
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Towards Performance Portable Assembly
Tools for Multi-Fluid Plasma Simulations

Roger Pawlowski*, Matt Bettencourt**, Eric Cyr*, Sean Miller*, Edward Phillips**,
Eric Phipps*, John Shadid* and Christian Trott*

*Center for Computing Research, Sandia National Laboratories
**Radiation and Electrical Sciences Center, Sandia National Laboratories

SIAM Conference on Parallel Processing for Scientific Computing
March 7-10, 2018 • Tokyo, Japan

SAND2018-2037C

Outline

§ Introduction
§ Requirements
§ Example Physics

§ Components Description
§ Kokkos, Sacado, Phalanx, Panzer

§ Two Design Explorations
§ Hierarchic Parallelism
§ Device DAG: Kernel collapse

§ Conclusions

SNL’s Mission Requires a Significant
Range of Advanced Simulation Capabilities

3

DOE/NNSA and many DOE/SC Mission Drivers are Characterized by:

§ Complex strongly coupled physical mechanisms (multiphysics)
Ø Strongly coupled nonlinear solvers (Newton methods)
Ø Physics-compatible discretizations

§ Large range of interacting time-scales (Multiple-time-scales)
Ø Implicitness (fully-Implicit or implicit/explicit [IMEX])

§ Complex geometries, multiple length-scales, high-resolution
Ø Unstructured mesh FE (HEX and TET)
Ø Scalable solution (Krylov methods, physics-based prec., AMG)

§ High consequence decisions informed by modeling / simulation
Ø Beyond forward simulation (sensitivities, UQ, error est., design opt.)

The Z-Machine uses a 12 fold azimuthal symmetry
“double post-hole convolute” to combine current
from four anode-cathode gaps into one—a
fundamentally 3D system that is difficult to model

Convolute made of stainless (304) with gold coating on cathode parts

Hardware inside convolute varies
with the experiment, and can be
quite complex

Cathode

Anode

Most experiments on Z use
the same convolute design

Z Convolute Power-feed

⇢u⇢ E E B⇢

MHD
Duct
Flows µ ⇢ ⌘ B0�G0

1.0E%03'

1.5E%03'

2.0E%03'

1.E%02' 1.E%01' 1.E+00'

Q
oI
'

h'='Ly'/'Ny'

QoI:'Induced'Magne=c'Energy''

Drekar'QoI:'Ind.'M.E.'

Exact'QoI:'Ind.'M.E.'

Drekar'QoI:'Ind.'M.E.'+'Adj.'Err.'Est.'

Adjoint-enabled Sensitivities, UQ surrogates, Error-estimates

Multi-fluid 5-Moment Plasma System Model ⇢u⇢ E E B⇢

Explicit
Hydrodynamics

Implicit EM, EM sources, sources
for species interactions

MU̇ + F +G = 0IMEX:
Time
Integration

(⇢a, ⇢aua, ✏a)

!"#Δ% < 1

(# <
Δ)

Δ%

IMEX splitting for CG
*+,# + .# ⋅ 0,# = −,#0 ⋅ .#

*+.# + .# ⋅ 0.# = −.#0 ⋅ .# −
1

,#
03# +

1

,#
0 ⋅ 4# 0.# + 0.#5 −

2

3
80 ⋅ .#

*+3# + .# ⋅ 03# = −93# 0 ⋅ .# + 0 ⋅ 9 − 1 :#0;# − <
=

9 − 1 >#=,#
?# + ?=

(3 ;# − ;= − ?= .# − .=
A
)

*+C − D
A0×F = −

1

GH
<
#

I#
?#

,#.#

*+F + 0×C = 0

+
I#
?#

C +
I#
?#

.#×F −<
=

>#= (.# − .=)

(# <
Δ)

Δ%

KL# <
Δ)

Δ%
M# <

Δ)A

Δ%

!N#Δ% < 1 >#=Δ% < 1

(# <
Δ)

Δ%
O# <

Δ)A

Δ%
>#=Δ% < 1

!"#Δ% < 1
D <

Δ)

Δ%

For IMEX-CG each operator can be moved between
implicit and explicit evaluation depending on the
explicit stability limits.

Each operator is associated with one or more
plasma scales, which are grouped by color
representing their approximate explicit stability limits.

