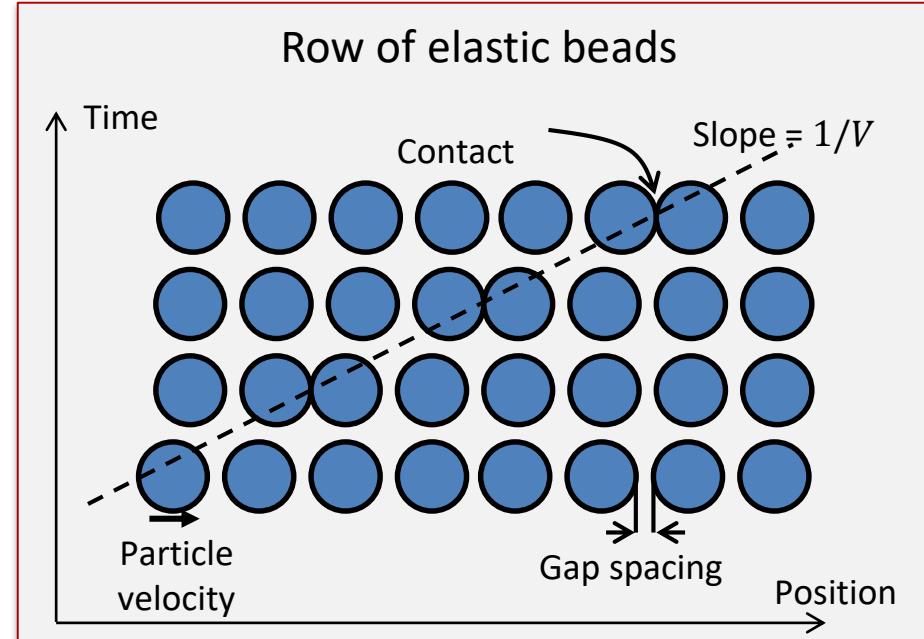
Step function for
displacement at
boundary



Linear

Nonlinear

What are solitary waves?



A solitary wave is a nonlinear wave that moves

- without dispersion
- without changing shape
- without dissipation
- without changing the state of the material it passes through.

Peridynamic soliton model

- Peridynamic 1D equation of motion:

$$\rho u_{tt}(x, t) = \int_{-\delta}^{\delta} f(u(x + \xi, t) - u(x, t), \xi) d\xi + b(x, t)$$

where u is the displacement, f is the bond force density, δ is the horizon, $b \equiv 0$ is the body force, and ξ is the bond.

- Material model:

$$f(\eta, \xi) = F(s) \operatorname{sgn}(\xi), \quad s = \frac{\eta}{\xi}, \quad 0 < |\xi| \leq \delta$$

$$\eta = u(x + \xi) - u(x).$$

where F is a function and s is the bond strain.

Nonlinear bond force

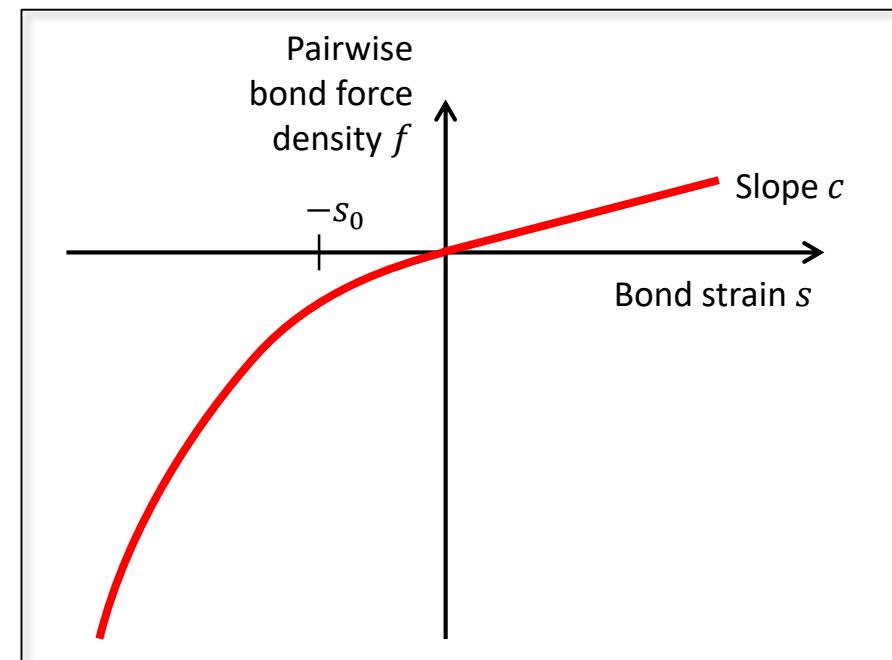
- Consider a material model that stiffens in compression (similar to Fermi-Pasta-Ulam lattice model):

