SAND2018- 2037C

Sandia

Exceptional service in the national interest @ National
Laboratories

Towards Performance Portable Assembly
Tools for Multi-Fluid Plasma Simulations

Roger Pawlowski*, Matt Bettencourt**, Eric Cyr*, Sean Miller*, Edward Phillips**,
Eric Phipps*, John Shadid* and Christian Trott*

*Center for Computing Research, Sandia National Laboratories

**Radiation and Electrical Sciences Center, Sandia National Laboratories

SIAM Conference on Parallel Processing for Scientific Computing
March 7-10, 2018 * Tokyo, Japan

& 7% U.S. DEPARTMENT OF) @ < o2

{0} Yy Ny SH #CCR

\’z®j‘ ENERG Il A' AR (53 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
i National Nuclear Security Administration Ce

enter for Computing Research owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Outline)

= |ntroduction
= Requirements
= Example Physics

= Components Description
= Kokkos, Sacado, Phalanx, Panzer

= Two Design Explorations
= Hierarchic Parallelism
= Device DAG: Kernel collapse

= Conclusions

SNL’s Mission Requires a Significant) e
Range of Advanced Simulation Capabilities
DOE/NNSA and many DOE/SC Mission Drivers are Characterized by:

= Complex strongly coupled physical mechanisms (multiphysics) A
B

» Strongly coupled nonlinear solvers (Newton methods) [PI [Pu] [5 I\V\E <

» Physics-compatible discretizations

= Large range of interacting time-scales (Multiple-time-scales)
» Implicitness (fully-lmplicit or implicit/explicit [IMEX])

= Complex geometries, multiple length-scales, high-resolution

» Unstructured mesh FE (HEX and TET)
» Scalable solution (Krylov methods, physics-based prec., AMG)

= High consequence decisions informed by modeling / simulation Z Convolute Power-feed
» Beyond forward simulation (sensitivities, UQ, error est., design opt.)

17 GP Model 2.0E-03
g 0.5 1 - "“\'\\-
£ mwop MNBy .
P’) 0.03 g 1.5E-03
g o T T T T ®Drekar Qol: Ind. M.E. \
ﬁ 1 z 3 4 5 L —Exact Qol: Ind. M.E.
xR -0.5 4 001 ‘®Drekar Qol: Ind. M.E. + Adj. Err. Est.

I 1.0E-03
—UZD o 20 40 60 B0 100 120 140 160 1.E-02 1.E-01 1.E+00
E Quantity of Interest h=ly/Ny
Adjoint-enabled Sensitivities, UQ surrogates, Error-estimates 3

N

Y

Multi-fluid 5-Moment Plasma System Model IPI [pul [g 1"

Opa

Density ot + V - (paua) = é:(napblji_b — NpPalyy)
A p.u,
Moment.um % -+ V * (paua xR U, -+ paI -+ Ha) = daTla (E -} u, X B)
- E : [pa(ua - ub)nbpgg + pbubnalja_,'_b — pauaanaTb]
b#a
660, arc
Energy E + V- ((Ea -+ pa)ua -+ Ha s U, + ha) = |@aTaQq * E + Qa

— E [(Ta — Ty kvk — paug - (Wa —) e — nav ey + an‘;sa]

bs#a
Charge
and q = Z drTik J = E :ankuk
Current k ke
Density
Maxwell’s 1 9E q
e — V xB + puogd =0 V- -E=“*
Equations c? Ot =0 €0
éwB +V<XE=0 V-B=0
°
e MU F +G =0
Time _l_ _
Integration Explicit Implicit EM, EM sources, sources

Hvdrodvnamics for species (pa; Palla, €a) interactions

IMEX splitting for CG .

DDy + Uy Vpy = —poV - Uy Each operator is a§SOC|ated with one or more
Ay plasma scales, which are grouped by color
Hols representing their approximate explicit stability limits.
1 1 2
oy +uy - Vu, = —u,V-u, ——VP, +p—l7- Ug (Vua + Vul, —§I|7-ua)
a (04
o Ax Ax?
¢4 At Vs < E Vg < E
q q
+m—C;E + m—tuaxB w ; Vap (ua = uﬁ)
WpaAt <1 weaAt < 1 Veplt < 1
(V _ 1)Vaﬂpa 2
0Py + Uy VP =—yP V- -uy, + V- ((y — DkoVT,) — Z - (3(T, — Tp) —mp (uy —ug)")
a
Ax Ax? B
ua<A—t K'a<E Va’BAt<1
9,E — c2VXB = 1N 4 pqu, FOrIMEX-CG each operator can be moved between
A W implicit and explicit evaluation depending on the
c — . .- . .
At wpaAt < 1 explicit stability limits.
atB + VXE - 0

PDE Tools Design Considerations = @&

Sensitivities are critical!