PDE Tools Design Considerations
§ Sensitivities are critical!

§ Required for: Implicit and IMEX, steady-state and transient parametric sensitivity analysis,
Optimization and Stability/Bifurcation analysis

§ Do not burden analysts/physics experts with analysis algorithm requirements
§ Combinatorial explosion of sensitivity requirements

§ Develop PDE discretization tools for next generation architectures
§ Performance portability: CPU, KNL, GPU
§ Based on “Type-2” stack in Trilinos

§ Handle complexity in multiphysics PDE systems:
§ Complex interdependent coupled physics
§ Multiple proposed mathematical models
§ Different numerical formulations (e.g. space-time discretizations)
§ Supporting multiplicity in models and solution techniques often leads to complex code with

complicated logic and fragile software designs

§ No Framework!!! A component-based design:
§ Simple tools with minimal dependencies
§ Risk mitigation: buy in at different levels

§ No Symbolics/DSL (definition is fuzzy)
§ Legacy code integration path, structured transition
§ Raw C++, access to data structures

6

Trilinos Discretization Tools Overview
§ MPI Related

§ Panzer (Multiphysics Assembly and Utilities)
§ DOF Manager: Global Indexing for mixed

bases, mixed equations
– Connection Manager: Mesh DB

abstraction
§ Workset Builder: Mesh over-

decomposition for AMT
§ Linear Algebra Builder:

Epetra/Tpetra/Thyra
§ Disc-FE: Multiphysics assembly, Mixed Eq

Sets, Mixed Bases, BCs, Compatible
discretizations, Projections

§ Local Node
§ Intrepid2: FE Basis Library
§ Shards: Cell/Element Topology
§ Phalanx: DAG Assembly: flexibility/complexity
§ Sacado: Automatic differentiation scalar types
§ Kokkos: Performance portability

7
github.com/trilinos/Trilinos

Panzer

Phalanx

Sacado

Kokkos

Performance Portability: Kokkos
§ Performance Portable Thread-Parallel Programming Model in C++
§ Multidimensional Array
§ Compiletime polymorphic memory layouts: cached vs coalesced memory
§ Asynchronous Many Tasking (Experimental)

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos

Multi-Core Many-Core APU CPU+GPU

LAMMPS AlbanyTrilinos

performance portability for C++ applications

Drekar EMPIRE …

https://github.com/kokkos/kokkos

Kokkos Layout Polymorphism for
Performant Memory Accesses

• GPU
– Each thread accesses strided range

of entries
– Thread group can read all values in

one memory transaction
– Ensures coalesced accesses

(consecutive threads access
consecutive entries)

Layout Right
(Row-wise)

{CPU Thread 1

{
{CPU Thread 2

{CPU Thread 3

CPU Thread 0

Layout Left
(Column-wise)

{GPU Thread-block 1

{
{GPU Thread-block 2

{GPU Thread-block 3

GPU Thread-block 0

(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)
(1,3)
(2,0)
(2,1)
(2,2)
(2,3)
(3,0)
(3,1)
(3,2)
(3,3)

• CPU/MIC
– Each thread accesses contiguous range

of entries
– Ensures neighboring values are in

cache

Sacado: Template-based
Automatic Differentiation

• Implement equations templated on the
scalar type

• Libraries provide new scalar types that
overload the math operators to
propagate embedded quantities

• Expression templates for performance
• Derivatives: FAD, RAD
• Hessians
• Stochastic Galerkin: PCE
• Multipoint: Ensemble (Stokhos)

• Analytic Values (NO FD involved)!

double Fad<double>

template <typename ScalarT>
void computeF(ScalarT* x, ScalarT* f)
{

f[0] = 2.0 * x[0] + x[1] * x[1];
f[1] = x[0] * x[0] * x[0] + sin(x[1]);

}

DFad<double>* x;
DFad<double>* dfdx;
…
computeF(x,dfdx);

double* x;
double* f;
…
computeF(x,f);

Example Scalar Types
(Trilinos Stokhos and Sacado: E. Phipps)

Scalar Types
double• Residual

• Jacobian

• Hessian

• Parameter Sensitivities

• Jv

Evaluation Types

DFad<double>

DFad<double>

1. All evaluation types are compiled into single library and managed at
runtime from a non-template base class via a template manager.

