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SNL’s Mission Requires a Significant 
Range of Advanced Simulation Capabilities
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DOE/NNSA and many DOE/SC Mission Drivers are Characterized by:

§ Complex strongly coupled physical mechanisms (multiphysics)
Ø Strongly coupled nonlinear solvers (Newton methods)
Ø Physics-compatible discretizations

§ Large range of interacting time-scales  (Multiple-time-scales)
Ø Implicitness (fully-Implicit or implicit/explicit [IMEX])

§ Complex geometries, multiple length-scales, high-resolution
Ø Unstructured mesh FE (HEX and TET)
Ø Scalable solution (Krylov methods, physics-based prec., AMG)

§ High consequence decisions informed by modeling / simulation
Ø Beyond forward simulation (sensitivities, UQ, error est., design opt.)

The Z-Machine uses a 12 fold azimuthal symmetry 
“double post-hole convolute” to combine current 
from four anode-cathode gaps into one—a 
fundamentally 3D system that is difficult to model 

Convolute made of stainless (304) with gold coating on cathode parts 

Hardware inside convolute varies 
with the experiment, and can be 
quite complex 

Cathode 

Anode 

Most experiments on Z use 
the same convolute design 

Z Convolute Power-feed 
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Multi-fluid 5-Moment Plasma System Model ⇢u⇢ E E B⇢

Explicit 
Hydrodynamics

Implicit EM, EM sources, sources
for species                     interactions

MU̇ + F +G = 0IMEX: 
Time
Integration

(⇢a, ⇢aua, ✏a)



!"#Δ% < 1

(# <
Δ)

Δ%

IMEX splitting for CG
*+,# + .# ⋅ 0,# = −,#0 ⋅ .#

*+.# + .# ⋅ 0.# = −.#0 ⋅ .# −
1

,#
03# +

1

,#
0 ⋅ 4# 0.# + 0.#5 −

2

3
80 ⋅ .#

*+3# + .# ⋅ 03# = −93# 0 ⋅ .# + 0 ⋅ 9 − 1 :#0;# − <
=

9 − 1 >#=,#
?# + ?=

(3 ;# − ;= − ?= .# − .=
A
)

*+C − D
A0×F = −

1

GH
<
#

I#
?#

,#.#

*+F + 0×C = 0

+
I#
?#

C +
I#
?#

.#×F −<
=

>#= (.# − .=)

(# <
Δ)

Δ%

KL# <
Δ)

Δ%
M# <

Δ)A

Δ%

!N#Δ% < 1 >#=Δ% < 1

(# <
Δ)

Δ%
O# <

Δ)A

Δ%
>#=Δ% < 1

!"#Δ% < 1
D <

Δ)

Δ%

For IMEX-CG each operator can be moved between 
implicit and explicit evaluation depending on the 
explicit stability limits.

Each operator is associated with one or more 
plasma scales, which are grouped by color 
representing their approximate explicit stability limits.



PDE Tools Design Considerations
§ Sensitivities are critical! 

§ Required for: Implicit and IMEX, steady-state and transient parametric sensitivity analysis, 
Optimization and Stability/Bifurcation analysis

§ Do not burden analysts/physics experts with analysis algorithm requirements
§ Combinatorial explosion of sensitivity requirements

§ Develop PDE discretization tools for next generation architectures
§ Performance portability: CPU, KNL, GPU
§ Based on “Type-2” stack in Trilinos

§ Handle complexity in multiphysics PDE systems:
§ Complex interdependent coupled physics
§ Multiple proposed mathematical models
§ Different numerical formulations (e.g. space-time discretizations)
§ Supporting multiplicity in models and solution techniques often leads to complex code with 

complicated logic and fragile software designs

§ No Framework!!! A component-based design:
§ Simple tools with minimal dependencies
§ Risk mitigation: buy in at different levels

§ No Symbolics/DSL (definition is fuzzy)
§ Legacy code integration path, structured transition
§ Raw C++, access to data structures
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Trilinos Discretization Tools Overview
§ MPI Related