= Required for: Implicit and IMEX, steady-state and transient parametric sensitivity analysis,
Optimization and Stability/Bifurcation analysis

= Do not burden analysts/physics experts with analysis algorithm requirements
= Combinatorial explosion of sensitivity requirements

Develop PDE discretization tools for next generation architectures
= Performance portability: CPU, KNL, GPU
= Based on “Type-2” stack in Trilinos

Handle complexity in multiphysics PDE systems:
= Complex interdependent coupled physics
= Multiple proposed mathematical models
= Different numerical formulations (e.g. space-time discretizations)

= Supporting multiplicity in models and solution techniques often leads to complex code with
complicated logic and fragile software designs

No Framework!!! A component-based design:

= Simple tools with minimal dependencies
= Risk mitigation: buy in at different levels

No Symbolics/DSL (definition is fuzzy)
= Legacy code integration path, structured transition
= Raw C++, access to data structures

Trilinos Discretization Tools Overview &

= MPI Related
= Panzer (Multiphysics Assembly and Utilities)

= DOF Manager: Global Indexing for mixed
bases, mixed equations

— Connection Manager: Mesh DB
abstraction

= Workset Builder: Mesh over-
decomposition for AMT

= Linear Algebra Builder:
Epetra/Tpetra/Thyra

= Disc-FE: Multiphysics assembly, Mixed Eq
Sets, Mixed Bases, BCs, Compatible
discretizations, Projections

= Local Node
= Intrepid2: FE Basis Library
= Shards: Cell/Element Topology
* Phalanx: DAG Assembly: flexibility/complexity
= Sacado: Automatic differentiation scalar types
= Kokkos: Performance portability

github.com/trilinos/Trilinos

o fe Sandia
Performance Portability: Kokkos) .
= Performance Portable Thread-Parallel Programming Model in C++
Multidimensional Array

Compiletime polymorphic memory layouts: cached vs coalesced memory
Asynchronous Many Tasking (Experimental)

m m Drekar § EMPIRE Qg Albany _

Kokkos

performance portability for C++ applications

) [

/g g

_ VRN 4 /

Multi-Core Many-Core APU CPU+GPU
https://qgithub.com/kokkos/kokkos

Kokkos Layout Polymorphism for i
Performant Memory Accesses

« CPU/MIC - GPU
— Each thread accesses contiguous range — Each thread accesses strided range
of entries of entries
— Ensures neighboring values are in — Thread group can read all values in
cache one memory transaction

— Ensures coalesced accesses
(consecutive threads access
consecutive entries)

Layout Right Layout Left
(Row-wise) (Column-wise)
a - (0,0)
0,1
CPU Thread 0 £ GPU Thread-block 0¢ o'y
03)
r ~ (1,0)
1,1
CPU Thread 1 4 GPU Thread-block 14 1
(13)
- - 20
2,1
CPU Thread 2 4 GPU Thread-block 2 { o
@3) \
- - 50
(CR)
CPU Thread 3 < GPU Thread-block 34 '
- _ 33

Sacado: Template-based
Automatic Differentiation

* Implement equations templated on the
scalar type

* Libraries provide new scalar types that
overload the math operators to

propagate embedded quantities
» Expression templates for performance
Derivatives: FAD, RAD
Hessians
Stochastic Galerkin: PCE
Multipoint: Ensemble (Stokhos)

 Analytic Values (NO FD involved)!

Sandia
"'l National

Laboratories

double Fad<double>
Operation | Forward AD rule
c=a=xb |¢=axb

c=ab ¢ =ab+ ab
c=a/b é¢=(a—ch)/b
c=a" ¢ =ra""la

c =sin(a) | ¢ = cos(a)a

c =cos(a) | ¢ = —sin(a)a
c=-expla) | ¢ =ca

c=log(a) | ¢=a/a

template <typename ScalarT>
void computeF (ScalarT* x, ScalarT* f)
{
£[0]
£[1]
}

2.0 * x[0] + x[1] * x[1];
x[0] * x[0] * x[0] + sin(x[1]);

double* x;
double* f£f;

computeF (x, f) ;

DFad<double>*
DFad<double>*

computeF (x,dfdx) ;

X,
dfdx;

Sandia
"1 National
Laboratories

Example Scalar Types

(Trilinos Stokhos and Sacado: E. Phipps)

Evaluation Types Scalar Types
« Residual F(x,p) double
. OF
e Jacobian J=_— DFad<double>
ox
« Hessian 92F DFad< SFad<double,N> >
e Parameter Sensitivities 50 DFad<double>
p
DFad<double>

e Jv J’U

1. All evaluation types are compiled into single library and managed at
runtime from a non-template base class via a template manager.

2.Not tied to double (can do arbitrary precision)

3. Can mix multiple scalar types in any evaluation type.
4. Can specialize any node: Write analytic derivatives for performance!

