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Direct three-dimensional (3D) numerical simulations
of acoustic fields in range-dependent shallow water
environments remains a challenge due to environmental
complexities and large computational cost. We
develop an efficient 3D boundary element method
(BEM) for shallow water acoustic propagation which
utilizes a Pre-corrected Fast Fourier Transform
(PFFT) approach to reduce the computational effort
from O(N2∼3) to O(N logN) where N is the
total number of boundary unknowns. To account
for inhomogeneous media, the method allows for
arbitrary number of coupled multi-layer BEM sub-
domains. With O(N logN) efficiency and the use
of massively parallel high-performance computing
platforms, we are able to conduct multi-layer 3D direct
simulations of low-mid frequency acoustics over
kilometer ranges. We perform extensive validations
of the method and provide two shallow water
waveguide examples benchmarked against theoretical
solutions. To illustrate the efficacy and usefulness
of the PFFT-BEM method, we perform 3D large-
scale direct simulations to assess the performance
of two established canonical models: axisymmetric
coupled mode model for 3D seamount; and Kirchhoff
approximation and perturbation theory for 3D rough
surface scattering.
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1. Introduction
Prediction of a 3D underwater sound field in range-dependent shallow water environments,
involving complex domain geometry and water properties, is a challenging and active research
area. Over the years, a number of propagation models have been proposed, generally based on
some limiting assumptions or approximations. Notable among these are the ray tracing model,
the coupled mode model and the parabolic equation (PE) model. Ray tracing models (e.g. Bucker
[1]; Porter [2]) are based on an underlying high-frequency assumption and are generally not valid
for low-mid frequencies. Furthermore, they are usually applied only to 2D problems because of
the substantial computational cost of full 3D ray tracing calculations (Jensen et al. [3]).

For specialized geometries, the coupled mode method [3] can be powerful, for example, when
applied to 3D conical seamount with vertical axisymmetry [4]. When environmental properties
are invariant along a spatial coordinate, the two-dimensional (2D) coupled mode method can
be combined with a wavenumber integration method to obtain 3D acoustic fields [5,6]. For
slowly-varying spatial environments in two directions, a simplified coupled mode model, the
adiabatic-mode model, has also proven useful (e.g. Badiey et al. [7]; Ballard [8]; Lynch et al. [9]).
For general 3D geometries, a fully coupled mode propagation model is still impractical due to
large computing power and memory requirements [3].

A large class of propagation models are based on the one-way parabolic equation (PE)
approximation [10]. For 3D applications where backscattering is not significant, a number of
PE models have been developed (e.g. Lin et al. [11,12]; Sturm [13]). Models that include two-
way scattering have been developed in general 2D [14,15], and for 3D formulated in cylindrical
coordinates [16], valid within a limited domain. Hybrid normal mode/PE method (e.g. Ballard et
al. [17]) has been developed to account for outgoing mode-coupling and horizontal refraction
effects but is valid only when backscattering and modal coupling in the azimuthal direction
are weak. Xu et al. [18] provides a survey of PE approximations highlighting the efficacies, and
limitations especially for complex 3D problems.

With the continuing increase in computational power, there has been a rise in direct acoustic
simulations wherein the wave equation is solved directly without additional assumptions. These
direct solutions typically involve volume discretization or boundary surface paneling (see Jensen
et al. [3] for review). The former includes finite difference method (FDM), finite element method
(FEM), finite volume method (FVM), and spectral element method (SEM). Because of the large
number of volume discretized unknowns, these methods are generally more successful and
mainly practical for 2D applications (e.g. Bottero et al. [19]; Santiago & Wrobel [20]; Vendhan
et al. [21]; [19,24]). A longitudinally-invariant FEM has recently been proposed [22], which can
provide a 3D sound field with the constraint that the geometry of environments is constant
along one of the three spatial coordinates. A 3D SEM has also been recently developed for low
frequency [23]. Largely due to prohibitive computational costs, 3D simulations of realistic ocean
acoustics using volume-discretization methods remains a significant challenge.

The number of unknowns is reduced in boundary element methods (BEM) where only the
boundary of the domain is discretized. In the BEM, the Helmholtz boundary-value problem
for homogeneous medium is formulated as a boundary integral equation (BIE) (e.g. Burton and
Miller [25]), for which the unknown pressure or normal pressure gradient on the boundary of the
medium are solved. After discretizing the boundary into piecewise elements and approximating
the variables over these elements, we obtain a system of linear algebraic equations of the
form: Ax = b, where A is a dense N ×N influence coefficient matrix, x is the vector of N
unknown pressures or/and normal pressure gradient on the boundary, and b the vector of known
quantities. A number of 2D or 2.5D (longitudinally-invariant) BEM shallow water waveguide
solutions exist (e.g. Godinho et al. [26]; Pereira [27]); and BEM have been applied to 3D acoustical
radiation and scattering problem from rigid bodies (e.g. Keuchel et al. [28]; Yan & Gao [29]).
While BEM can handle complex boundaries and domain interfaces, its major drawback is the
computation cost associated with the solution system involving dense influence matrices A.



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Existing approaches using (direct or) iterative solvers [30] requireO(N2) operations and memory
to construct and store the influence matrix A, and ( O(N3) or) O(N2) operations for the
solution x. For realistic 3D direct acoustics simulations over kilometer ranges even for low-mid
frequencies,N can be &O(107∼10) (see examples in §§3, 4), and direct 3D simulations using BEM
is still not practical.

In this work, we implement a direct solution of the 3D acoustic problem for range-dependent
shallow-water environments with complex boundaries using BEM. To account for inhomogeneity
of the medium properties, we develop a multi-domain (multi-layer) approach [27] where
homogeneous properties are assumed within each sub-domain. The overall solution is obtained
by imposing continuity of pressure and normal pressure gradient at the interfaces of the sub-
domains. The major development here is the adaptation of a Pre-corrected Fast Fourier Transform
(PFFT) approach to reduce the overall computational effort from O(N2∼3) to O(N logN). PFFT
has been applied to accelerate the BEM in solving the boundary-value problems in the fields of
electrostatic analysis [31,54], elastodynamics [53,55], solid mechanics [56], hydrodynamics [32]
and rigid-body acoustics scattering [29]. A special property of the method is that the PFFT
accelerated BEM (PFFT-BEM) is particularly suitable for massive parallelization [32], which we
develop and implement on modern high-performance computing (HPC) platforms.