§ Panzer (Multiphysics Assembly and Utilities)
§ DOF Manager: Global Indexing for mixed 

bases, mixed equations
– Connection Manager: Mesh DB 

abstraction
§ Workset Builder: Mesh over-

decomposition for AMT
§ Linear Algebra Builder: 

Epetra/Tpetra/Thyra
§ Disc-FE: Multiphysics assembly, Mixed Eq

Sets, Mixed Bases, BCs, Compatible 
discretizations, Projections

§ Local Node
§ Intrepid2: FE Basis Library
§ Shards: Cell/Element Topology
§ Phalanx: DAG Assembly: flexibility/complexity
§ Sacado: Automatic differentiation scalar types
§ Kokkos: Performance portability
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github.com/trilinos/Trilinos

Panzer

Phalanx

Sacado

Kokkos



Performance Portability: Kokkos
§ Performance Portable Thread-Parallel Programming Model in C++
§ Multidimensional Array
§ Compiletime polymorphic memory layouts: cached vs coalesced memory 
§ Asynchronous Many Tasking (Experimental)

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos

Multi-Core Many-Core APU CPU+GPU

LAMMPS AlbanyTrilinos

performance portability for C++ applications

Drekar EMPIRE …

https://github.com/kokkos/kokkos



Kokkos Layout Polymorphism for 
Performant Memory Accesses

• GPU
– Each thread accesses strided range 

of entries
– Thread group can read all values in 

one memory transaction
– Ensures coalesced accesses 

(consecutive threads access 
consecutive entries)
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• CPU/MIC
– Each thread accesses contiguous range 

of entries
– Ensures neighboring values are in 

cache



Sacado: Template-based 
Automatic Differentiation

• Implement equations templated on the 
scalar type

• Libraries provide new scalar types that 
overload the math operators to 
propagate embedded quantities

• Expression templates for performance
• Derivatives: FAD, RAD
• Hessians
• Stochastic Galerkin: PCE
• Multipoint: Ensemble (Stokhos)

• Analytic Values (NO FD involved)!

double Fad<double>

template <typename ScalarT> 
void computeF(ScalarT* x, ScalarT* f) 
{ 

f[0] = 2.0 * x[0] + x[1] * x[1];
f[1] = x[0] * x[0] * x[0] + sin(x[1]); 

} 

DFad<double>* x;
DFad<double>* dfdx;
…
computeF(x,dfdx);

double* x;
double* f;
…
computeF(x,f);



Example Scalar Types
(Trilinos Stokhos and Sacado: E. Phipps)

Scalar Types
double• Residual

• Jacobian

• Hessian

• Parameter Sensitivities

• Jv

Evaluation Types

DFad<double>

DFad<double>

1. All evaluation types are compiled into single library and managed at 
runtime from a non-template base class via a template manager.

2. Not tied to double (can do arbitrary precision)
3. Can mix multiple scalar types in any evaluation type.
4. Can specialize any node: Write analytic derivatives for performance!

DFad<double>

DFad< SFad<double,N> >



• Achieved by specializing Kokkos::View data structure 
for Sacado scalar types
– Rank-r Kokkos::View internally stored as a rank-(r+1) array of 

doubles
– Kokkos layout applied to internal rank-(r+1) array
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Want good AD performance with no 
modifications to Kokkos kernels



AD Performance Portability

Architecture Measured 
Bandwidth 

(GB/s)

Expected 
Throughput  
(GFLOP/s)

Measured 
Throughput 
(GFLOP/s)

No View 
Specialization 

(GFLOP/s)

Haswell 47.4 22.4 24.3 23.1

MIC 147 69.4 69.4 43.2

GPU 150 70.8 81.2 35.1

• m = 1e6, n=100, p = 8 (derivative dimension)

• Expected Throughput ~ Measured Bandwidth x (4p+2) FLOPS / 8(p+1) Bytes

• SFad<double,p> AD data type

Kokkos::View<Sacado::Fad::SFad<double,p>**> A("A",m,n,p+1);  // Create rank-2 array with m rows and n columns
Kokkos::View<Sacado::Fad::SFad<double,p>* > b("b",n,p+1);    // Create rank-1 array with n rows
Kokkos::View<Sacado::Fad::SFad<double,p>* > c("c",m,p+1);    // Create rank-1 array with m rows

// ...

run_mat_vec(A,b,c);



Phalanx: Lightweight 
DAG-based Expression Evaluation

§ Decompose a complex model into a graph 
of simple kernels (functors)

§ A node in the graph evaluates one or more 
temporary fields

§ Runtime DAG construction of graph

§ Supports rapid development, separation of 
concerns and extensibility.