$$F(s) = \begin{cases} c(1 - s/s_0)s & \text{if } s < 0, \\ cs & \text{otherwise} \end{cases}$$

where c and s_0 are positive constants.

- c is calibrated to the Young's modulus E :

$$c = \frac{2E}{\delta^2}.$$



Steady wave assumption

- We seek steady-wave solutions of the form

$$u(x, t) = U(z), \quad z = x - Vt$$

where V is the wave velocity (to be determined).

- The equation of motion becomes

$$\rho V^2 U''(z) = \int_{-\delta}^{\delta} f(\eta(z, \xi), \xi) d\xi$$

- Taylor expansion

$$U(z + \xi) = U(z) + U'(z)\xi + \frac{U''(z)\xi^2}{2} + \frac{U'''(z)\xi^3}{6} + \frac{U''''(z)\xi^4}{24} + O(\delta^5).$$

Our ODE resembles the KdV equation

- The Taylor expansion leads to

$$\left(\frac{\rho V^2}{E} - 1\right) \epsilon' = \left[-\frac{2\epsilon\epsilon'}{s_0}\right] + \left[\frac{\epsilon'''}{24} - \frac{\epsilon'\epsilon''}{6s_0} - \frac{\epsilon\epsilon'''}{12s_0}\right] \delta^2.$$

where the *local strain* field ϵ is defined by

$$\epsilon(z) = U'(z).$$

- Compare KdV equation:

$$\phi_t + \alpha\phi_{xxx} + \beta\phi\phi_x = 0.$$

- Some terms are the same, others different.

Exact solution to the 3rd order nonlinear ODE

- An exact solution to the ODE is

$$\epsilon(z) = \begin{cases} -\frac{\sqrt{8}\Delta U}{\pi\delta} \cos^2\left(\frac{\sqrt{2}}{\delta} z\right) & \text{if } |z| \leq w, \\ 0, & \text{otherwise} \end{cases}$$

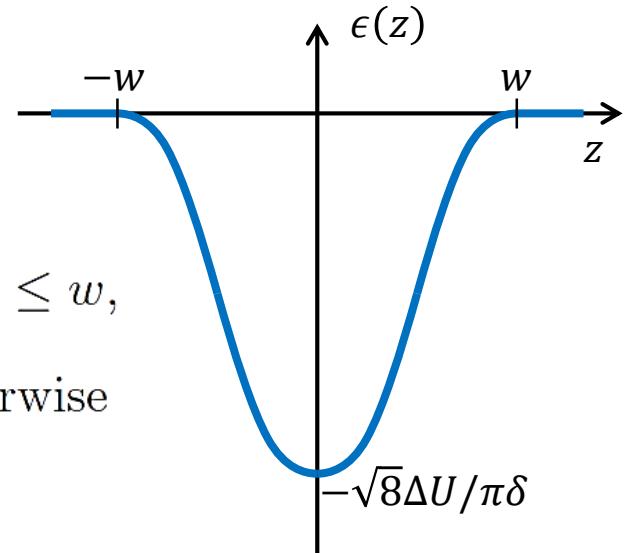
where the pulse half-width is

$$w = \frac{\pi\delta}{\sqrt{8}}$$

and ΔU is the total displacement change through the pulse.