2. Not tied to double (can do arbitrary precision)
3. Can mix multiple scalar types in any evaluation type.
4. Can specialize any node: Write analytic derivatives for performance!

DFad<double>

DFad< SFad<double,N> >

• Achieved by specializing Kokkos::View data structure
for Sacado scalar types
– Rank-r Kokkos::View internally stored as a rank-(r+1) array of

doubles
– Kokkos layout applied to internal rank-(r+1) array

Layout Right
(Plane-Row-Column)

{CPU Thread 1

{
{CPU Thread 2

{CPU Thread 3

CPU Thread 0

val

{dx

Layout Left
(Column-Row-Plane)

{GPU Thread-block 1

{
{GPU Thread-block 2

{GPU Thread-block 3

GPU Thread-block 0

(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)
(1,3)
(2,0)
(2,1)
(2,2)
(2,3)
(3,0)
(3,1)
(3,2)
(3,3)

val

{dx

Want good AD performance with no
modifications to Kokkos kernels

AD Performance Portability

Architecture Measured
Bandwidth

(GB/s)

Expected
Throughput
(GFLOP/s)

Measured
Throughput
(GFLOP/s)

No View
Specialization

(GFLOP/s)

Haswell 47.4 22.4 24.3 23.1

MIC 147 69.4 69.4 43.2

GPU 150 70.8 81.2 35.1

• m = 1e6, n=100, p = 8 (derivative dimension)

• Expected Throughput ~ Measured Bandwidth x (4p+2) FLOPS / 8(p+1) Bytes

• SFad<double,p> AD data type

Kokkos::View<Sacado::Fad::SFad<double,p>**> A("A",m,n,p+1); // Create rank-2 array with m rows and n columns
Kokkos::View<Sacado::Fad::SFad<double,p>* > b("b",n,p+1); // Create rank-1 array with n rows
Kokkos::View<Sacado::Fad::SFad<double,p>* > c("c",m,p+1); // Create rank-1 array with m rows

// ...

run_mat_vec(A,b,c);

Phalanx: Lightweight
DAG-based Expression Evaluation

§ Decompose a complex model into a graph
of simple kernels (functors)

§ A node in the graph evaluates one or more
temporary fields

§ Runtime DAG construction of graph

§ Supports rapid development, separation of
concerns and extensibility.

§ Achieves flexible multiphysics assembly

§ Leverages Sacado scalar types for non-
invasive Jacobian, Hessian, …

DAG-Based Assembly à flexibility

Workset Builder: Data Parallelism

MPI Distributed
Mesh

Hardware Node
(Single MPI Process)

2

6664

x0

x1
...

xN

3

7775

§ Batch of elements
§ Same operations, field dimensions,

topology

§ Fixed memory allocation for DAG

§ Multiple worksets per hardware
node

§ Controls memory for temporaries
(GPU!)

§ Future: Workset level AMT

What does a Node look like?
template<typename EvalT, typename Traits>
IntegrateDiffusionTerm<EvalT,Traits>::
IntegrateDiffusionTerm(const std::string& flux_name, const Teuchos::RCP<PHX::DataLayout>& flux_layout,

const std::string& residual_name, const Teuchos::RCP<PHX::DataLayout>& residual_layout) :
flux(flux_name,flux_layout), residual(residual_name,residual_layout)

{
this->addContributedField(residual);
this->addDependentField(flux);
this->setName("IntegrateDiffusionTerm: "+residual_name);

}

template<typename EvalT, typename Traits>
void IntegrateDiffusionTerm<EvalT,Traits>::evaluateFields(typename Traits::EvalData workset)
{
grad_basis = workset.grad_basis_real_;
weights = workset.weights_;
cell_measure = workset.det_jac_;
Kokkos::parallel_for(Kokkos::RangePolicy<PHX::exec_space>(0,workset.num_cells_),*this);

}

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void IntegrateDiffusionTerm<EvalT,Traits>::operator()(const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const
{
const int cell = team.league_rank();
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,0,grad_basis.extent(2)), KOKKOS_LAMBDA (const int& basis) {
for (int qp = 0; qp < static_cast<int>(grad_basis.extent(1)); ++qp)
for (int dim = 0; dim < static_cast<int>(grad_basis.extent(3)); ++dim)
residual(cell,basis) += - grad_basis(cell,qp,basis,dim) * flux(cell,qp,dim) * weights(qp) * cell_measure(cell,qp);

});
}

16

Declare DAG Dependencies

Bind worksets and launch kernel

Evaluate values

Preliminary Results for Jacobian
Assembly

§ 2016 Milestone to
demonstrate the
“ecosystem”

§ 16K elements
§ Flat/Single level

data parallelism
(loop over cells)

§ Basic MPI (no
thread spec.)