§ Achieves flexible multiphysics assembly

§ Leverages Sacado scalar types for non-
invasive Jacobian, Hessian, …

DAG-Based Assembly à flexibility



Workset Builder: Data Parallelism

MPI Distributed
Mesh

Hardware Node
(Single MPI Process)

2

6664

x0

x1
...

xN

3

7775

§ Batch of elements
§ Same operations, field dimensions, 

topology

§ Fixed memory allocation for DAG

§ Multiple worksets per hardware 
node

§ Controls memory for temporaries 
(GPU!)

§ Future: Workset level AMT



What does a Node look like?
template<typename EvalT, typename Traits>
IntegrateDiffusionTerm<EvalT,Traits>::
IntegrateDiffusionTerm(const std::string& flux_name, const Teuchos::RCP<PHX::DataLayout>& flux_layout,

const std::string& residual_name, const Teuchos::RCP<PHX::DataLayout>& residual_layout) :    
flux(flux_name,flux_layout), residual(residual_name,residual_layout)

{
this->addContributedField(residual);
this->addDependentField(flux);
this->setName("IntegrateDiffusionTerm: "+residual_name);

}

template<typename EvalT, typename Traits>
void IntegrateDiffusionTerm<EvalT,Traits>::evaluateFields(typename Traits::EvalData workset)
{
grad_basis = workset.grad_basis_real_;
weights = workset.weights_;
cell_measure = workset.det_jac_;
Kokkos::parallel_for(Kokkos::RangePolicy<PHX::exec_space>(0,workset.num_cells_),*this);

}

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void IntegrateDiffusionTerm<EvalT,Traits>::operator()(const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const
{  
const int cell = team.league_rank();
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,0,grad_basis.extent(2)), KOKKOS_LAMBDA (const int& basis) {
for (int qp = 0; qp < static_cast<int>(grad_basis.extent(1)); ++qp)
for (int dim = 0; dim < static_cast<int>(grad_basis.extent(3)); ++dim)
residual(cell,basis) +=  - grad_basis(cell,qp,basis,dim) * flux(cell,qp,dim) * weights(qp) * cell_measure(cell,qp);

});
}

16

Declare DAG Dependencies

Bind worksets and launch kernel

Evaluate values



Preliminary Results for Jacobian 
Assembly

§ 2016 Milestone to 
demonstrate the 
“ecosystem”

§ 16K elements
§ Flat/Single level 

data parallelism 
(loop over cells)

§ Basic MPI (no 
thread spec.)



Assembly Runtimes by Kernel

CFD Kernel is the high tent pole

KNL

K20x



CFD Node

Kokkos::View<ScalarT****, Layout, ExecSpace> wgb;
Kokkos::View<ScalarT***,  Layout, ExecSpace> flux;
Kokkos::View<ScalarT***,  Layout, ExecSpace> wbs;
Kokkos::View<ScalarT**,   Layout, ExecSpace> src;
Kokkos::View<ScalarT**,   Layout, ExecSpace> residual;
ScalarT coeff;

for (int cell=0; cell < num_cell; ++cell) {
for (int basis=0; basis<num_basis; ++basis) {
ScalarT value(0),value2(0);
for (int qp=0; qp<num_points; ++qp) {
for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);

value2 += src(cell,qp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeff*(value+value2);

}
}

Z

e
c

⇣
~

f(x) · r'i(x) + s(x)'i(x)
⌘
dx



Flat Parallelism (1-level) 
Kokkos-ified CFD Node

Kokkos::View<ScalarT****, Layout, ExecSpace> wgb;
Kokkos::View<ScalarT***,  Layout, ExecSpace> flux;
Kokkos::View<ScalarT***,  Layout, ExecSpace> wbs;
Kokkos::View<ScalarT**,   Layout, ExecSpace> src;
Kokkos::View<ScalarT**,   Layout, ExecSpace> residual;
ScalarT coeff;

typedef Kokkos::RangePolicy<ExecSpace> Policy;