Want good AD performance with no) i,

modifications to Kokkos kernels

* Achieved by specializing Kokkos::View data structure
for Sacado scalar types

— Rank-r Kokkos::View internally stored as a rank-(r+1) array of
doubles

— Kokkos layout applied to internal rank-(r+1) array

Layout Right Layout Left
(Plane-Row-Column) (Column-Row-Plane)
dx dx
val val

(0,0)

CPU Thread 0 GPU Thread-block 0% ¢
0.,3)
(1,0

CPU Thread 1 GPU Thread-block 14 (/s
(1.9) Y
.0
@1

CPU Thread 2 GPU Thread-block 2 2.2)
@.3)
3,0)
@1

CPU Thread 3 GPU Thread-block 3 (3.2)
©.9)

Sandia
"1 National
Laboratories

AD Performance Portability

Kokkos: :View<Sacado: :Fad: : SFad<double, p>**> A("A",m,n,p+1); // Create rank-2 array with m rows and n columns

Kokkos: :View<Sacado: : Fad: : SFad<double,p>* > b("b",n,p+1); // Create rank-1 array with n rows
Kokkos: :View<Sacado: :Fad: : SFad<double,p>* > c("c",m,p+1); // Create rank-1 array with m rows
// [I I]

run_mat_vec(A,b,c);

Architecture | Measured Expected Measured No View
Bandwidth | Throughput | Throughput | Specialization
(GB/s) (GFLOPI/s) (GFLOPI/s) (GFLOPI/s)
Haswell 47 .4 224 24.3 23.1
MIC 147 69.4 69.4 43.2
GPU 150 70.8 81.2 35.1

* m=1e6, n=100, p = 8 (derivative dimension)
* Expected Throughput ~ Measured Bandwidth x (4p+2) FLOPS / 8(p+1) Bytes

« SFad<double,p> AD data type

Phalanx: Lightweight)
DAG-based Expression Evaluation
R = /Q (6Lt — Vi, - q + 6s] dO

= Decompose a complex model into a graph
of simple kernels (functors)

(2
= A nodein the graph evaluates one or more Ji
temporary fields
. . R!
= Runtime DAG construction of graph Uk
= Supports rapid development, separation of
concerns and extensibility. q s 7]

= Achieves flexible multiphysics assembly \v2} L
u..‘q

= Leverages Sacado scalar types for non-
invasive Jacobian, Hessian, ... Vo,

U

DAG-Based Assembly - flexibility - o

Workset Builder: Data Parallelism (@&

Batch of elements

= Same operations, field dimensions,
topology

= Fixed memory allocation for DAG

= Multiple worksets per hardware

node
_ MPI Distributed Hardware Node
= Controls memory for temporaries Mesh (Single MPI Process)
(GPU!)
fi
= Future: Workset level AMT
R, - _
s Joo o o .. Jo.N;—1
[z | HHH a s 171 T=1 Juo T TN, 1
_ Vu k :

What does a Node look like?) &,

template<typename EvalT, typename Traits>

IntegrateDiffusionTerm<EvalT, Traits>::

IntegrateDiffusionTerm(const std::string& flux_name, const Teuchos::RCP<PHX::DataLayout>& flux_layout,
const std::string& residual_name, const Teuchos::RCP<PHX::DataLayout>& residual_layout) :
flux(flux_name,flux_layout), residual(residual_name,residual_layout)

{
this->addContributedField(residual);

this->addDependentField(flux); <@ Declare DAG DependenCieS

this->setName("IntegrateDiffusionTerm: "+residual_name);

}

template<typename EvalT, typename Traits>
void IntegrateDiffusionTerm<EvalT,Traits>::evaluateFields(typename Traits::EvalData workset)

{
grad_basis = workset.grad_basis_real_; / Bind worksets and launch kernel

weights = workset.weights_;
cell_measure = workset.det_jac_;
Kokkos::parallel_for(Kokkos::RangePolicy<PHX::exec_space>(0,workset.num_cells_),*this);

}

template<typename EvalT, typename Traits>
KOKKOS_INLINE_FUNCTION
void IntegrateDiffusionTerm<EvalT, Traits>::operator()(const Kokkos::TeamPolicy<PHX::exec_space>::member_type& team) const
{

const int cell = team.league_rank();

Kokkos::parallel_for(Kokkos::TeamThreadRange(team,0,grad_basis.extent(2)), KOKKOS_LAMBDA (const int& basis) {

for (int qp = 0; qp < static_cast<int>(grad_basis.extent(1)); ++qp)
for (int dim = 0; dim < static_cast<int>(grad_basis.extent(3)); ++dim)
residual(cell,basis) += - grad_basis(cell,qp,basis,dim) * flux(cell,qp,dim) * weights(qp) * cell_measure(cell,qp);

}});
\ Evaluate values

Preliminary Results for Jacobian)
Assembly

Haswell-Kokkos

= 2016 Milestone to \ —
2° 7 o—e Haswell-MPI
demonstrate the 8 e—e Cuda-K80
“« ” 2 o—e KNC-Kokkos
ecosystem 7 o—e KNL-Kokkos

= 16K elements

= Flat/Single level
data parallelism
(loop over cells)

= Basic MPI (no
thread spec.)