To establish the accuracy and convergence of the PFFT-BEM, we perform extensive validation
of the PFFT-BEM for 3D large-scale benchmark problems including (i) sound propagation in
a two-layer shallow-water ocean environment (i.e. the classical Pekeris waveguide) [3]; (ii)
sound propagation in realistic ocean environment with inhomogeneous sound profile; (iii) sound
transmission field in the Acoustical Society of America (ASA) benchmark wedge [33]; (iv) sound
scattering by a 3D underwater seamount [4]; (v) sound propagation in shallow water with a
Gaussian canyon on the bottom; (vi) sound scattering by traveling internal waves; and (vii) sound
propagation in the Mouth of the Columbia River (MCR), USA. The PFFT-BEM predictions match
the existing analytic or benchmark numerical solutions or available field measurements very well
for all these cases. For illustration, we present the validation results in this paper for (i), (iii) and
(iv) while the comparisons for (ii), (v), (vi) and (vii) can be found in [57].

Large-scale direct solutions using PFFT-BEM are very useful, among other applications,
for assessing the range of validity and performance of established approximate or specialized
models. To illustrate this, we benchmark direct PFFT-BEM solutions for two problems: (a)
axisymmetric coupled mode model for sound scattering by a 3D underwater seamount; and (b)
Kirchhoff approximation and perturbation theory for 3D rough surface scattering. For problem
(a), we first validate the PFFT-BEM solution to the coupled mode method for the (axisymmetric)
conical seamount for which the latter is valid, and then we compare the different solutions
to characterize and quantify the effects of varying seamount geometries (seamount height and
cross section shape) and sound source frequencies. For problem (b), we assess the accuracy
of established approximation models through quantitative comparisons with direct PFFT-BEM
simulations. We identify and quantify regions of validity of the former in terms of 3D scattering
effects, surface roughness and correlation length, and incidence angle of the sound source.

2. PFFT accelerated BEM

(a) Coupled multi-layer boundary element method
We start with the 3D (spatial) Helmholtz wave equation for a harmonic sound wave:

ρ(~x, t)∇ · ( 1

ρ(~x, t)
∇p(~x)) + k2p(~x) = 0 ~x∈ V (2.1)

where ~x=(x, y, z), t is time, p(~x) the sound pressure, ∇ the gradient operator, ρ(~x, t) the medium
density, V the entire domain volume, and k the medium wavenumber. The problem is subject to
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the pressure release boundary condition at the water free surface SF :

p(~x) = 0 ~x∈ SF . (2.2)

Sommerfeld radiation condition is satisfied at the far-field boundary S∞:

∂p(~x)

∂n
− ikp(~x) = 0 ~x→∞ (2.3)

where n is the boundary normal. In addition to penetrable bottom or body boundary conditions,
Neumann boundary condition can also be imposed on rigid bottom/body boundaries SB :

∂p(~x)

∂n
= 0 ~x∈ SB . (2.4)

Inhomogeneous medium properties are accounted for by decomposing V into sub-domains
Vi within which ρ=ρi(t) and k=ki(t) are assumed to be constant at any time. For p=pi in Vi, we
impose matching conditions across sub-domain boundaries Sij between sub-domains Vi, Vj for
continuity of pressure p and particle velocity ~u:

pi = pj ;
1

ρi
pin =

1

ρj
pjn, ~x∈ Sij . (2.5)

This completes the boundary-value problem.
From Green’s second theorem, the boundary integral equation (BIE) for the pressure pi(~x) in

each layer (~x∈ Vi) is

4πpi(~x)−
∫∫
Si

pin(~ζ)G(~x; ~ζ)dSi(~ζ) +

∫∫
Si

pi(~ζ)Gn(~x; ~ζ)dSi(~ζ) = 0 (2.6)

where Si is the boundary of sub-domain Vi. Here G(~x; ~ζ) = |~x− ~ζ|−1eik|~x−
~ζ| is the Green

function which satisfies the Helmholtz equation, and ~ζ is any point on Si.
For simplicity, for the present shallow-water applications, we consider multi-layer [27] sub-

domains Vi, i=1, 2, . . . , I , where S1 is the free surface SF , and SI is the (penetrable unbounded)
bottom (SB is not used). Taking the limit ~x→ Si in Eq.(2.6) and using boundary conditions
Eq.(2.2), Eq.(2.3) and Eq.(2.5), the BIE for each layer can be coupled into a single integral equation
in the form:

−
∫∫
Ŝ1
p̂1
n(~ζ)G(~x; ~ζ)dŜ1(~ζ) + β1

∫∫
Š1
p̂2
n(~ζ)G(~x; ~ζ)dŠ1(~ζ) + −−

∫∫
Š1
p̂2(~ζ)Gn(~x; ~ζ)dŠ1(~ζ)

+αp̂2(~x) = 4πfse
ik|~x−~xs||~x− ~xs|−1, ~x∈ S1

−
∫∫
Ŝi
p̂in(~ζ)G(~x; ~ζ)dŜi(~ζ) + −−

∫∫
Ŝi
p̂i(~ζ)Gn(~x; ~ζ)dŜi(~ζ)) + βi

∫∫
Ši
p̂i+1
n (~ζ)G(~x; ~ζ)dŠi(~ζ)

+−−
∫∫
Ši
p̂i+1(~ζ)Gn(~x; ~ζ)dŠi(~ζ) + αpi(~x) = 0, ~x∈ S2,...,I−1

αpI(~x)−
∫∫
ŜI
p̂In(~ζ)G(~x; ~ζ)dŜI(~ζ) + −−

∫∫
ŜI
p̂I(~ζ)Gn(~x; ~ζ)dŜI(~ζ) = 0, ~x∈ SI

(2.7)
where α is the solid angle at ~x on the boundary, fs is the strength of a point source located at ~xs
in layer 1, βi=ρi/ρi+1, Ŝi, Ši refer respectively to the upper and lower boundary of layer Vi, and
principle value integrals are indicated. It should be noted that the Green’s function satisfies the
Sommerfeld condition Eq.(2.3) and S∞ does not appear in Eq.(2.7) [27,34].

