This report was p.reparcd as an account of work spo;lsored by an agency of the United States 0‘ 0 ”F"@gﬁﬁ 3 / = -/ 7

Government. Neither the United States Government nor any agency thereof, nor any of their
e{n.ployecs, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for -thc accuracy, completeness, or usefulness of any information, apparatus, product, or
process d!sclosed, Or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufaf:turer, or otherwise does not necessarily constitute or imply its endorsen;cnt, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof. gy e DT
" “Chapter 14
Parallel Environments and Tools

s vt o prvae—

N ey n e S —

T RIS 4 o T o4 St P
.

Optimal Eigenvalue Computation on a Mesh
Multiprocessor *

1% ausmay

~S. Crivelli E. R. Jessup t

Abstract
In this paper, we compare the costs of computing a single eigenvalue of a symmetiic
tridiagonal matrix by serial bisection and by parallel multisection on 2 mesh multiprocessor. We
show how the optimal method for computing one eigenvalue depends on such variables as the
matrix order and parameters of the multiprocessor used. We present the results of experiments
on the 520-processor Intel Touchstone Delta to support our analysis.

LI TR PO
T e CHAPE Y

1 Introduction

Let T = [9;,(;,7j41] be an n x n real symmetric tridiagonal matrix with diagonal elements ¢;, .
j=0,...,n—1,and off-diagonal elements 75 #0,forj=1,...,n~1. The number of eigenvalues of
T smaller than a given value) is equal to the number of negative terms ¢(}) in the Sturm $equence
{fi(2)} defined as

4 el g oot g 4 12 3 a4
ERIRIPULIT RN A i B Al

fo(d) = G-) (1)
2
Q) = G-a-Ti_ i=1,...,n—1.

fisa(R)

The number of eigenvalues in the interval (A-1,A0] is the difference o'(Ag) — o(Aoy) [2,11].

An eigenvalue of T tan be computed by repeatedly bisecting the initial Gerschgorin interval and
determining the number of eigenvalues in each interval half [5]. Empty intervals are discarded from
the search area, and the interval containing the eigenvalue is further bisected until the eigenvalue
has been confined to an interval with width smaller than a given tolerance. Multisection is a
generalization of bisection that recursively splits the initial interval into P+ 12 2 subintervals [6].

Although the recurrence formula (1) is intrinsically sequential, it is possible to achieve
parallelism by simultaneously evaluating the Sturm sequence -at p interior points of the search
interval, one evaluation per processor, or by computing different eigenvalues in parallel. Several
parallel bisection and multisection procedures have been proposed but little has been proven about
their efficiencies. Experiments on shared-memory multiprocessors indicate that a combination
of bisection and multisection is more efficient than using bisection alone in parallel [8], while
experiments on distributed-memory multiprocessors suggest the opposite [7]. Bernstein and
Goldstein [3] note that multisection may create a large number of tasks associated with empty

b by

e ——
_'Both authors were funded by DOE contract DE-FG02-92ER25122 and by NSF grant CCR-9109785.

Department of Computer Science, University of Colorado, Boulder, CO 80309-0430 (criv-

ells@cs.colorado.edu and Jessup@cs.colorado.edu).

socor T 1S UNLIITED

ORI R

1
=i
£

2o

Optimal Eigenvalue Computation 748

intervals, but Simon [10] proves: that bisection is not the optimal method for computing ope
eigenvalue-using a single vector processor.

In [4], we show that on distributed-memory multlprocessors it is more efficient to compute
different eigenvalues on different processors than it is to distribute computation of the Sturm
sequence. Further, we show that, unlike in the vector processor case, the relative efficiencies of
bisection and multisection depend on a number of variables, such as the size of the matrix and
parameters of the multiprocessor used. On an Intel iPSC/2 hypercube multiprocessor, bisection is
the best choice only for small sized matrices. In general, multisection with a number of sections
equal to the number of processors is the fastest method for computing one eigenvalue. In this paper,
we review the results for the Intel Touchstone Delta.