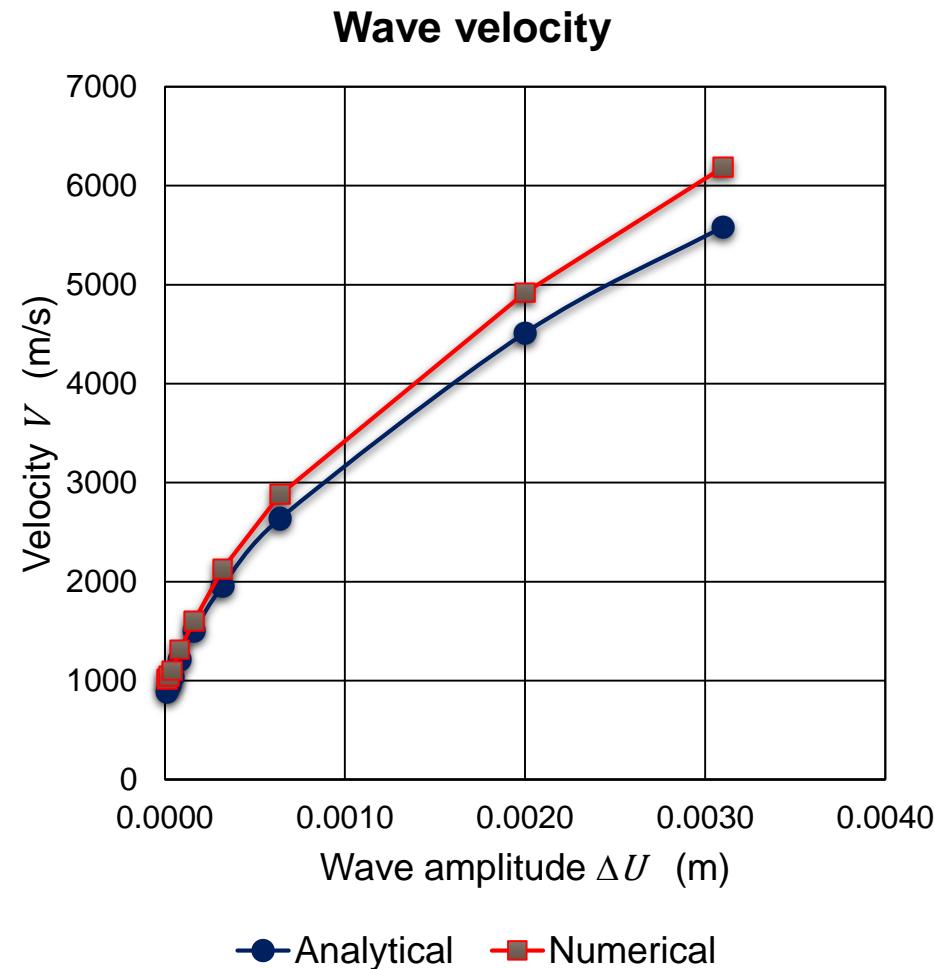
- The wave velocity depends on the total displacement:

$$V = \pm \sqrt{\frac{2E}{3\rho} \left(1 \pm \frac{\sqrt{8}\Delta U}{\pi\delta s_0}\right)}.$$