Assembly Runtimes by Kernel

CFD Kernel is the high tent pole

KNL

K20x

CFD Node

Kokkos::View<ScalarT****, Layout, ExecSpace> wgb;
Kokkos::View<ScalarT***, Layout, ExecSpace> flux;
Kokkos::View<ScalarT***, Layout, ExecSpace> wbs;
Kokkos::View<ScalarT**, Layout, ExecSpace> src;
Kokkos::View<ScalarT**, Layout, ExecSpace> residual;
ScalarT coeff;

for (int cell=0; cell < num_cell; ++cell) {
for (int basis=0; basis<num_basis; ++basis) {
ScalarT value(0),value2(0);
for (int qp=0; qp<num_points; ++qp) {
for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);

value2 += src(cell,qp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeff*(value+value2);

}
}

Z

e
c

⇣
~

f(x) · r'i(x) + s(x)'i(x)
⌘
dx

Flat Parallelism (1-level)
Kokkos-ified CFD Node

Kokkos::View<ScalarT****, Layout, ExecSpace> wgb;
Kokkos::View<ScalarT***, Layout, ExecSpace> flux;
Kokkos::View<ScalarT***, Layout, ExecSpace> wbs;
Kokkos::View<ScalarT**, Layout, ExecSpace> src;
Kokkos::View<ScalarT**, Layout, ExecSpace> residual;
ScalarT coeff;

typedef Kokkos::RangePolicy<ExecSpace> Policy;

Kokkos::parallel_for(Policy(0,num_cell), KOKKOS_LAMBDA(const int cell)
{
for (int basis=0; basis<num_basis; ++basis) {
ScalarT value(0),value2(0);
for (int qp=0; qp<num_points; ++qp) {

for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);

value2 += src(cell,qp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeff*(value+value2);

}
});

Z

e
c

⇣
~

f(x) · r'i(x) + s(x)'i(x)
⌘
dx

Single CFD Kernel
GPU Performance Assessment

§ Single level parallelism is
insufficient

§ Does not expose enough
parallelism

Single CFD Kernel
GPU Performance Assessment

§ Single level parallelism is
insufficient

§ Does not expose enough
parallelism

§ 3-level hierarchical
parallelism shows
significant improvement

§ Hand coded sensitivity
array outside libraries

§ Key is to parallelize over
FAD derivative
dimension

Kernel with Hierarchical DFad
Sacado::createGlobalMemoryPool(ExecSpace(), mem_pool_size);

typedef Kokkos::TeamPolicy<ExecSpace> Policy;
const int vector_size = is_cuda ? 32 : 1;
const int team_size = is_cuda ? 256 / vector_size : 1;

Kokkos::parallel_for(
Policy(num_cell,team_size,vector_size),
KOKKOS_LAMBDA(const typename Policy::member_type& team)
{
const size_t cell = team.league_rank();
const int team_index = team.team_rank();

for (int basis=team_index; basis<num_basis; basis+=team_size) {
ScalarT value(0),value2(0);
for (int qp=0; qp<num_points; ++qp) {

for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);

value2 += src(cell,qp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeff*(value+value2);

}
});

Sacado::destroyGlobalMemoryPool(ExecSpace());

Derivative Array Parallelization in
Sacado

1E-6

1E-5

1E-4

200 800 1400 2000 2600

Ti
m
e	
pe

r	C
el
l	(
se
c)

Cells	per	Workset

NVIDIA	K20x	GPU
(p	=	50)

Flat	SFad
Flat	SLFad
Flat	DFad
Hier.	SFad
Hier.	SLFad
Hier.	DFad

Test Problem DAG

§ For Multiple equations, a new set of nodes
(repeated unit) are added

§ Could improve performance by adding grouping all
equations into single set of evaluators