At this point, we discretize the boundaries in Eq.(2.7) into boundary elements with piecewise
continuous values of p and pn within each element. The discretization choice can be quite
general. For simplicity, we use Constant Panel Method (CPM) using piecewise linear quadrilateral
elements with constant values of p and pn in each element, and element centroid collocation. After
some assemblage, Eq.(2.7) can be cast as a system of linear algebraic equations of the form:

2πp̂2(~x)−
∑N1

j=1(F̂ 1
s )j +

∑N2

j=1[β1(F̂ 2
s )j + (F̂ 2

d )j ] = 4πfse
ik|~x−~xs||~x− ~xs|−1, ~x∈ S1

2πpi(~x)−
∑Ni

j=1[(F̂ is)j − (F̂ id)j ] +
∑Ni+1

j=1 [βi(F̂
i+1
s )j + (F̂ i+1

d )j ] = 0, ~x∈ S2,...I−1

2πpI(~x)−
∑NI

j=1[(F̂ Is )j + (F̂ Id )j ] = 0, ~x∈ SI
(2.8)
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(F̂ is)j = (p̂in)j

∫∫
Ej

G(~x; ~ζ)dŜi(~ζ); (F̂ id)j = (p̂i)j

∫∫
Ej

G
n(~ζ)

(~x; ~ζ)dŜi(~ζ); (2.9)

where Ej is the jth element and N i the total number of elements in ith layer. Here, α=2π at the
collocation point within CPM. Finally, we express Eq.(2.8) in symbolic form:

[A] {x}= {b} (2.10)

where [A], N ×N is dense and nonsymmetric, and N=
∑I
i=1N

i. The assemblage of [A] requires
O(N2) effort, while [A] itself requires O(N2) memory. A direct solution of Eq.(2.10) would
in general requires O(N3) effort, while a good iterative solver would use O(N2) operations.
With O(N2) memory and CPU requirements, realistic applications would be limited to N ∼
O(104∼5) on modern HPC platforms, corresponding to say a 100Hz frequency in a 3D domain of
(horizontal) dimension ∼ 100m.

A key development of this work is the solution of Eq.(2.10) using O(N) memory (without
explicitly forming the influence matrix [A] ) and O(N logN) operations. This is accomplished
using a Pre-corrected Fast Fourier Transform (PFFT) algorithm.

(b) Evaluation of matrix-vector product using PFFT acceleration
To illustrate the underlying approach in PFFT-BEM, we first consider forming the pressure p(~x)

at field point ~x due to a source (G(~x; ~ζ)) distribution on N boundary elements on S:

p(~x) =

N∑
j=1

∫∫
Ej

σ(~ζ)G(~x; ~ζ)dS(~ζ) =

N∑
j=1

Isj(~x) (2.11)

where σ(~ζ) is the source strength distribution, and Isj is the contribution to p(~x) due to source
distribution on elementEj . In BEM, p(~x) must be evaluated atN collocation points ~xj , j=1,2,. . . ,N
on the BEM boundary S. This evaluation can be accomplished in O(N logN) using PFFT in five
steps:
(1) Grid definition: We identify a 3D block that contains the N boundary elements. By subdividing
this 3D block into a grid of small cubes, each differential cube will contain a number of boundary
elements. Each of these small cubes is referred to as a cell. By temporarily computing the pressures
on the cell grid points, we can account for the distant interactions by using only a few weighted
local pressure cell values. Furthermore, by evaluating these pressures on a uniform grid, the
pressure evaluation has the form of a convolution (will be derived in the projection step) which
allows for it to be evaluated with FFTs. Interpolation and correction steps are then taken at the end
of the algorithm to adjust the solution from the cell values back to the boundary element mesh.
Our algorithm constructs this surrounding grid usingNx ×Ny ×Nz uniform grid in the x−, y−,
z−directions (withNg ≡Nx ×Ny ×Nz). Note that the grid size h does not necessarily need to be
identical in the three directions. Without loss of generality, h is considered to be constant in this
paper.
(2) Projection: In this step, the source distribution in Eq.(2.11) is projected to point sources at the
v3(v≥ 2) vertices of the cell which contains the boundary element Ej . An accurate projection
must satisfy the requirement that the p(~x) obtained from the net influence of the point source at
cell vertices must be identical to that of the original source distribution on the elements.

To do that, we first represent the Green function G(~x; ~ζ) (i.e. p(~x) results from a unit point
source at ~ζ) by the net influence of point sources at the vertices of the cell which covers point
source G(~x; ~ζ):

G(~x; ~ζ) =

v3∑
m=1

Hm(~ζ)G(~x; ~ζm) (2.12)

where ~ζm is the coordinate of the mth vertex of the cell which covers the element Ej and Hm
is the spatial interpolation function for the mth vertex of the cell. The details of the method for
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constructing Hm can be found in [32] or [57]. Using (2.12), we have

Isj(~x) =

∫∫
Ej

σ(~ζ)G(~x; ~ζ)dS(~ζ) =

v3∑
m=1

qjmG(~x; ~ζm) (2.13)

where
qjm = σ(~ζ)

∫∫
Ej

Hm(~ζ)dS(~ζ) (2.14)

Eq.(2.14) is used to determine the strength of the projected point source, qjm, at mth vertex of
the cell associated with the jth element. After taking the summation of all the projections of the
boundary elements associated with the uniform 3D FFT grid n, the total strength of the point
source at nth grid qn is given by

qn =

Nn∑
j=1

qjn (2.15)

with n= 0, 1, ..., Ng − 1, Nn represents the total number of boundary elements associated with
the uniform 3D FFT grid n.
(3) Convolution: We evaluate the pressure at the 3D grid points due to point sources at these grids
as

pl =

Ng−1∑
n=0

qnGl−n l= 0, 1, ..., Ng − 1 (2.16)

where Gl−n = 1
|xl−xn|e

ik|xl−xn|.The Fast Fourier Transform (FFT) is used to evaluate Eq.(2.16)
efficiently as it is in a convolution form. Before directly applying FFT, the forms of the G and q

terms need to be modified since the total number of G terms differs from that of q and due to G0

being singular. To do this, we fist define a function P as

Pl =

Ng−1∑
n=−Ng+1

q′nG
′
l−n, l=−Ng + 1, ..., 0, 1, ..., Ng − 1 (2.17)

where q′ and G′ are periodic with the same period (2Ng − 1) and are defined as

G′l−n =

{
0, l= n,

Gl−n, −Ng + 1≤ l − n≤Ng − 1 and l 6= n
(2.18)

and

q′n =

{
0, −Ng + 1≤ n≤ 0,

qn, 0≤ n≤Ng − 1.
(2.19)

and Eq.(2.17) is now in the convolution form of two discrete periodic functions. Therefore,
FFTs can be directly applied to evaluate Pl for a given q′ and G′ with a computational cost
of O(Ng logNg). With the self influence excluded from p in Eq.(2.16), we have pl = Pl, l=
0, 1, ..., Ng − 1 (the self influence of point source will be added to solution in the step of near
field correction).
(4) Interpolation: In this step, we evaluate p(~x) on the boundary elements using the interpolation
function Hm based on the grid values pl obtained in the convolution step. The form of p(~x) can
now be expressed as

p(~x) =

v3∑
m=1

Hm(~x)p( ~ζm), (2.20)

where m is the mth vertex of the cell surrounds the element located at ~x.
(5) Near field correction: Finally we correct the near field part of p(~x) evaluated by FFT based on