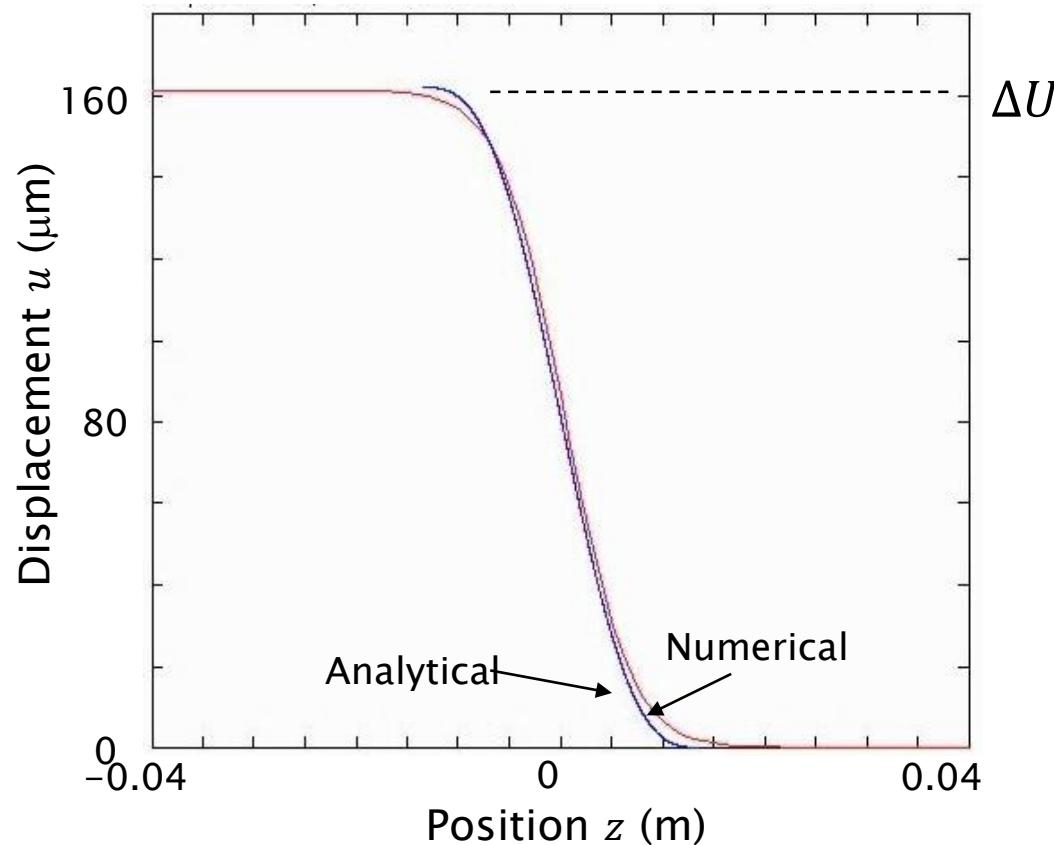


Solitary wave velocity (ODE vs Emu)

$$V = \pm \sqrt{\frac{2E}{3\rho} \left(1 + \frac{\sqrt{8\Delta U}}{\pi\delta s_0} \right)}$$



Wave shape (ODE vs. Emu)



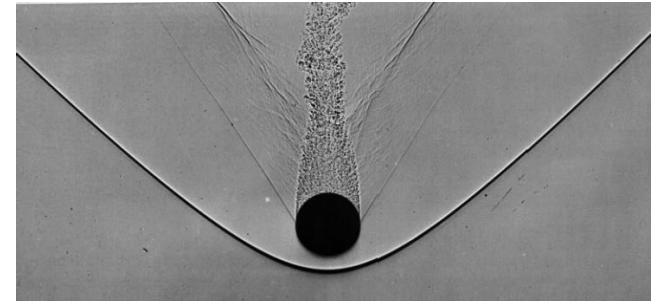
Collisions between solitary waves

VIDEOS

- SS, Solitary waves in a peridynamic elastic solid, JMPS 96 (2016) 121-132.
- Pego, Robert L., and Truong-Son Van. "Existence of solitary waves in one dimensional peridynamics." arXiv preprint arXiv:1802.00516 (2018).