Run Time (s)

107 10"t 10
Fraction of Machine

Assembly Runtimes by Kernel

2 T T T T T
5 : 5 Assembly

Advection Kernel i
Matrix and RHS Scater

Cubature Basis with Vector
Basis Evaluation i
Gradient Of Variable
Gather Solution

TITITL

Run Time(s)

Run Time(s)

K20x

LITIIL

Assembly

Advection Kernel

Matrix and RHS Scater
Cubature Basis with Vector
Basis Evaluation

Gradient Of Variable
Gather Solution

2T

CFD Kernel is the high tent pole

Sandia
National
Laboratories

Sandia
"1 National

Laboratories

CFD Node
/e ¢ (f(@) - Voi(@) + s(2)pi(x)) da

Kokkos: :View<ScalarTsxkxx, Layout, ExecSpace> wgb;
Kokkos: :View<ScalarTxk*, Layout, ExecSpace> flux;
Kokkos::View<ScalarTxkx, Layout, ExecSpace> wbs;
Kokkos: :View<ScalarTxx, Layout, ExecSpace> src;
Kokkos: : View<ScalarTxx, Layout, ExecSpace> residual;
ScalarT coeff;

for (int cell=0; cell < num_cell; ++cell) {
for (int basis=0; basis<num_basis; ++basis) {

ScalarT value(0),value2(0);

for (int qp=0; qp<num_points; ++qp) {
for (int dim=0; dim<num_dim; ++dim)

value += flux(cell,qgp,dim)*wgb(cell,basis,qp,dim);

value2 += src(cell,qp)*wbs(cell,basis,qp);

}

residual(cell,basis) = coeffx(value+value2);

b
b

Flat Parallelism (1-level))
Kokkos-ified CFD Node
/e ¢ (F(@) - Voi(@) + s(x)pi(x)) da

Kokkos::View<ScalarTxkkx, Layout, ExecSpace> wgb;
Kokkos: :View<ScalarTxk*, Layout, ExecSpace> flux;
Kokkos::View<ScalarTxxx, Layout, ExecSpace> wbs;
Kokkos: :View<ScalarTxx, Layout, ExecSpace> src;
Kokkos: :View<ScalarTsxkx, Layout, ExecSpace> residual;
ScalarT coeff;

typedef Kokkos::RangePolicy<ExecSpace> Policy;

Kokkos::parallel_for(Policy(©,num_cell), KOKKOS_LAMBDA(const int cell)
{
for (int basis=0; basis<num_basis; ++basis) {
ScalarT value(0),value2(0);
for (int qp=@; gp<num_points; ++qp) {
for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qgp,dim)*wgb(cell,basis,qp,dim);
value2 += src(cell,qgp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeffx(value+value2);

¥

[| }); []

R EEEEEEE—————

Single CFD Kernel
GPU Performance Assessment

Sandia
ﬂ'l National
Laboratories

GPU Scaling: For 8000 cells: Fastest 0.013024
T T T T T

= Single level parallelism is 10%¢ 1]
1 11 F s Cell parallel (K20)
InSUffICIent I s Cell parallel (K80)
= Does not expose enough
parallelism
“ 107 b .
)
(&]
o
o
& T ——— .
5 —————
@ - . e B T TN
()
£
}—
1072
10-3 ! | l ! ! | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Workset size

Single CFD Kernel
GPU Performance Assessment

Single level parallelism is
insufficient

Does not expose enough
parallelism

3-level hierarchical
parallelism shows
significant improvement

Hand coded sensitivity
array outside libraries

Key is to parallelize over
FAD derivative
dimension

Time(s) for 8000 cells

Sandia
National
Laboratories

100

*

- ®

.....

GPU Scaling: For 8000 cells: Fastest 0.013024
T T T T T

s Cell parallel (K20)

s Cell parallel (K80) i
Multi-level parallel (K20) | |

=== mm Multi-level parallel (K80)

I —

pa—
pr SN

‘--...l--

.-.-‘
.-...II‘.II.--I.II-III-III.II-IIIIIIIIIII--.-...-.-II-

1

| | | | |

0

|
5000 6000 7000 8000

4000
Workset size

1000 2000 3000

Sandia
"1 National

Laboratories

Kernel with Hierarchical DFad

Sacado: :createGlobalMemoryPool(ExecSpace(), mem_pool_size);

typedef Kokkos::TeamPolicy<ExecSpace> Policy;
const int vector_size = is_cuda ? 32 : 1;
const int team_size = is_cuda ? 256 / vector_size : 1;

Kokkos: :parallel_for(
Policy(num_cell,team_size,vector_size),
KOKKOS_LAMBDA(const typename Policy::member_type& team)
{
const size_t cell = team.league_rank();
const int team_index = team.team_rank();

for (int basis=team_index; basis<num_basis; basis+=team_size) {
ScalarT value(0),value2(0);
for (int gqp=@; gp<num_points; ++gp) {
for (int dim=0; dim<num_dim; ++dim)
value += flux(cell,qp,dim)*wgb(cell,basis,qp,dim);
value2 += src(cell,qp)*wbs(cell,basis,qp);
}
residual(cell,basis) = coeffx(value+value2);
}
});

Sacado: :destroyGlobalMemoryPool(ExecSpace());

-—

Derivative Array Parallelization in @i

Laboratories

Sacado

NVIDIA K20x GPU

(p =50)

__ 1E-4
(S
2 =+Flat SFad
3 ~=-Flat SLFad
g 1E-5 ~+Flat DFad
g -+Hier. SFad
= ~ -»=Hier. SLFad

1E-6 ' ' ' ' ~=-Hier. DFad

200 800 1400 2000 2600
Cells per Workset

Test Problem DAG)