Eq.(2.13). This is due to the fact that when |~x− ~ζ|/h≤O(1), the accuracy of representation of
G(~x; ~ζ) by G(~x; ~ζm), m=1, ..., v3 deteriorates. In this step, the near field contribution evaluated in
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the convolution step and the exact near field contribution obtained using direct computation is
subtracted and added to the solution, respectively. The correction ∆p(~x) is represented as

∆p(~x) = pN (~x)− pFN (~x) (2.21)

where pFN (~x) is the near-field part of the influence obtained from Eq.(2.20) based on the results
in convolution step and pN (~x) is the exact influence of the near-field elements determined by
directly evaluating the boundary element integrals in Eq.(2.11). Then, the final result of p(~x):

p(~x) = pF (~x) +∆p(~x) (2.22)

where pF (~x) is the total influence results evaluated from the convolution step. In practical
implementation, the near/far field is defined for |~x− ~ζ| ≤ / > d with the distance d being
determined by numerical convergence tests (see figure 1(a)).

The evaluation of pn due to a dipole distribution using PFFT algorithm can be accomplished
in a similar manner. The normal gradient of the pressure pn(~x) at ~x due to the influence of the
dipole distribution with strength γ(~ζ) on a surface S is given by:

pn(~x) =

∫ ∫
S
γ(~ζ)G

n(~ζ)
(~x; ~ζ)dS(~ζ) = Iζ(~x) + Iη(~x) + Iξ(~x) (2.23)

Iχ(~x) =

∫ ∫
S
nχ(~ζ)γ(~ζ)Gχ(~x; ~ζ)dS(~ζ), χ= ζ, η, ξ (2.24)

where (nζ , nη, nξ) are the three components of the unit normal on S(~ζ). The procedure follows
as before with G(~x, ~ζ) replaced by Gζ(~x, ~ζ), Gη(~x, ~ζ) and Gξ(~x, ~ζ); and σ by nζγ, nηγ and nξγ,
respectively.

In summary, the evaluation of the pressure p or normal gradient pn at N collocation points
on the BEM boundary S respectively due to N source or dipole panels on S is accomplished
in PFFT-BEM using O(N) memory and O(N logN) operations; more precisely O(N), O(v3N),
O(Ng logNg), O(N), O(v3N) respectively in the grid definition, projection, convolution,
interpolation and near-field correction PFFT steps, where for shallow water applications, Ng is
typically of the same order as N .

3. Validation/benchmark of PFFT-BEM direct solutions
We first investigate the accuracy and efficiency of the PFFT-BEM method by examining the
effects of the numerical element(grid) sizes, the efficiency of different preconditioners and the
numerical scalability of the PFFT-BEM method. From this, the optimal PFFT-BEM parameters
for shallow water acoustic simulations are obtained. Secondly, using these selected numerical
parameters, the capability of PFFT-BEM method in conducting 3D direct numerical simulation
for shallow water acoustic problems with large-scale (i.e. large domain size or higher sound
frequency) is demonstrated. Two canonical numerical benchmark problems are used here: the
Pekeris waveguide and the ASA wedge.

We have conducted other validations which are not shown here. These validations include
shallow water environment with an inhomogeneous sound profile (summer sound profile)
and bottom Gaussian Canyon, 3D scattering effects by traveling internal waves and 3D sound
scattering in the Mouth of the Columbia River (MCR). Good agreements between PFFT-BEM
results and available theoretical results/field measurements are obtained for all these cases. The
validations are shown in [57].

We begin by considering a Pekeris waveguide problem [3] with flat pressure release boundary
on the top and flat penetrable bottom. A unit source with frequency f=20Hz is located at depth
z=36m (from the top surface). The depth of the upper water column is H=100m. The bottom
layer has an infinite depth. The water column has a density of ρ1=1g/cm3 and a sound speed of
c1=1500m/s while the bottom layer has ρ2=1.8g/cm3 and c2=1800m/s. Different computational
domain and element(grid) sizes will be used and compared in order to demonstrate the accuracy
and efficiency of PFFT-BEM.
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(a) Dependence of accuracy on numerical parameters
Two important factors that determine the accuracy of the PFFT-BEM are investigated: the
interpolation from boundary elements to FFT grids and the discretization of FFT-grids and
boundary elements.

We first examine the behavior of the interpolation errors. In the far field, the interpolation error
is determined by the ratio between the FFT grid size h and the acoustic wavelength λ (i.e. h/λ). In
the present study, we chose h/λ to equal to ∆l/λ where ∆l is the size of the boundary elements.
This ensures that the interpolation error is of the same order as the discretization error in the
far field. In the near field, the interpolation error is a function of the polynomial order β of the
interpolation function H where β=1,2 denotes linear or quadratic polynomials [35] and d/h is the
critical distance separating the near and far fields.