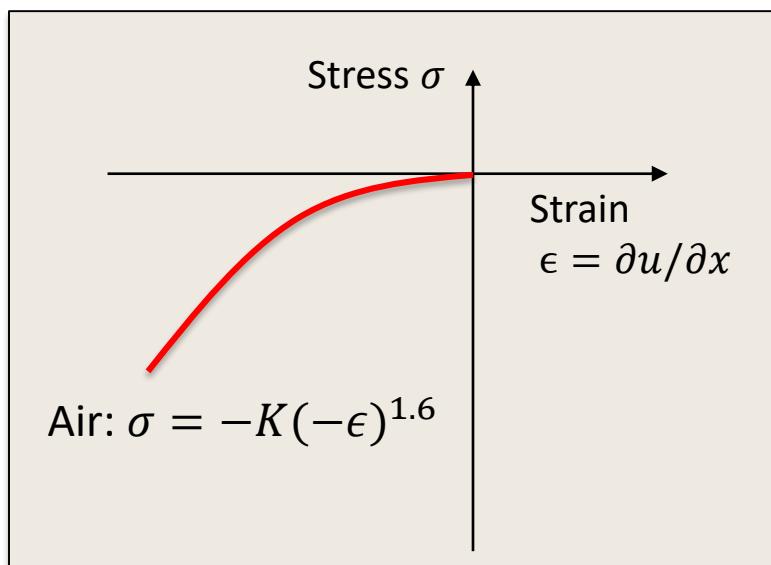
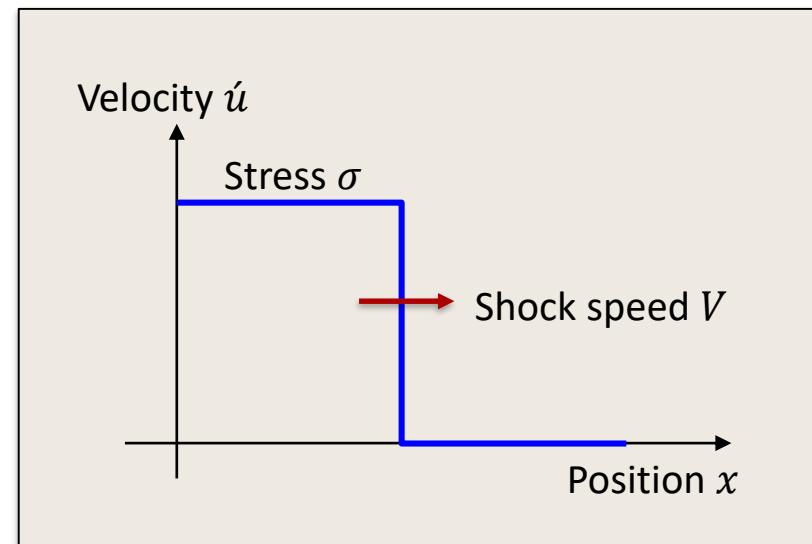
Shock waves

- A shock is a wave that carries a large jump in velocity.
 - (A solitary wave carries a large jump in displacement.)
- Important applications:
 - Supersonic gas flow
 - Impact and detonation waves



Shock in air

Image: Milton Van Dyke, An Album of Fluid Motion (1982).



Shock waves: Elastic model predicts wave velocity but is wrong physically

- Local theory: jump conditions allow weak solutions

$$\epsilon_0 = \dot{u}/V$$

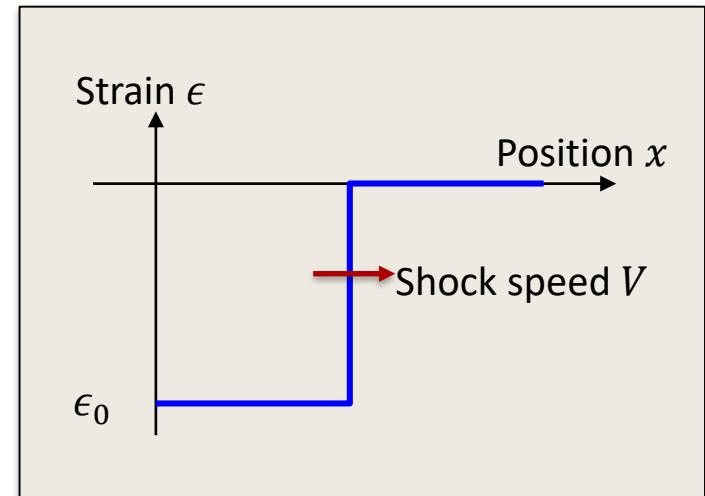
$$\sigma(\epsilon_0) = -\rho V \dot{u}.$$

- Given \dot{u} we can find V and σ .
- However the resulting W fails to satisfy the energy jump (Rankine-Hugoniot) condition:

$$e = -\frac{1}{2} \dot{u} \sigma \neq W$$

where e is the internal energy density behind the shock.