Scatter

IntDiffTerm - IntSrcTerm)

ProjGradToQP) Constant)

I

| ZeroContribField >

= Gather *

Repeated Unit

= For Multiple equations, a new set of nodes
(repeated unit) are added

= Could improve performance by adding grouping all
equations into single set of evaluators

25

Number of Equations: Jacobian,) e

CUDA P100

107 nel=8000,neq=1,nderiv=38,ts=8,vs=32
1 1 1
®—e Jac Total Time (Host DAG) +—# Jac ProjGradToQP ¢ ¢ Jac Int Source Term
m—& Jac Gather »— Jac Int Diff Term +~— Jac Scatter
A4 Jac Zero

Time (s)

0 500 1000 1500 2000
Workset Size

Time (s)

Laboratories

nel=8000,neq=16,nderiv=128,ts=8,vs=32

1 1 1
®—e Jac Total Time (Host DAG) +—& Jac ProjGradToQP ¢ ¢ Jac Int Source Term

m—& Jac Gather »— Jac Int Diff Term +~— Jac Scatter
A4 Jac Zero

0 500 1000 1500 2000

Workset Size

26

Node Comparison, Jacobian) .

CUDA, P100 Broadwell, 32 cores, 2 hyperthreads/core

nel=8000,neq=16,nderiv=128,ts=8,vs=32 nel=8000,neq=16,nderiv=128,ts=1,vs=2

1 1 | 1 1 1
®—e Jac Total Time (Host DAG) #«+ Jac ProjGradToQP ¢ < Jac Int Source Term ®—e Jac Total Time (Host DAG) #—+ Jac ProjGradToQP ¢ < Jac Int Source Term
B-m Jac Gather % Jac Int Diff Term ~— Jac Scatter B Jac Gather % Jac Int Diff Term ~— Jac Scatter
A—4A Jac Zero A4 Jac Zero

Time (s)

i i i -3 i i i
0 500 1000 1500 2000 10 0 500 1000 1500 2000
Workset Size Workset Size

27

Equation Set Scaling) i,

300

Runtime Ratio

0 500 1000 1500 2000 2500
Workset Size

e=@==pP100 =@ Broadwell =—=®=\Nork Ratio Bound

28

Host vs Device DAG) i,

= Traditional Phalanx use is “Host DAG” = Device DAG complications:
= Each node in DAG launches its own kokkos = Need a virtual function call to run
kernel via parallel_for from host . .
through a runtime generated list of
functors

= New “Device DAG” capability runs all the

Kernels on device from a single parallel_for " Copy all functors to device and

launch instantiate
= Goal: keep values in cache for next functor = Requires relocatable device code for
evaluation CUDA

template<typename Traits>
struct RunDeviceDag {

Kokkos: :View<PHX: :DeviceEvaluatorPtr<Traits>%,PHX: :Device> evaluators_;

KOKKOS_INLINE_FUNCTION
zoid operator() (const TeamPolicy<exec_space>::member_type& team) const
const int num_evaluators = static_cast<int>(evaluators_.extent(0));
for (int e=@; e < num_evaluators; ++e) {
evaluators_(e).ptr->prepareForRecompute(team,data_);
evaluators_(e).ptr->evaluate(team,data_);
team.team_barrier();
}
}

}

29

Host vs Device DAG Performance, 16 Equationd) &=

Laboratories

OpenMP, Broadwell,
OMP_NUM_THREADS=36 CUDA, P100

101 nel= 8000 neq=16, nderlv 128,ts=1, vs 2 101 nel= 8000 neq=16, nderlv 128,ts=8, vs 32
@@ Jac Total Tlme (Host DAG) @@ Res Total Tme (Host DAG) @@ Jac Total Tlme (Host DAG) @@ Res Total Tme (Host DAG)
Bl Jac Total Time (Device DAG) @1 Res Total Time (Device DAG) Bl Jac Total Time (Device DAG) [@ Res Total Time (Device DAG)

Time (s)
Time (s)

DmDDDDmDDDDmDDDDH

0 560 1000 1500 2000 107, 500 1000 1500 2000
Workset Size Workset Size

@ Host Residual
B Device Jacobian

30

Host vs Device DAG Performance, 1 Equation ()&

Laboratories

OpenMP, Broadwell,
OMP_NUM_THREADS=36 CUDA, P100

nel=8000,neq= 1nder|v 8,ts= 1vs 2

10_1 10_1 nel= 8000 neq=1, nderlv 8,ts=8, vs 32
@@ Jac Total Tlme (Host DAG) @@ Res Total Tme (Host DAG) @@ Jac Total Tlme (Host DAG) @@ Res Total Tlme (Host DAG)
B8 Jac Total Time (Device DAG) [Res Total Time (Device DAG) B8 Jac Total Time (Device DAG) [Res Total Time (Device DAG)

Time (s)

; m
| BT R ey ey gy

0 500 1000 1500 2000 0 500 1000 1500 2000
Workset Size Workset Size

@ Host Residual
B Device Jacobian

31

Conclusions)