We compare the pn on the top surface (pressure release boundary) and p on the bottom
surface (penetrable boundary) of the Pekeris waveguide obtained using PFFT-BEM with the
numerical solutions obtained by conventional BEM. The computational domain size of the
Pekeris waveguide is chosen as 1km× 1km× 100m with uniform meshing ∆l=h=λ/12. In
Fig.1(a), ε denotes the average difference between conventional BEM solutions and PFFT-BEM
solutions normalized by the conventional BEM solutions (e.g. for p, ε= 1

N

∑N
i |((pBEM )i −

(pPFFT )i)/(pBEM )i|) and is shown as a function of d/h. It is seen that for both β=1 and 2,
ε decays with increasing d/h, as expected. In addition, the convergence rate of the PFFT-BEM
solutions with increasing d/h are much faster when quadratic interpolation functions (β=2) are
used. To compare computational cost, PFFT-BEM computations with β=1,2 are applied to solve
the Pekris waveguide problem using different size of meshing. Using the numerical experiment
shown in Fig.1(b), we compare the operation count per iteration Nop for PFFT-BEM using
different β and it is seen that β=2 uses only slightly more CPU operations per iteration than
the β=1 scheme. An average relative error of ε∼ 1% (i.e. 0.1dB) is used as the standard to judge
the methods of interpolation and discretization in the present study. As a result, we have chosen
to use the PFFT-BEM parameters as β=2, d/h=3 for the remainder of the study.

Figure 1. (a) Normalized average interpolation errors ε between the PFFT-BEM and the conventional BEM on different

surfaces as a function of d/h. (b) Comparison of the operation count per iteration step of PFFT-BEM using linear (β=1)

and quadratic (β=2) interpolation as a function of N .

To examine the discretization error, we compare our numerical solution of the Pekeris
waveguide with the known analytical solution [3] in order to understand the convergence
characteristics of the PFFT-BEM numerical predictions. Here, we continue to use that d/h=3
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and β=2. The computational domain is 10km× 10km× 100m. The boundary element model
consists of uniform quadrilateral element with edge length of ∆l being equal to λ/8 or λ/12. The
numerical method computes the transmission loss (TL) along the range at depth of at z = 46m

and we compare it with the analytical results [3] as shown in Fig.2(a). TL is defined as the ratio
in decibels between the acoustics intensity I at a field point and the intensity I0 at 1-m distance
from the source, i.e.,

TL=−10log10
I

I0
(dB re 1 m) (3.1)

The numerical results compare well with the reference result which could validate our
numerical method.The numerical results shows a clear convergence to the theoretical solutions
when the ∆l is decreased from λ/8 to λ/12. The total computational time for the Pekeris
waveguide case with ∆l= λ/8 is 276.3s with 16 computational nodes.

We then compare the maximum and averaged errors between the analytical results pa and the
numerical values of pressure pn at z=46m. These error metrics are defined as

εaverage =
1

N

N∑
i

|((pn)i − (pa)i)/(p
a)i|; εmax = max{|((pn)i − (pa)i)/(p

a)i|; i= 1, . . . , N};

(3.2)
and are shown in Fig.2(b). The errors decrease approximately quadratically with element (and
grid) size ∆l/λ (i.e. decrease linearly with element area) as expected.

Figure 2. (a) Comparison of Tranmission Loss (TL) at z = 46m as a function of range between the theoretical predictions

[3] and the PFFT-BEM. (b) Normalized average εaverage and maximum εmax errors of p at z=46m obtained using the

PFFT-BEM as a function of λ/∆l. The slopes κ are approximately equals to -2 for both the maximum and averaged

errors.

(b) Determination of preconditioner
The computational cost in solving Eq.(2.10) is also largely impacted by the convergence rate of
the iterative solver. An efficient preconditioner can significantly increase the convergence rate of
the iterative solver. In this study, we use a so-called ‘Mesh-based Neighbor (MN)’ preconditioner
which has been shown to be useful in different kinds of boundary-value problems (e.g. Harris and
Chen [37]). The performance of the MN preconditioner is demonstrated by comparing three cases:
the case with Jacobian preconditioner (e.g. Balay et al. [38]), the case with MN preconditioner
including 2 and 4 neighboring meshes(Nm=2 and 4) and the case without a preconditioner. In
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Fig.3, the MN preconditioner is shown to improve the computational speed of the PFFT-BEM
code by nearly two orders of magnitude for the Pekeris waveguide problem.

Figure 3. GMRES residual as a function of iteration number for the Pekeris waveguide problem with a computational

domain of 25km× 15km× 100m. The results shown are obtained either without the use of a preconditioner or with either

the Jacobian or MN preconditioner.

(c) PFFT-BEM scalability on processor numbers and unknown numbers
To further increase the numerical capability, the PFFT-BEM is implemented using the PETSc
software package which allows for efficient highly scalable algorithms to be developed [38].
To demonstrate the scalability of the parallelized PFFT-BEM, we report the scaling results by
comparing the total execution time for a fixed problem as a function of the total processor count.
We perform this test using a finely meshed Pekeris waveguide case with a computational domain
of size 10km× 10km× 100m and element size ∆l=λ/16 which makes N=9.7× 107. We use β=2,
d/h=3 and Nm=2 in this case. The test is carried out using: P=[120, 240, 320, 480, 600, 800, 960]

where P is the number of processors that are used. As shown in Fig.4(a), we define a variable
called ’speed up’ which is defined as the CPU time for a run with P processor compared with
the run with P=120 case. Strong scaling is observed in Fig.4(a) with the computational speed up
being nearly linear with the processor count.

In Fig.4(b), we plot the operation count Nop of PFFT-BEM per iteration versus different N for
the Pekeris waveguide problem. We use β=2, d/h=3 and Nm=2 in this case. For comparison, the
computational effort of the conventional BEM is also plotted. It can be seen that the computational
effort is proportional to N for PFFT-BEM while that of conventional BEM is proportional to N2

and much larger than the computational effort of PFFT-BEM. We will further demonstrate the
effectiveness of the PFFT-BEM method and its capability in simulating realistic acoustic wave
propagation and scattering problems in 3D range dependent environments by examining three
canonical shallow water problems: the ASA wedge, a 3D underwater seamount problem, and a
3D rough ocean surface scattering problem. We have chosen to use the PFFT-BEM parameters as
β=2, d/h=3 andNm=2 in all these benchmark cases. Different grid(element) sizes are used to show
the convergence of the numerical results towards the theoretical results. All the computations
are performed on parallel HPC platforms with large number of computational nodes that each
contains 32 Intel Xeon processors clocked at 2.3GHz and 2GB memory.
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Figure 4. (a) CPU scaling for the Pekeris waveguide and fixed N= 7× 106, with increasing processors counts, using

PFFT-BEM. (b) Comparison of operation count per iteration step of PFFT-BEM method (slope κ∼ 1) and conventional

BEM (slope κ∼ 2) as a function of N .