- So without some way of dissipating energy, this is not an admissible solution.



Same material model as with solitons but with nonlinear bond damping

- 1D equation of motion:

$$\rho \ddot{u}(x, t) = \int_{-\delta}^{\delta} f(\eta, \dot{\eta}, \xi) d\xi + b(x, t)$$

- Material with nonlinear elastic and damping terms:

$$f(\eta, \dot{\eta}, \xi) = (F^e(s) + F^d(\dot{s})) \operatorname{sgn}(\xi), \quad s = \frac{\eta}{\xi}, \quad 0 < |\xi| \leq \delta$$

where s =bond strain, ξ =bond vector.

$$F^e(s) = \begin{cases} c(1 - s/s_0)s & \text{if } s < 0, \\ cs & \text{otherwise} \end{cases},$$

$$F^d(\dot{s}) = \begin{cases} -D\dot{s}^2 & \text{if } \dot{s} < 0, \\ 0 & \text{otherwise} \end{cases}$$

where c and D are constants.

New

Dissipative material model leads to a stable shock wave

- Use the same trick again to get an ODE:

$$\left[\frac{\rho V^2}{E} - 1 \right] \epsilon' = \left[-\frac{2\epsilon\epsilon'}{s_0} - 2\beta\epsilon'\epsilon'' \right] + \left[\frac{\epsilon'''}{24} - \frac{\epsilon'\epsilon''}{6s_0} - \frac{\epsilon\epsilon'''}{12s_0} - \frac{\beta\epsilon'\epsilon''''}{12} - \frac{\beta\epsilon''\epsilon'''}{6} \right] \delta^2.$$

- Ansatz:

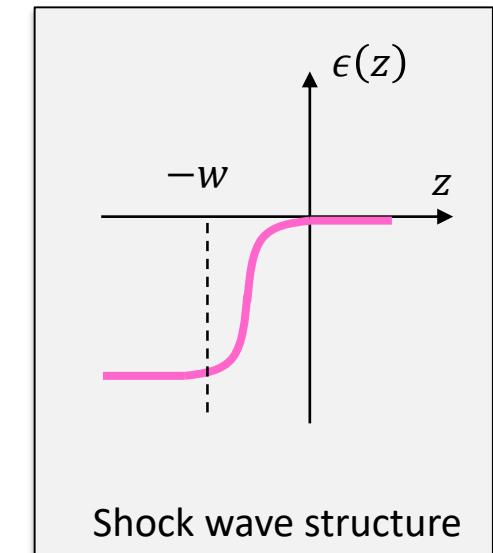
$$\epsilon(z) = \begin{cases} \frac{\epsilon_0}{2}(1 - \cos kz) & \text{if } -\pi \leq kz \leq 0, \\ 0 & \text{otherwise.} \end{cases}$$