A number of tools in Trilinos are under development for supporting finite
element assembly

= Risk mitigation: can “buy in” a various levels
= At a minimum components provide guidance

Performance portability is not the same as being able to run on an architecture

= Restrictions from GPUs strongly impacts the code base

Converting code to be performance portable is application specific. Kokkos
team experience:

= 50% can do simple flat parallelism
= 30 % need hierarchic

= 20% need some customization — new algorithms

Templated scalar types and DAG-assembly allow for complex multiphysics
simulations in a manageable code base

Extra Slides) i

Profiler (500 Element workset, ts=8, vs=32)

IntegrateDiffusionTerm

achieved_occupancy
dram_read_throughput
dram_write_throughput
gld_efficiency
gst_efficiency
warp_execution_efficiency
stall_inst_fetch
stall_memory_dependency
stall_exec_dependency
stall_memory_throttle
stall_pipe_busy
stall_not_selected
branch_efficiency
gld_throughput
gst_throughput
local_load_throughput
local_store_throughput
sm_activity

ProjectGradientToQP
achieved_occupancy
dram_read_throughput
dram_write_throughput
gld_efficiency
gst_efficiency
warp_execution_efficiency
stall_inst_fetch
stall_memory_dependency
stall_exec_dependency
stall_memory_throttle
stall_pipe_busy
stall_not_selected
branch_efficiency
gld_throughput
gst_throughput
local_load_throughput
local_store_throughput
sm_activity

Achieved Occupancy

Device Memory Read Throughput

Device Memory Write Throughput

Global Memory Load Efficiency

Global Memory Store Efficiency

Warp Execution Efficiency

Issue Stall Reasons (Instructions Fetch)
Issue Stall Reasons (Data Request)

Issue Stall Reasons (Execution Dependency)
Issue Stall Reasons (Memory Throttle)
Issue Stall Reasons (Pipe Busy)

Issue Stall Reasons (Not Selected)
Branch Efficiency

Global Load Throughput

Global Store Throughput

Local Memory Load Throughput

Local Memory Store Throughput
Multiprocessor Activity

Achieved Occupancy

Device Memory Read Throughput
Device Memory Write Throughput
Global Memory Load Efficiency
Global Memory Store Efficiency
Warp Execution Efficiency
Issue Stall Reasons (Instructions Fetch)
Issue Stall Reasons (Data Request)

Issue Stall Reasons (Execution Dependency)
Issue Stall Reasons (Memory Throttle)
Issue Stall Reasons (Pipe Busy)
Issue Stall Reasons (Not Selected)
Branch Efficiency

Global Load Throughput

Global Store Throughput

Local Memory Load Throughput

Local Memory Store Throughput
Multiprocessor Activity

0.493292
15.464GB/s
15.354GB/s

41.01%
89.58%
100.00%
0.70%
89.97%
7.09%
0.01%
0.18%
0.56%
100.00%
447.61GB/s
98.255GB/s
0.00000B/s
0.00000B/s
89.98%

0.578304
208.10GB/s
208.76GB/s

46.96%
88.48%
100.00%
0.91%
88.08%
6.99%
0.00%
0.28%
0.91%
100.00%
898.63GB/s
235.09GB/s
0.00000B/s
0.00000B/s
89.74%

0.496409
16.712GB/s
16.883GB/s

41.01%
89.58%
100.00%
0.88%
90.54%
7.47%
0.02%
0.20%
0.61%
100.00%
482.41GB/s
105.89GB/s
0.00000B/s
0.00000B/s
93.70%

0.614325
222.70GB/s
220.09GB/s

46.96%
88.48%
100.00%
1.49%
89.48%
7.38%
0.01%
0.32%
1.09%
100.00%
947.49GB/s
247.87GB/s
0.00000B/s
0.00000B/s
93.94%

Sandia
National

i

0.495174
16.342GB/s
16.177GB/s

41.01%
89.58%
100.00%
0.78%
90.17%
7.28%
0.02%
0.19%
0.59%
100.00%
472.82GB/s
103.79GB/s
0.00000B/s
0.00000B/s
91.87%

0.597506
216.43GB/s
215.84GB/s

46.96%
88.48%
100.00%
1.11%
88.83%
7.13%
0.01%
0.30%
1.00%
100.00%
928.98GB/s
243.03GB/s
0.00000B/s
0.00000B/s
91.35%

34

Laboratories

Profiler

Gather

achieved_occupancy
dram_read_throughput
dram_write_throughput
gld_efficiency
gst_efficiency
warp_execution_efficiency
stall_inst_fetch
stall_memory_dependency
stall_exec_dependency
stall_memory_throttle
stall_pipe_busy
stall_not_selected
branch_efficiency
gld_throughput
gst_throughput
local_load_throughput
local_store_throughput
sm_activity

Achieved Occupancy

Device Memory Read Throughput

Device Memory Write Throughput

Global Memory Load Efficiency

Global Memory Store Efficiency

Warp Execution Efficiency

Issue Stall Reasons (Instructions Fetch)
Issue Stall Reasons (Data Request)