25

Gather

Scatter

ProjGradToQP

IntDiffTerm IntSrcTerm

ConstantZeroContribField

Repeated Unit

Number of Equations: Jacobian,
CUDA P100

26

Node Comparison, Jacobian

27

CUDA, P100 Broadwell, 32 cores, 2 hyperthreads/core

Equation Set Scaling

28

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

W
or

k
Ra

tio

Workset Size

P100 Broadwell Work Ratio Bound

R
un

tim
e

R
at

io

Host vs Device DAG
§ Traditional Phalanx use is “Host DAG”

§ Each node in DAG launches its own kokkos
kernel via parallel_for from host

§ New “Device DAG” capability runs all the
Kernels on device from a single parallel_for
launch
§ Goal: keep values in cache for next functor

evaluation

29

§ Device DAG complications:
§ Need a virtual function call to run

through a runtime generated list of
functors

§ Copy all functors to device and
instantiate

§ Requires relocatable device code for
CUDA

Host vs Device DAG Performance, 16 Equations

30

OpenMP, Broadwell,
OMP_NUM_THREADS=36 CUDA, P100

Residual
Jacobian

Host
Device

Host vs Device DAG Performance, 1 Equation

31

OpenMP, Broadwell,
OMP_NUM_THREADS=36 CUDA, P100

Residual
Jacobian

Host
Device

Conclusions
§ A number of tools in Trilinos are under development for supporting finite

element assembly
§ Risk mitigation: can “buy in” a various levels
§ At a minimum components provide guidance

§ Performance portability is not the same as being able to run on an architecture
§ Restrictions from GPUs strongly impacts the code base

§ Converting code to be performance portable is application specific. Kokkos
team experience:
§ 50% can do simple flat parallelism
§ 30 % need hierarchic
§ 20% need some customization – new algorithms

§ Templated scalar types and DAG-assembly allow for complex multiphysics
simulations in a manageable code base

Extra Slides

33

§ IntegrateDiffusionTerm

§ ProjectGradientToQP

Profiler (500 Element workset, ts=8, vs=32)

34

§ Gather

§ Scatter (includes filling the “free” residual too)

Profiler

35

1 Thread/Task 8 Threads/Task 16 Threads/Task
Jacobian 3.5 4.5 4.9
Residual 3.4 3.4 3.5

Compatible Discretization

⇢u⇢ E E B

More Parallelism: Hybrid
Task+Data Parallel Analysis

Theoretical speed up for volume assembly DAG (Ignores scheduling overhead)

SFE Initial Scaling Studies for Cray XK7 AND BG/Q.
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5]
(with Paul Lin)

~20x

Titan: 128K

BG/Q: 256K

1.8 Billion max unknowns
14K unknowns per core (Titan)

1.8 Billion max unknowns
4096x increase in prb. size

[Preliminary strong scaling of Krylov linear solver + preconditioner
(ML: FC – AMG), Tuminaro, Hu, Siefert, Gee et. al.]

1.8 Billion unknowns

(DOE/ORNL Titan Cray XK7: Joule Metric)

Largest fully-coupled implicit solves demonstrated to date:
• MHD (steady): 10B DoF, 1.25B elem, on 128K cores
• CFD (Transient): 40B DoF, 10.0B elem, on 128K cores
• Poisson sub-block: 3.2B DoF, 3.2B elem, on 1.6M cores

u P B T

Difficulties

§ Production codes don’t always fit the “count/allocate/fill” paradigm.
§ Compile-time rank (fixed with Kokkos::DynRankView)
§ Runtime decisions and lazy instantiation can be problematic
§ Passing the FAD dimension for temporaries, view factory for AD dimensions

§ Portability and Performance are not the same

§ No raw references for AD scalar types (use return_type)

§ Hiding the derivative array parallelization introduces requirements on
developers
§ Templated scalar temporaries
§ Use of a memory pool

§ Loss of bracket operator

Multi-fluid plasma model

§ Continuity equation:

§ Momentum equation:

§ Energy equation:

§ Ampere’s Law:

§ Faraday’s Law:

!"#$ + & ⋅ (#$)$) = ,$

!" #$)$ + & ⋅ #$)$ ⊗)$ + .$ = /$
0$

#$ 1 +)$×3 + 4$ +)$,$

!"5$ + & ⋅)$ ⋅ 5$6 + .$ + 7$ = /$
0$

#$)$ ⋅ 1 + 8$ +)$ ⋅ 4$ +
1
2)$

;,$

!"1 − =;&×3 = − 1
5>
?
$

/$
0$

#$)$

!"3 + &×1 = 0

39

Fluid
Electromagnetic
Inter-fluid

Each species A is represented by a separate
density #, momentum #), and isotropic energy 5.