2 A Time Complexity Analysis

In this section, we develop an analytical expression for the time required to compute a single
eigenvalue by multisection on 2 mesh multiprocessor. First, we determine the number of iterations
needed to extract an eigenvalue from an interval of width ! when the interval is split into p + |
subintervals at each iteration. If the final interval width turns out to be § = le, where ¢ is a given
threshold, it is necessary to carry out at least k serial mullisection steps, until

Yo+ 1) <6.
Replacing 6 with its value le and taking the logarithm gives
kp = [~log(e)/ log(p + 1)].

Note that when p ='1, k; gives the number of bisection steps. This argument is independent of the
base of the logarithm, but throughout this paper, we take log(z) to mean log,(z).

2.1 Computation Cost

At each iteration, p division points are determined and the recurrence in equation (1) is evaluated
at each point. If the interval endpoints are A_; and)g, the distance between division points is
A = (Mg —Ay)/(p+ 1), and the division points are \; = A, +iA,i=1,...,p.

The cost of computing these points is pw; + w2, where w; is the time for a floating point
addition or subtraction and w» is the time for a floating point multiplication or division. The
Sturm sequence evaluation at each point takes n floating point divisions and 2n floating point
subtractions. In addition, counting the negative terms in the sequence requires n floating point
comparisons. Therefore, the total cost for computing a single eigenvalue by the serial multisection

- algorithm is

Ty =kp[p* (n* 2w+ w2 +7) +w) +w2l,

where 7 is the time for a floating point comparison.

When the p Sturm sequences are evaluated in parallel —one per processor— at each multisection
step, processors must communicate to determine the next search interval. Because communication
costs can be quite significant in these parallel algorithms, we examine efficient communication
schemes in the following subsection.

2.2 Communication Cost

On existing distributed-memory MIMD multiprocessors, the cost of data communication is high in
comparison to the cost of floating point computation. In particular, the time for communicating
an m-byte mnessage from one processor to a neighboring one is 8 + m r, where the communication
startup latency 8 is generally large in comparison to the transmission time per byte = and to the
time for a floating point operation.

These cost ratios lead us to consider only communication schemes that minimize the number
of message startups. On a hypercube, this minimum number is proportional to the dimension d of

Optimal Eigenvalue Computation 749

000 001 010 011 100 101 110" 11l

. ‘W—.—O—O Step 1
’ ’ v—o— e —eo Step 2
TN TN TS el

Fi6. 1. Broadcasting a message from node 0 on a linear array (most significant bit to least significant
bit). Source: (1]...
_?&;% -
the hypercube, with p = 27 processors [9}, and two basic communication mechanisms are possible.
The first is based on alternate direction exchange (ADE) as described in [9). ADE is typically
used to accumulate in all p = 2¢ processors a vector of length pk whose components are initially
distributed evenly among them. In each of d communication steps, the d-cube splits into a different
. pair of (d 1)-cubes. In the first step, corresponding processors in the two cubes exchange their k
elements and accumulate b vector of length 2k. In subsequent steps, the processors exchange and
accumulate all previously accumulated data so that in the last step processors send messages of
length 2%~k and accumulate the full vector. ADE is the basis of the optimal-multisection method
on the hypercube [4].

The second approach is a gather-broadcast routine (GB) in which each processor sends its Sturm
sequence count to a single master processor. That processor then computes the endpoints of the
next search interval.and broadcasts them back to all the other processors. The communication cost
is

2dB+(d — 1)(4 42+ 8)r,
]

for an integer*4 processor number and real*8 endpoints [4,9].
The total time to compute one eigenvalue using this algorithm is
Tep = {time for one eigenvalue count + time to find a new interval by gather-broadcast}
*number of iterations
{n(2w1 + w2 +7) + 2dB + (d — 1)207}[-loge/ log(2¢ + 1)].

3 On Mesh-Connected Architectures

Although ADE outperforms. GB on.the hypercube, ADE is intimately tied to the hypercube
topology. Because we cannot implement ADE on mesh-connected architectures, we instead use the
. GB approach for multisection on the mesh. According to [1], there is an optimal broadcast (or
gather) algorithm for meshes that does not cause network contention and has the same logarithmic

time complexity as for hypercubes. Figure 1 depicts a contention-free broadcast from node 0toall -

others on a linear array [1).