Issue Stall Reasons (Execution Dependency)
Issue Stall Reasons (Memory Throttle)
Issue Stall Reasons (Pipe Busy)

Issue Stall Reasons (Not Selected)
Branch Efficiency

Global Load Throughput

Global Store Throughput

Local Memory Load Throughput

Local Memory Store Throughput
Multiprocessor Activity

Scatter (includes filling the “free” residual too)

achieved_occupancy
dram_read_throughput
dram_write_throughput
gld_efficiency
gst_efficiency
warp_execution_efficiency
stall_inst_fetch
stall_memory_dependency
stall_exec_dependency
stall_memory_throttle
stall_pipe_busy
stall_not_selected
branch_efficiency
gld_throughput
gst_throughput
local_load_throughput
local_store_throughput
sm_activity

Achieved Occupancy

Device Memory Read Throughput

Device Memory Write Throughput

Global Memory Load Efficiency

Global Memory Store Efficiency

Warp Execution Efficiency

Issue Stall Reasons (Instructions Fetch)
Issue Stall Reasons (Data Request)

Issue Stall Reasons (Execution Dependency)
Issue Stall Reasons (Memory Throttle)
Issue Stall Reasons (Pipe Busy)

Issue Stall Reasons (Not Selected)
Branch Efficiency

Global Load Throughput

Global Store Throughput

Local Memory Load Throughput

Local Memory Store Throughput
Multiprocessor Activity

0.289833
22.358GB/s
65.102GB/s

18.75%
25.00%
74.90%
5.41%
2.77%
7.25%
0.02%
0.11%
0.40%
100.00%
44.548GB/s
44.548GB/s
0.00000B/s
0.00000B/s
40.14%

0.518109
6.1323GB/s
2.3836GB/s

7.20%
0.00%
48.52%
5.53%
53.74%
15.49%
0.00%
0.36%
0.77%
100.00%
341.48GB/s
0.00000B/s
0.00000B/s
0.00000B/s
87.35%

0.468549
28.711GB/s
70.407GB/s

18.75%
25.00%
74.90%
59.42%
9.50%
20.80%
0.07%
0.38%
1.50%
100.00%
48.068GB/s
48.068GB/s
0.00000B/s
0.00000B/s
53.25%

0.521589
6.2414GB/s
2.4590GB/s

7.20%
0.00%
48.52%
5.69%
54.09%
15.55%
0.00%
0.36%
0.77%
100.00%
347.80GB/s
0.00000B/s
0.00000B/s
0.00000B/s
93.00%

i

0.352503
26.816GB/s
67.746GB/s

18.75%
25.00%
74.90%
17.68%
6.37%
16.06%
0.05%
0.28%
1.12%
100.00%
46.830GB/s
46.830GB/s
0.00000B/s
0.00000B/s
46.02%

0.519930
6.1784GB/s
2.4065GB/s

7.20%
0.00%
48.52%
5.59%
53.95%
15.52%
0.00%
0.36%
0.77%
100.00%
344.23GB/s
0.00000B/s
0.00000B/s
0.00000B/s
91.11%

Sandia
National
Laboratories

35

More Parallelism: Hybrid R
Task+Data Parallel Analysis

7]][] (=2 i

Compatible Discretization

<
NS e T
o 0‘0}((‘&\/\3 Vosiop-a @) ljclolale
© e(«fﬁ‘&g}”j&“&/" DD
\\g{'f S
Theoretical speed up for volume assembly DAG (Ignores scheduling overhead)

| A1Thread/Task | 8Threads/Task | 16 Threads/Task
3.5 4.5 4.9

Jacobian

== Residual 3.4 3.4 3.5 —

Speedup

»
T

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Linear Iterations/Newton Step

()
T

v
T

' 1.8 Billion unknowns

SFE Initial Scaling Studies for Cray XK7 AND BG#Qae
—_ —_ —_ Laboratories
3D MHD Generator [Re = 500, Re,, = 1, Ha = 2.
(with Paul Lin)
u P T B v
Weak Scaling: Linear Iterations (Ha=2.5) 160 Weak Scaling: Linear Solve Time (Ha=2.5)
800 : : 16k ‘ : : T = ‘
~—+ FC AMG (BG/Q) u‘jf ~— FC AMG (BG/Q) AN
700L| * =+ DD ILU(1),ov=1 (Titan) ’ 140f| * == DD ILU(1),ov=1 (Titan) © | ~20x E
= -+ FC AMG (Titan) /! = -« FC AMG (Titan))
600} /! S 120} ! .
1.8 Billion max unknowns g & 1.8 Billion max unknowns /
500l 14K unknowns per core (Titan) . 8 100f 4096x increase in prb. size /' |
Il % ’I
400 ‘ £ sol ‘/ .
@\»' = ;
,/ C|>) '
300} e g 60} II i
ool . g " BG/Q: 256K
(256) = o / |
100 - - T 20} i
(32 (64 cores)(512) z@] _ ‘z _______ S
. —— £ — = ——=—=%f=------%--""" Titan: 128K
10° 10° 107 108 10° 10 L0 To° To7 To°® 10° 1010
Number of Unknowns Number of Unknowns
‘ Strong Scalir]g: 1.8 ‘Billion pnknovyns (H§=2.5) ‘
H[— 1deal]

Core Count

Largest fully-coupled implicit solves demonstrated to date:

« MHD (steady): 10B DoF, 1.25B elem, on 128K cores
 CFD (Transient): 40B DoF, 10.0B elem, on 128K cores
« Poisson sub-block: 3.2B DoF, 3.2B elem, on 1.6M cores

Difficulties)

IH

Production codes don’t always fit the “count/allocate/fill” paradigm.