Spatial operators are discretized using a finite
element method.

IMEX time integration

§ IMEX gives a framework for splitting the model up into implicit and explicit terms:
§ Explicit for slow, non-stiff terms
§ Implicit for fast, stiff terms

§ Objective: Combine the advantages of implicit and explicit solvers.
§ Take advantage of expensive implicit solver to overstep fast scales, and explicit solver to

resolve slow scales.

!"# = % #, ' +) #, '

#(+) = #- + Δ' /
012

03+
45+0% #(0), '- + 7̂0Δ' + Δ' /

012

08+
5+0) #(0), '- + 70Δ'

#-9: = #- + Δ' /
+12

+3;
<=+% #(+), '- + 7̂+Δ' + Δ' /

+12

+8;
=+) #(+), '- + 7+Δ'

c A
bt

Implicit tableau

ĉ Â

b̂t

Explicit tableau

Compatible discretization for EM
§ A physics compatible finite element discretization is used to enforce the divergence

constraints for the electric and magnetic fields.
§ Fluids are represented by an HGrad (node) basis ! ∈ #$.
§ The electric field is represented by an HCurl (edge) vector basis % ∈ &$×.
§ The magnetic field is represented by an HDiv (face) vector basis (∈ &$⋅.
§ Compatibility is defined by the discrete preservation of the De Rham Complex:

§ For Faraday’s law, we choose a basis for the electric field such that its curl is fully
represented by the basis used by the magnetic field.

§ Since the curl of the electric field is ‘globally continuous’ w.r.t. a divergence operator, the
divergence of that curl is zero over the domain:

§ Result: The curl operator does not add divergence errors to the magnetic field

* ⋅ + = 0./+ + *×1 = 0

* ⋅ ./+ + *×1 = ./ * ⋅ + + * ⋅ *×1 = ./ * ⋅ + +2
3
43* ⋅ *×5$×

3 = ./ * ⋅ + = 0
0

*6$ ∈ &$× *×5$× ∈ &$⋅ * ⋅ 5$⋅ ∈ #78

41

§ Goal: Solve plasma-coupled Maxwell’s equations and satisfy a divergence constraint:

§ In the strong, non-discretized form:

§ In the weak form: Choose a basis that supports the divergence constraint as HCurl does not
support the divergence operation:

§ Assumes that continuity equation is weakly satisfied:

Satisfying Gauss’ laws in plasmas

!"# − %&'×) = − 1
,-
. ' ⋅ # = 1

,-
01!"01 + ' ⋅ . = 0

4
5
!"# − %&'×) +

1
,-
. ⋅ '67 89 = 4

5
!"# ⋅ '67 +

1
,-
' ⋅ . 67 89 + %& 4

5
) ⋅ '×'6789

' ⋅ !"# +
1
,-
. − %&'×) = !"' ⋅ # +

1
,-
' ⋅ . = !" ' ⋅ # − 1

,-
01 = 0

= 4
5
!" # ⋅ '67 −

1
,-
01 67 89 = 0

0

4
5
!"01 − ' ⋅ . 67 89 = 4

5
!"0167 + . ⋅ '67 89 = 0 → 4

5
!"0167 89 = −4

5
. ⋅ '67 89

42

§ Discontinuous Galerkin FEM does not assume a globally continuous test function:

§ Consistency: Fluxes must be single valued on interfaces between elements.
§ Numerical Flux: Solution to Riemann problem to generate consistent flux on interfaces.

Discontinuous Galerkin method

!
"
#$%& '(+ !

"
* ⋅ , '(− !

"
#. '(= 0

Weak form

43

Break into elements K ∈ Ω with discontinuous element test function #45

6
7

!
5
#47$%& '(+ !

5
#47* ⋅ ,'(− !

5
#47. '(= 0

!
5
#47$%& '(+ 8

95
#47:; ⋅ , '< − !

5
, ⋅ *#47'(− !

5
#47. '(= 0

Apply divergence theorem to flux integral