(d) Benchmark solutions for the ASA wedge
An idealized wedge problem, shown in Fig.5(a), is used as the second benchmark problem. A
75Hz point source is located at (x, y, z)=(0,0,100)m. The slope of the wedge is π/36. The two-layer
computational domain size is 28km×4km×400m. The water column is homogeneous with sound
speed c1=1500m/s, density ρ1=1g/cm3, and no medium loss. The bottom is also homogeneous
with sound speed 1700m/s and medium attenuation α=0.5dB/λ. The bottom density is equal
to 1.5g/cm3, which corresponds to a soil bottom. The TL along the x−axis at z=30m and the
TL contour on the horizontal x− y plane at z=30m obtained from PFFT-BEM are shown in
Fig.6(a) and Fig.6(b). In Fig.6(a), the numerical result compares very well with the theoretical
result which demonstrates the efficiency and accuracy of the present method for higher frequency
cases. The computational resources required for this case is Nnode=20 and τc ≈6hrs. In addition,
the numerical convergence is also shown by comparing the results with ∆l=λ/8 and ∆l=λ/12
(which makes N=9.7× 109).

4. Model comparisons using PFFT-BEM direct simulations
We compare the predictions obtained by the direct 3D PFFT-BEM computations with existing
established models to assess their accuracy and performance in more complex/non-standard
environments. Two existing models are examined: one is the axisymmetric coupled mode model
for sound scattering by a 3D underwater seamount, and the other is the Kirchhoff approximation
and perturbation theory for sound scattering by 3D rough surfaces.

(a) Sound Propagation and Scattering Around a 3D Seamount
We conduct a 3D direct numerical study of sound propagation and scattering by an underwater
seamount environment. This is a classical three-dimensional problem in which the azimuthal
inhomogeneity and 3D effects are important and cannot be neglected. However, fully 3D direct
numerical computation requires large computational cost. For example, for a 3D seamount
problem with f=400Hz and domain size L∼O(1)km, BEM direct simulation requires O(108∼9)
CPU hours. On the other hand, the efficient PFFT-BEM requires only O(103) CPU hours for
the same problem. Theoretical model such as the coupled mode method can provide efficient
predictions of 3D sound field around an axisymmetric (conical) seamount [4]. Here, we apply
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Figure 5. (a) Geometry of the underwater ASA wedge, with slope angle π/36. A 75Hz point source is located at

(x, y, z)=(0,0,100)m. The wedge meets the free surface (z=0) at y=-2000m. (b) Geometry of the underwater seamount.

The water depth of the waveguide is 250m. A point source is located at 100m from the water surface and 800m from the

center of the seamount. The seamount has a height of 100m and a base with 350m radius.

Figure 6. (a) TL comparison along the x−axis at z=30m for ASA wedge between the theoretical predictions [33] and

the 3D direct simulations by PFFT. (b) TL obtained using PFFT-BEM on the x− y plane at z=30m. Source frequency

f=75Hz with upper water layer having ρ1=1g/cm3, c1=1500m/s, on top of a soil bottom with ρ2=1.5g/cm3, c2=1700m/s

and a medium attenuation α=0.5dB/λ.

3D PFFT-BEM direct computation for the 3D shallow water seamount scattering problem with
low-mid frequency (up to 400Hz). We investigate the importance of seamount geometry on the
acoustics scattering by the seamount. Through these studies, we assess the performance of the
axisymmetric coupled mode model. We also investigate the importance of sound frequency on
the acoustics scattering by the seamount.

(i) Validation against coupled mode method

We consider a seamount waveguide with a pressure-release free surface and a penetrable bottom.
The geometry is based on the study by Luo and Schmidt [4], as shown in Fig.5(b). The water
column depth H=250m with c1=1500m/s and ρ1=1g/cm3. A point source with unit strength
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is placed at (x, y, z)=(0,0,100)m. A conical seamount of height 100m is located on the bottom
at (x, y)=(800,0)m. The properties of the seamount is the same as the bottom with cb=1800m/s,
ρb=2g/cm3 and medium attenuation α=0.1dB/λ.

We use a two-layer PFFT-BEM computational domain of size 2.5km×2.5km×250m with
∆l=λ/8. A result using a coupled mode method [4] for this axisymmetric geometry is available
for comparison. Fig.7(a) shows the PFFT-BEM TL results along (y, z)=(0,100)m. The grid
independence with ∆l is established with a separate computation using ∆l=λ/12 and the TL
curves are graphically indistinguishable. The PFFT-BEM results compare well with those from
[4] with small discrepancies only in the very high loss locations. For comparison, TL along
(y, z)=(400,100)m is also plotted which show significant difference with transverse distance. The
contour plot, Fig.7(b), shows the complex 3D TL variations in the horizontal plane at the source
depth z=100m. This fairly low frequency case (f=40Hz) is computed withNnode=12 and τc ≈200s.

Figure 7. (a) TL comparison at different x−locations with (y, z)=(0,100)m for 3D underwater seamount with f=40Hz

between coupled mode method [4] (red line) and 3D direct simulations by PFFT-BEM with 8 elements per wavelength

(blue line) and 12 elements per wavelength (green line); TL at different x−locations with (y, z)=(400,100)m by PFFT-

BEM with 12 elements per wavelength (black line); the green and blue line overlap with each other in the figure. (b) TL

obtained using PFFT-BEM on the x− y plane at z=100m.

(ii) Effect of seamount cross section shapes

This numerical method can provide accurate and efficient solutions for 3D underwater bottom
features with specified geometries such as a conical seammounts [4]. To assess the applicability
of the axisymmetric coupled mode method [4], we study the acoustics scattering by underwater
seamounts with different cross section shapes. The geometry of the seamount cross sections is
considered to be ellipse. The aspect ratio of the ellipse is defined as a=Ry/Rx, as shown in Fig.9,
where Ry (Rx) is the radius in the y−direction (x−direction). The height of the seamount is
fixed at H0=100m. The source, fluid and bottom properties are the same as those in the conical
seamount. For all these cases, PFFT-BEM uses uniform quadrilateral elements with ∆l= λ/8.

We fix Ry=350m and vary a by changing Rx. TL in the x− y plane at z=100m is plotted and
compared in Fig.9. From these plots, we see that the TL contour changes significantly even with
a small variation in a. To quantify these differences, in Fig.8, we further compare the TL in the
horizontal plane at depth z=100m along the x-axis for different seamount cross section shapes.
We see that relatively small variations in a can create large changes (up to 10dB) in TL for both
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backscattering and blocking effects. We also fix Rx=R and vary the aspect ratio by changing Ry .
Similar results are obtained that small variations in a (due to changes inRy) can induce significant
differences in the 3D seamount scattering effects. Details are omitted here and can be found in [57].