Kokkos::parallel_for( Policy( 0,num_cell ), KOKKOS_LAMBDA( const int cell )
{
for (int basis=0; basis<num_basis; ++basis) {
ScalarT value(0),value2(0);
for (int qp=0; qp<num_points; ++qp) {

for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);

value2 += src(cell,qp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeff*(value+value2);

}
});
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⌘
dx



Single CFD Kernel 
GPU Performance Assessment

§ Single level parallelism is 
insufficient

§ Does not expose enough 
parallelism



Single CFD Kernel 
GPU Performance Assessment

§ Single level parallelism is 
insufficient

§ Does not expose enough 
parallelism

§ 3-level hierarchical 
parallelism shows 
significant improvement

§ Hand coded sensitivity 
array outside libraries

§ Key is to parallelize over 
FAD derivative 
dimension



Kernel with Hierarchical DFad
Sacado::createGlobalMemoryPool(ExecSpace(), mem_pool_size);

typedef Kokkos::TeamPolicy<ExecSpace> Policy;
const int vector_size = is_cuda ? 32 : 1;
const int team_size = is_cuda ? 256 / vector_size : 1;

Kokkos::parallel_for( 
Policy( num_cell,team_size,vector_size ),
KOKKOS_LAMBDA( const typename Policy::member_type& team )
{
const size_t cell = team.league_rank();
const int team_index = team.team_rank();

for (int basis=team_index; basis<num_basis; basis+=team_size) {
ScalarT value(0),value2(0);
for (int qp=0; qp<num_points; ++qp) {

for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);

value2 += src(cell,qp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeff*(value+value2);

}
});

Sacado::destroyGlobalMemoryPool(ExecSpace());



Derivative Array Parallelization in 
Sacado
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Test Problem DAG

§ For Multiple equations, a new set of nodes 
(repeated unit) are added

§ Could improve performance by adding grouping all 
equations into single set of evaluators
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Gather

Scatter

ProjGradToQP

IntDiffTerm IntSrcTerm

ConstantZeroContribField

Repeated Unit



Number of Equations: Jacobian, 
CUDA P100
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Node Comparison, Jacobian
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CUDA, P100 Broadwell, 32 cores, 2 hyperthreads/core



Equation Set Scaling
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Host vs Device DAG
§ Traditional Phalanx use is “Host DAG”

§ Each node in DAG launches its own kokkos
kernel via parallel_for from host

§ New “Device DAG” capability runs all the 
Kernels on device from a single parallel_for
launch
§ Goal: keep values in cache for next functor

evaluation

29

§ Device DAG complications:
§ Need a virtual function call to run 

through a runtime generated list of 
functors

§ Copy all functors to device and 
instantiate

§ Requires relocatable device code for 
CUDA



Host vs Device DAG Performance, 16 Equations
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OpenMP, Broadwell, 
OMP_NUM_THREADS=36 CUDA, P100

Residual
Jacobian

Host
Device



Host vs Device DAG Performance, 1 Equation
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OpenMP, Broadwell, 
OMP_NUM_THREADS=36 CUDA, P100

Residual
Jacobian

Host
Device



Conclusions
§ A number of tools in Trilinos are under development for supporting finite 

element assembly
§ Risk mitigation: can “buy in” a various levels
§ At a minimum components provide guidance

§ Performance portability is not the same as being able to run on an architecture
§ Restrictions from GPUs strongly impacts the code base

§ Converting code to be performance portable is application specific. Kokkos
team experience:
§ 50% can do simple flat parallelism
§ 30 % need hierarchic
§ 20% need some customization – new algorithms 

§ Templated scalar types and DAG-assembly allow for complex multiphysics
simulations in a manageable code base



Extra Slides
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§ IntegrateDiffusionTerm