- This $\epsilon(z)$ satisfies the ODE with

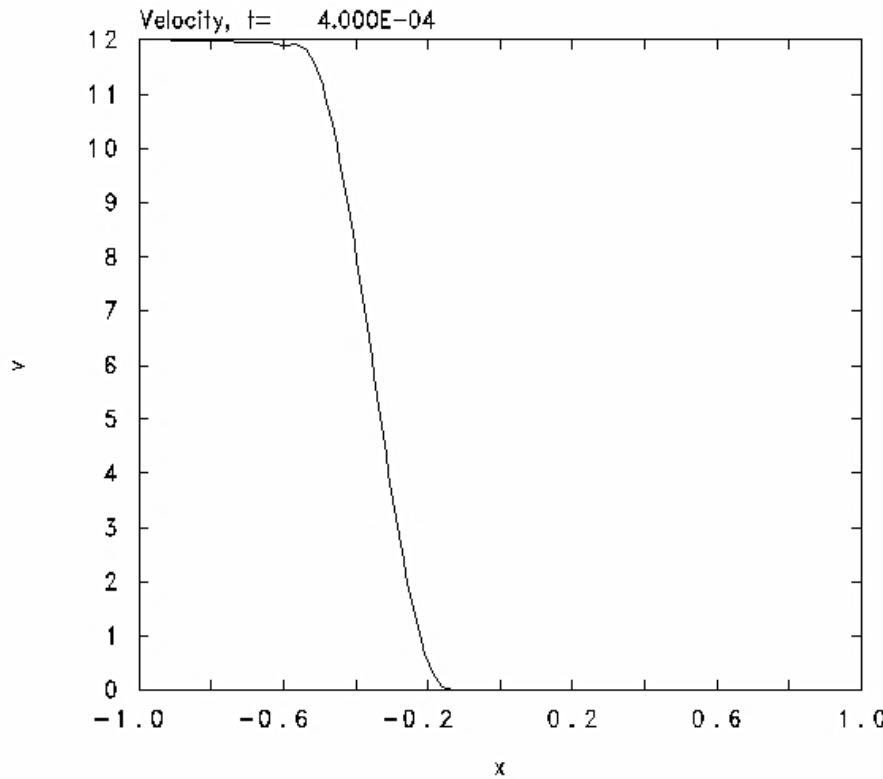
$$V = \sqrt{\frac{E}{2\rho} \left[L + \sqrt{L \left(L - \frac{\delta^2 \rho}{3Ds_0} \right)} \right]}, \quad L = 1 - \frac{\epsilon_0}{s_0}$$

- Shock thickness is

$$w = \frac{\pi V}{2} \sqrt{\frac{D}{c}}.$$



Numerical solution also shows a stable shock wave



Nonlinear nonlocal waves: an almost completely unexplored area

- Just by choosing an appropriate material model, the basic equations without modification reproduce
 - Solitary waves
 - Phase boundaries
 - Fracture
 - Bending waves of beams and shells (O'Grady & Foster)
 - Unknown:
 - Periodic media
 - Metamaterials
 - Band gaps
 - Quantized energy levels
 - Monotonicity
 - Blow-up
 - Scattering

Extra slides

General solution for the attenuation coefficient

- Set $p = k - i\alpha$.

$$\omega^2(p) + 2ir(p + i\alpha)\omega(p) - \omega_0^2(p + i\alpha) = 0.$$

- Solve for $\omega(p)$:

$$\omega(p) = -ir(p + i\alpha) + \sqrt{\omega_0^2(p + i\alpha) - r^2(p + i\alpha)}.$$

- Our ansatz was that $\omega(p)$ is real whenever p is real.
- For any real p , find α such that

$$\operatorname{Im} \left\{ -ir(p + i\alpha) + \sqrt{\omega_0^2(p + i\alpha) - r^2(p + i\alpha)} \right\} = 0.$$

- This is a nonlinear algebraic equation that can be solved numerically for $\alpha(p)$. (Examples later.)

Wave solution dissipates energy

- Rankine-Hugoniot condition:

$$e = \frac{\sigma}{2}\epsilon = \frac{E}{2} \left(\epsilon^2 - \frac{\epsilon^3}{s_0} \right)$$

- Define the dissipated energy Φ by

$$\Phi = e - W.$$

- Compute

$$\Phi = \left[\frac{E}{2} \left(\epsilon^2 - \frac{\epsilon^3}{s_0} \right) \right] - \left[\frac{E}{2} \left(\epsilon^2 - \frac{2\epsilon^3}{3s_0} \right) \right] = \frac{-E\epsilon^3}{6s_0} > 0$$

- So our shock wave obeys the dissipation inequality $\dot{\Phi} > 0$ which is consistent with the second law of thermodynamics.

Waves interact weakly (Emu)

- Larger wave overtakes a smaller wave.