Figure 8. TL at different x−locations with (y, z) = (0, 100m) for 3D underwater seamount obtained using 3D direct

simulations by PFFT-BEM. Here, f = 40Hz and the seamount cross sections are circle and ellipses with aspect ratio

a=0.875, 0.7 and 1.167. Ry is fixed at 350m.

(iii) Comparison between low- (40 Hz) and mid-frequency (400 Hz) scattering by
conical seamount

PFFT-BEM is applicable to general geometries and capable of higher frequencies using HPC. To
illustrate the latter, we consider the same conical geometry as in Fig.7 but for f=400Hz. Here, we
use ∆l=λ/12 which makes N=1.3× 1010. Fig.10(a) plots the TL along (y, z)=(0,100)m comparing
the f=400Hz vs. 40Hz cases. The backscattering effects from the seamount is clearly more
significant for f=400Hz with TL nearly 10dB smaller, for example, in front of the seamount, for the
higher-frequency scattering. Fig.10(b) plots the transverse TL variation along (x, z)=(800,100)m
(at the apex of the seamount). Comparing the two frequencies, the 3D scattering effects in the
azimuthal direction from the seamount is clearly stronger for the f=400Hz case. The TL contour
in the horizontal plane at the different depths are shown in Fig.11. These highlight the impact of
the strong 3D scattering on the TL at different depths. The computational resources required for
this f=400Hz case are Nnode=60 and τc ≈6hrs.

(b) 3D Sound Scattering by a Rough Surface
Accurate prediction of acoustics scattering from rough surfaces is of importance in modeling
the underwater reverberation and forward scattering problems. As an illustration, we consider
here the problem of scattering of a plane incident sound wave (pi) by a rough 3D ocean surface
on which the pressure release condition is imposed. The angle of the incident wave (scattering
wave ps) propagation direction from the mean rough surface is defined as the grazing angle
θg (scattering angle θs). This problem can be formulated in terms of the boundary integral
equation, as shown in [57]. Direct numerical solution of this problem is however challenging,
especially for small θg , since a large computational domain with the size L� λ/ sin θg needs
to be employed in order to accurately account for the far-field scattering effects [58], where
λ is the acoustic wavelength. To overcome this challenge, several approximate models have
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been proposed for the prediction of rough surface scattering statistics. These models include the
Kirchhoff approximation and the perturbation theories. Kirchhoff approximation is based on the
flat surface assumption that is valid for surfaces with a large radius of curvature. In the Kirchhoff
approximation, the shadowing and multi scattering effects are neglected. On the other hand, the
perturbation theories are developed in terms of the small parameter kh<< 1, where h is the rms
height of the rough surface and k is the acoustics wavenumber. The details of these approximate
models can be found in [57]. By combining these approximate models with the propagation
models (such as the parabolic equation (PE) method and ray tracing method), one can predict
the reverberation/scattering process by ocean surface and bottom efficiently. It is thus important
and necessary to quantify and assess the dependence of the validity of these approximate models
on the relevant physical parameters, by comparing with the direct numerical prediction. Most of
the existing studies on this are for the 2D problems (e.g. [59]). Shi et al. [60] examined the validity
of 3D Kirchhoff approximation for electromagnetic waves with incident waves close to the normal
direction of the surface.

We apply direct PFFT-BEM computations to quantify the validity regions of the Kirchhoff
approximation and the first- and second-order perturbation theories for 3D acoustics wave
scattering from a Gaussian rough surface. We follow [61] and apply the maximum 1-dB error
criterion to define the validity region of the approximate theoretical models:

|SSM − SSN | ≤ 1dB (4.1)

where the subscripts (M ) and (N ) represent the quantities predicted by the approximate model
and the numerical PFFT-BEM computation, and SS denotes the bistatic scattering strength [59]

SS = 10 log10[σ(θg, θs)] (4.2)

with the scattering cross section σ(θg, θs) defined as

σ=
< |ps(θg, θs)|2 > r2

E3
. (4.3)

In the above, <> indicates an ensemble average, ps represents the scatted wave pressure at the
far field range r, and E3 is the sound flux through the surface by the incident wave field

E3 =

∫∫
S
pi(~ui · ~n)dS (4.4)

where ~n is the surface normal and ~ui is the incident particle velocity on the scattering surface S.
A wide range of grazing angle (θg = 2.5◦ ∼ 80◦) and random surface roughness (0.1≤ kh≤ 3.0)
are considered. The Monte Carlo technique is used to obtain the acoustics scattering statistics
with 50 realizations of the Gaussian rough surface. The high efficiency of the PFFT-BEM enables
us to perform the requisite direct computations and obtain the assessment of the validity of the
approximate models for the 3D problems. In the case of θg = 5◦, for example, the direct BEM
simulation requires O(108) CPU hours while the PFFT-BEM simulation requires only O(103) CPU
hours.

(i) 3D effects on the rough surface scattering

Fig.12 shows a sample validity region of the 3D first-order perturbation theory σ(2) in the plane
of kl vs. kh for θg=45◦, where l is the correlation length of the rough surface. (We follow [61]
and [59] to use σ(2) and σ(4) for the results by the first- and second-order perturbation theories).
To illustrate how the prediction error of the first-order perturbation theory behaves with varying
kl and kh, in Fig.12, we compare the theoretical solution of SS over a wide range of scattering
angles by the first-order perturbation theory with the benchmark solution of the direct PFFT-
BEM computation for four different combinations of kl and kh. The comparison indicates that
the prediction error of the first-order perturbation theory outside the validity region (defined by
(4.1)) generally increases as the distance from the boundary of the validity region becomes larger
((b)→ (d) in Fig.12).
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In Fig.13, we compare the validity regions of the 3D first-order perturbation theory (σ(2)), the
3D second-order perturbation theory (σ(4)) and the 3D Kirchhoff approximation (KA) for θg=45◦.
As expected, the validity region of the second-order perturbation theory becomes larger (i.e. for
larger values of kl and kh) comparing to that of the first-order theory. In general, the Kirchhoff
approximation is valid at large values of klwhile the first- and second-order perturbation theories
are valid at small values of kl. To see how the 3D surface influences the validity of these
approximate models, we also plot the corresponding validity regions in the case of 2D surface
from the existing study [59] in Fig.13. In the 3D case, the validity regions of the first- and second-
order perturbation theories and the Kirchhoff approximation are all shifted to the larger kl regions
comparing to the 2D case. Owing to stronger shadowing effects in the 3D case, the validity region
of the Kirchhoff approximation decreases from the 2D case. To further assist in understanding
the shallowing effect, we compare in Fig.13 the predictions of SS as a function of θs by the
Kirchhoff approximation with the benchmark solution by the direct PFFT-BEM computations
in both 2D and 3D cases with kh=1.03 and kl=10.0. The error in the prediction of SS by the
Kirchhoff approximation is more significant in 3D (Fig.13(b)) than in 2D (Fig.13(a)), especially
in the backscattering direction. This is consistent with the finding in [58] that the Kirchhoff
approximation leads to inaccurate modeling of surface shadowing effects.