= Compile-time rank (fixed with Kokkos::DynRankView)
= Runtime decisions and lazy instantiation can be problematic
= Passing the FAD dimension for temporaries, view factory for AD dimensions

= Portability and Performance are not the same
= No raw references for AD scalar types (use return_type)

= Hiding the derivative array parallelization introduces requirements on
developers

= Templated scalar temporaries
= Use of a memory pool

= Loss of bracket operator

Multi-fluid plasma model .

= Continuity equation:

Each species « is represented by a separate

0tpa + V- (Palte) = Sq . . .
density p, momentum pu, and isotropic energy e.

= Momentum equation:

q
at(paua) + V- (Paua Quy + Py) = m_apa(E + uyXB) + Ry + u,S,
a

= Energy equation:

1
Oreq +V - (uy - (el +Py) +q4) =%paua'E+Qa+ua’Ra +§ué5a
a

= Ampere’s Law:

9,E — c2VXB = L e) o Spatial operators are discretized using a finite
€o -4 My element method.
= Faraday’s Law:
Fluid
dpif o PE S Electromagnetic
Inter-fluid

IMEX time integration) .

= |MEX gives a framework for splitting the model up into implicit and explicit terms:
= Explicit for slow, non-stiff terms

Implicit tableau Explicit tableau
= |mplicit for fast, stiff terms R A
cl| A c| A
t 7 ¢
oiu = f(u,t) + gu,t) b b
j<i j<i
u(i) =u+ At Z/Tuf(u(]), tn + é}At) + At EAUg(u(]), tn + CjAt)
j=0 j=0
i<s I<s
u™l =y + At z Bif(u(i), t, + 6iAt) + At Z big(u(i), t, + cl-At)
i=0 =0

= Objective: Combine the advantages of implicit and explicit solvers.

= Take advantage of expensive implicit solver to overstep fast scales, and explicit solver to
resolve slow scales.

Compatible discretization for EM @

A physics compatible finite element discretization is used to enforce the divergence
constraints for the electric and magnetic fields.

Fluids are represented by an HGrad (node) basis p € V.

The electric field is represented by an HCurl (edge) vector basis E € V.

The magnetic field is represented by an HDiv (face) vector basis B € V..
Compatibility is defined by the discrete preservation of the De Rham Complex:

Vpy EVyy — VXpyx €EVy. — V- Py €V,

For Faraday’s law, we choose a basis for the electric field such that its curl is fully
represented by the basis used by the magnetic field.

9,B + VXE =0 V-B=0

Since the curl of the electric field is ‘globally continuous’ w.r.t. a divergence operator, the
divergence of that curl is zero over the domain:

0
\7-(0tB+|7><E)=at(\7-B)+\7-|7><E=at(v-B)+Z}5i|7/\7{<;>§x =9,(V-B)=0

l
Result: The curl operator does not add divergence errors to the magnetic field

Satisfying Gauss’ laws in plasmas @

= Goal: Solve plasma-coupled Maxwell’s equations and satisfy a divergence constraint:

1

1
atE—CZVXB=——]' atpc+|7°]'=0 V-E:—pc
EO EO

= |n the strong, non-discretized form:
1 1 1
V-(@tE+—j—C2\7><B) =0, V-E+—V-j= at(V-E——pc) =0
€o €o €o
= |n the weak form: Choose a basis that supports the divergence constraint as HCurl does not
support the divergence operation:

0
1 1

f <0tE—c2\7xB+—j)-|7¢VdV= r <6tE-|7¢V+—|7-j¢V>dV+czjB-mvdv

qQ €9 J €o Q

Q

1
= J;at (E' V(Pv—apc (Pv)dv =0

= Assumes that continuity equation is weakly satisfied:

f Ope =V Dby dV = | @epetpo +] - Ve)dV = 0= j depety dV = | j- Vg av
Q Q Q Q

Discontinuous Galerkin method) &=,

= Discontinuous Galerkin FEM does not assume a globally continuous test function:

Weak form

Jﬂqbatu dV +]qu V-fdV — jﬂqbs dvV =0

Break into elements K € Q with discontinuous element test function ¢

Z [chb{{ du dV + qub{{ V- fdv —]quf s dV] =0

Apply divergence theorem to flux integral
j¢{<atudv+ qbl-ﬁ-de—jf-ng{{dV—fqb{(st:O
K oK K K

= Consistency: Fluxes must be single valued on interfaces between elements.
= Numerical Flux: Solution to Riemann problem to generate consistent flux on interfaces.