§ ProjectGradientToQP

Profiler (500 Element workset, ts=8, vs=32)
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§ Gather

§ Scatter (includes filling the “free” residual too)

Profiler
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1 Thread/Task 8 Threads/Task 16 Threads/Task
Jacobian 3.5 4.5 4.9
Residual 3.4 3.4 3.5

Compatible Discretization

⇢u⇢ E E B

More Parallelism: Hybrid 
Task+Data Parallel Analysis

Theoretical speed up for volume assembly DAG (Ignores scheduling overhead)



SFE Initial Scaling Studies for Cray XK7 AND BG/Q.  
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5]
(with Paul Lin)

~20x

Titan: 128K

BG/Q: 256K

1.8 Billion max unknowns
14K unknowns per core (Titan)

1.8 Billion max unknowns
4096x increase in prb. size

[Preliminary strong scaling of Krylov linear solver + preconditioner
(ML: FC – AMG), Tuminaro, Hu, Siefert, Gee et. al.]

1.8 Billion unknowns

(DOE/ORNL Titan Cray XK7: Joule Metric)

Largest fully-coupled implicit solves demonstrated to date:
• MHD (steady):      10B  DoF, 1.25B  elem, on 128K cores
• CFD (Transient):  40B  DoF, 10.0B  elem, on 128K cores
• Poisson sub-block: 3.2B DoF, 3.2B elem, on 1.6M cores

u P B T 



Difficulties

§ Production codes don’t always fit the “count/allocate/fill” paradigm.
§ Compile-time rank (fixed with Kokkos::DynRankView)
§ Runtime decisions and lazy instantiation can be problematic
§ Passing the FAD dimension for temporaries, view factory for AD dimensions

§ Portability and Performance are not the same

§ No raw references for AD scalar types (use return_type)

§ Hiding the derivative array parallelization introduces requirements on 
developers
§ Templated scalar temporaries
§ Use of a memory pool

§ Loss of bracket operator



Multi-fluid plasma model

§ Continuity equation:

§ Momentum equation:

§ Energy equation:

§ Ampere’s Law:

§ Faraday’s Law:
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Fluid
Electromagnetic
Inter-fluid

Each species A is represented by a separate 
density #, momentum #), and isotropic energy 5.

Spatial operators are discretized using a finite 
element method.



IMEX time integration

§ IMEX gives a framework for splitting the model up into implicit and explicit terms:
§ Explicit for slow, non-stiff terms
§ Implicit for fast, stiff terms

§ Objective: Combine the advantages of implicit and explicit solvers.
§ Take advantage of expensive implicit solver to overstep fast scales, and explicit solver to 

resolve slow scales.
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Compatible discretization for EM
§ A physics compatible finite element discretization is used to enforce the divergence 

constraints for the electric and magnetic fields.
§ Fluids are represented by an HGrad (node) basis ! ∈ #$.
§ The electric field is represented by an HCurl (edge) vector basis % ∈ &$×.
§ The magnetic field is represented by an HDiv (face) vector basis ( ∈ &$⋅.
§ Compatibility is defined by the discrete preservation of the De Rham Complex:

§ For Faraday’s law, we choose a basis for the electric field such that its curl is fully 
represented by the basis used by the magnetic field.

§ Since the curl of the electric field is ‘globally continuous’ w.r.t. a divergence operator, the 
divergence of that curl is zero over the domain:

§ Result: The curl operator does not add divergence errors to the magnetic field
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§ Goal: Solve plasma-coupled Maxwell’s equations and satisfy a divergence constraint:

§ In the strong, non-discretized form:

§ In the weak form: Choose a basis that supports the divergence constraint as HCurl does not 
support the divergence operation:

§ Assumes that continuity equation is weakly satisfied:

Satisfying Gauss’ laws in plasmas
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§ Discontinuous Galerkin FEM does not assume a globally continuous test function:

§ Consistency: Fluxes must be single valued on interfaces between elements.
§ Numerical Flux: Solution to Riemann problem to generate consistent flux on interfaces.

Discontinuous Galerkin method
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Break into elements K ∈ Ω with discontinuous element test function #45
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