(ii) Grazing angle effects on the rough surface scattering

To illustrate the effect of grazing angle, we compare the backscattering strength (defined as the
scattering strength at θs = π − θg) calculated using the second-order perturbation theory, the
Kirchhoff approximation and the direct PFFT-BEM computation. Fig.14 shows the comparison
with grazing angle down to 2.5◦. (At θg=2.5◦, the computation uses N=4.1× 107 with ∆l=λ/8).
We also plot the result from Lambert’s law in Fig.14 for comparison. Lambert’s law is often used
to estimate the bottom scattering strength from very rough ocean bottoms. A good review of
Lambert’s law can be found in [3]. As shown in Fig.14, the second-order perturbation theory
provides a reasonably accurate prediction for incident grazing angle θg & 20◦) while the Kirchhoff
approximation remains valid for θg & 60◦). Lambert’s law generally gives a good prediction at
small grazing angles. For rougher ocean surfaces, an accurate prediction by Lambert’s law can be
obtained for θg up to 30◦, as shown in Fig.14(b). The comparisons in Fig.14 indicate that for 3D
rough surfaces with large kl and moderate kh, direct numerical simulation is required to obtain
an accurate backscattering prediction, especially for low grazing angles.

5. Conclusion
We develop an efficient multi-layer boundary element method (BEM) for direct 3D simulations
of large-scale shallow water acoustic problems. The medium inhomogeneity is accounted for by
a coupled multi-layer BEM model. A main development is the use of Pre-corrected Fast Fourier
Transform (PFFT) approach to reduce the computational cost fromO(N2∼3) toO(N logN) where
N is the number of unknowns on the BEM computational domain boundary. PFFT-BEM is
particularly suitable for parallelization, and the method is implemented on massively parallel
high-performance computing (HPC) platforms achieving near-linear scaling with number of
processors. PFFT-BEM allows us to perform routine multi-layer 3D direct simulations of low-mid
frequency acoustics over kilometer ranges.

PFFT-BEM has been validated extensively against existing theoretical and computational
results with excellent comparisons. We document here, as examples, comparisons to theoretical
solutions for the Pekeris waveguide and the Acoustical Society of America (ASA) wedge. The
computational efficacy of direct large-scale 3D PFFT-BEM solutions allows us to evaluate the
accuracy and range of validity of established approximate/specialized models. We present here
assessment of two canonical models: axisymmetric coupled mode model for 3D seamount; and
Kirchhoff approximation and perturbation theory for 3D rough surface scattering. For the 3D
seamount problem, we characterize and quantify the effects of seamount geometry and sound
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source frequencies on the 3D sound scattering field. We find that the acoustics scattering has a
strong dependence on seamount height and cross section shape, and source frequency. For 3D
rough ocean surface scattering, we quantify the ranges of validity of the approximation models
in terms of 3D scattering effects, surface roughness and correlation length, and incidence angle of
the sound source. We show how the Kirchhoff approximation and the perturbation theory become
insufficiently accurate for 3D rough surface scattering with low grazing angles.
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Figure 9. Seamount cross section shape at bottom (left) and TL at xy plane (z=100m) obtained using 3D direct simulations

by PFFT-BEM (right). Here, f = 40Hz and seamount cross sections are (a) circle, (b) ellipse with a=0.875, (c) ellipse

with a=0.7 and (d) ellipse with a=1.167. Ry is fixed at 350m.
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Figure 10. (a) TL at different x−locations with (y, z)=(0,100)m and (b) TL at different y−locations with

(x, z)=(800,100)m for the 3D underwater conical seamount obtained by PFFT-BEM for f=400Hz and 40Hz.

Figure 11. Contour of TL on the x− y plane at (a) z=100m, (b) z=200m and (c) z=245m for the 3D underwater conical

seamount obtained using PFFT-BEM. (f=400Hz)

Figure 12. Left column: 3D validity region of σ(2) (i.e. under the solid line) of the first-order perturbation theory for

θg=45◦, obtained by comparison with the direct PFFT-BEM computation. Right column: Comparison of the SS obtained

by the direct PFFT-BEM computation (solid line) and the first-order perturbation theory (dashed line) with (kl, kh)= (2.0,

0.3) (a), (2.0, 0.55) (b), (2.0, 0.85) (c), and (2.0, 1.3) (d). The locations of (a), (b), (c) and (d) in the validity region are also

marked. In PFFT-BEM computations, the domain size L=50λ.
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Figure 13. Left column: Comparisons of 3D validity regions (red lines) of the first-order (σ(2)) and second-order (σ(4))

perturbation theories and Kirchhoff approximation (KA) with the corresponding 2D validity regions (black lines) from [59]

for θg=45◦. Right column: Comparison of SS obtained by the Kirchhoff approximation (dashed line) and direct PFFT-BEM

computation (solid line) for 2D (a) and 3D (b) surfaces with kh= 1.03 and kl= 10.0.

Figure 14. (a) Comparisons of SS in the backscattering direction as a function of grazing angle θg obtained by the

second-order perturbation theory (dashed line), Lambert law (dotted line) and direct PFFT-BEM computation (solid line)

for kl=2.6 and kh=0.65. (b) Comparisons of SS in the backscattering direction as a function of grazing angle θg obtained

by the Kirchhoff approximation (dashed line), Lambert law (dotted line) and direct PFFT-BEM computation (solid line) for

kl=15 and kh=1.33.