If we have a two-dimensional grid of p = py X p2 points, where p; = 2%, i = 1,2, it will
be necessary to perform d = dy +dy = log(p,) + log(p2) = log(p) steps to complete a broadcast
(gather) operation [1]. The basic idea is to partition the two-dimensional array along one dimension,
thereby reducing the problem to that for linear arrays. These, in turn, are recursively partitioned,
fioubling the number of partitions at each step, and creating distinct sub-arrays which can proceed
independently with the broadeast (gather) procedure. In this way, a minimum spanning tree
broadcast (gather) can be performed on mesh-connected architectures as efficiently as on hypercubes.

e only difference is in the way that the minimum spanning tree is derived using the binary
Tepresentation of the nodes. While the order in which bits are toggled to derive the tree is not
'mportant for hypercubes, it is for meshes due to contention problems [1].

Therefore. under reasonable assumptions, the time complexity analysis of the GB multisection

approach remains the same on both hypercube and mesh-connected architectures. Figure 2 depicts

Prfdendpe ;}..M-Hm‘..-. R bl i ;4;..4.. oot b v Frog K o ras e on o 1 y

e BRI

PR AR

B RS = LN

g cvrads Tem o aA SNt

the cost function TéB ~t:orresponding

Optimal Eigenvalue Computation 750

time {microseconds)

Fi16. 2. Theoretical and actual values of the cost function for computing an eigenvalue of the 0,24

matriz of order 1000 on the Delta.

to the GB multisection approach for computing the smallest
eigenvalue of the 1000 x 1000 miatrix {1,2, 1] plotted as a solid line against the continuous variable
d = log(p). On the same plot, it also shows the times measured on the Intel Touchstone Delta
(ciecles). The values of the parameters used in computing Tep are —log(e) = 54, B = 75, and
w mwry =01 These values corresp ond to double precision computation on the Delta. The

figure shows good agreement between the theoretical and the actual timings in the range of available

processors.

References

[1] M.Bannptr, D. Payne, AND R. VAN DE GEwN, Optimal broadcasting in mesh-connected architectures.
- _Tech. Rep. TR-91-38,_Dept..of Computer Science, University of Texas at Austin, 1991.

R. MARN, AND J. WILKINSON, Calculation of the eig lues of a sy tric tridiagonal
by the method of bisection, in Handbook for Automatic Computation: Linear Algebra.

2 W: Bater,

matriz
Springer Verlag, 1971, pp. 249-256.
(3] H. BERNSTEIN AND M. CoLpstein, Optimizing Givens’ algorithm for multiprocessors, SIAM J. Sd.
Stat. Comput., 9 (1988), pP- 601-602.
n distributed-memory mimd multipro-

f4] S. Cluuvesut AND E. Jessur, Optimal eigenvalue computation o
cessors, Tech. Rep. CU-CS-617-92, Dept. of Computer Science,
[5] W. Gens, Numerical computation of the characteristic values of a re

ORNIL-1574, Oak Ridge National Laboratory, 1954.
{6] H. Huang, A parallel algorithm for symmetric tridiagonal eigenualue problems, CAC Document No-

109, Center for Advanced Computation, University of Illinois, 1974.

{7] L Irsen AND E. Jessur, Solving the sy tric tridiagonal eigenvalue problem on the hypercube,
. Sci. Stat. Comput., Vol. 11, No. 2, (1990), pp- 203-229.

{8} S. Lo, B. PuwLLire, ANp A. SAMEL, A multiprocessor algorithm for the symmetric tridio
eigenvalue problem, SIAM J. Sdi. Stat. Comput., 8 (198T), pp- s155-s165.

[9] Y.SaAD AND M. Scuurtz, Data communication in hypercubes,

Science, Yale University, 1985.
[10] H. Swaon, Bisection is not optimal on vector processors, SIAM J. Sci. Stat. Comput.,

pp. 205-209.
{11] J. WiLKInsoH, The Algebraic Eigenvalue Problem,

University of Colorado, 1992.
al symmetric matriz, Tech. Rep-

staM

Clarendon Press, Oxford, 1965.

gonal

Research Report 428, Dept Computer
10 (1989}

3
5
4

